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C
COMPLEMENTARY

INFORMATION ON CHAPTER
6

C.1 FORMATION AND ANALYSIS OF THE SELF
-ASSEMBLED MONOLAYERS

Self-Assembled Monolayers (SAMs) of the acetyl-protected mono- and dithiols
were grown from solutions with triethylamine as deprotecting agent, which
promotes the formation of high-quality and densely-packed SAMs, as recently
showed for acetyl-protected OPE dithiols and monothiols[1]. Due to the low sol-
ubility of the AC- and AQ-compounds in THF, these SAMs were grown from 0.5
mM solutions in chloroform (Aldrich, anhydrous, =99%, stabilized by amylenes)
with 10% (v/v) triethylamine (Fisher, HPLC grade, degassed) added. The SAMs
of the OPE mono- and dithiol were grown from 0.5 mM solutions in dry THF,
with 10% (v/v) triethylamine added. All solutions and SAMs were prepared in-
side a glovebox filled with nitrogen (<5 ppm O2). We used freshly prepared sam-
ples of 150 nm gold on mica for the ellipsometry and XPS studies, and freshly
prepared samples of 5 nm chromium and 200 nm gold thermally deposited on
a silicon wafer for the CP-AFM studies. Samples were immersed upside down
for two nights in about 3 mL solution. After this immersion time, the samples
were taken from solution, rinsed three times with clean THF, and dried on the
nitrogen atmosphere in the glovebox.
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Ellipsometry measurements were performed using a V-Vase from J. A. Wool-
lam Co., Inc. in air. Measurements were acquired from 300-800 nm with an
interval of 10 nm at 65, 70, and 75 ◦ angle of incidence. For every set of ex-
periments a fresh gold-on-mica sample was measured at three or four different
spots. The data from these measurements were merged and the optical con-
stants were fitted. For every SAM three spots were measured and the thickness
of a cauchy layer (n=1.55, k=0 at all λ) on top of the gold layer was fitted and
averaged over the three spots.

X-ray Photoelectron Spectroscopy (XPS) measurements were performed on
a X-PROBE Surface Science Laboratories photoelectron spectrometer with a
Al Ka X-ray source (1486.6 eV) and a takeoff angle of 37ž. We accumulated
20 scans for S2p, 10 for C1s, 10 for O1s, 15 for N1s, and 5 for Au4f. All re-
ported data are averaged over four different spots per sample and presented
in table C.1. WinSpec1 was used to fit the recorded data with a background
and minimum number of mixed Gaussian-Lorentzian singlets (C1s, N1s, O1s)
or doublets (Au4f; ∆=3.67 eV, S2p; ∆=1.18 eV) with a width of 1.21 eV.

Molecular
wire

Au4f
(84
eV)

C1s
CxHx
(283
-287
eV)

C1s
C=O
(288
eV)

S2p
S-Au
(162
eV)

S2p
S-R
(164
eV)

O1s
(532
eV)

Normalized
intensi-
ties C1s
per C-
atom

AC-DT 7515 1343 39 19 84 57 43
AQ-DT 7564 1017 73 18 55 102 36

TABLE C.1: Composition of the SAM’s: X-ray photoelectron spectroscopy measurements. The inte-
grated intensities are divided by the sensitivity factor: 1 for C1s, 1,79 for S2p and 2,49 for O1s

We determined the thicknesses of the SAMs from our XPS results by two
different methods: A) from the ratio between the carbon and the gold signals[2]
and B) from the attenuation of the gold signals[3].
Method A. Thicknesses of the SAMs(dCS) are determined from the ratio of the
areas of C1s and Au4f peaks by equation C.1 with λAu = 31 Å, λC = 27 Å, dC =
dCS − 1.8 Å(dC is the thickness of the hydrocarbon layer without the thiolate);
k is estimated to be 0.15 from XPS measurements on a SAM of undecanethiol

1WinSpec 2.09, developed at Laboratoire Interdépartemental de Spectroscopie Electronique, Na-
mur, Belgium
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on gold. We determined dCS from IC /IAu by an iterative numerical approach.

Ic

IAu
= k

1−exp(−dc
λC

)

exp(−dCS
λAu

)
(C.1)

Method B. Thicknesses (d) are determined from the attenuation of the Au4f
signal by equation C.2 with Au0 = 109754, λ = 42 Å, and θ = 37ř.

IAu = IAu0 exp(
−d

λsinθ
) (C.2)

We found a good agreement between the length of the molecules and the
thickness of the SAMs, indicating the formation of densely-packed monolayers
in which the molecules are oriented nearly perpendicular to the gold substrate
surface.

Molecular
wire

Lengtha

(Å)
Ellipsometry
(Å)

XPS
method
A (Å)

XPS
method
B (Å)

Weighed
Averageb

(Å)
AC-DT 24.49 28.6∗ 24.1 27.1 25
AQ-DT 24.49 21.7 20.1∗∗ 26.9 24
OPE-DT 20.14 19.7 17.5 17.8 19

TABLE C.2: a: The distance from S- to S-atom as obtained by DFT calculations.
b: The thicknesses as obtained by ellipsometry and XPS are averaged. The absolute values obtained
from XPS by method A are considered more accurate than those obtained by method B and therefore
weighed twice as strong. Identical weights were used for ellipsometry and XPS (methods A and B
combined).
*: The value for AC-DT as determined by ellipsometry is not included in the average, since this
large (highly reproducible) value is likely to be caused by the optical absorption of this compound
in the range of the ellipsometry measurement.
**: The value for AQ-DT as determined by XPS method A is not included in the average, because
the oxygen atoms from the anthraquinone core do attenuate the Au signal, but do not contribute to
the carbon signal, underestimating the actual thickness.

The SAMs of the monothiolated molecular wires were measured by ellipsom-
etry. The thickness of the SAMs was 17.5 Åfor AQ-MT and 20.5 Åfor OPE-DT.

From the XPS data, the ellipsometry measurements and DFT calculations
we find a densely packed, upright standing SAM for AQ-DT and AC-DT.

C.2 DATA ANALYSIS
The current-voltage data gathered for each sample are put together and ana-
lyzed further using a MatLab code. For the figures in the main text, around 95
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% of the measured curves are used. A small number of curves have been re-
moved. The curves showing no contact with molecules i.e. below the noise level
of our set-up (typically ≈ 100 pA) are removed from our data set. In fact this is
the case when no contact is formed with the SAM. Additionally we removed the
curves presenting saturation, indicating direct contact between the tip and the
gold bottom electrode. In figureC.1 we show typical single I(V) curves of data
kept and removed. table II summarizes the amount of removed data, which is
typically as little as 5 % of the data.
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FIGURE C.1: a, typical I(V) curve kept in our data set for AQ-MT, b, typical I(V) curve below
detection limit of our set-up, c, typical I(V) curve showing saturation of the current amplifier for
AQ-MT.

Molecule number of curves number of curves rejected % rejected
AC-DT 1979 98 4.9 %
AQ-DT 2502 107 4.3%
AQ-MT 2884 251 8.7%

OPE3-DT 621 32 5.1%
OPE3-MT 1574 65 4.1%

TABLE C.3: table showing the amount of curves disregarded due to no contact or saturation for the
different molecules measured

Second the remaining I(V) curves are smoothed with a local regression us-
ing weighted linear least squares and a 2nd degree polynomial model. Next
we take a numerical derivative of the current relative to the voltage (dI/dV).
Finally we construct a 2D histogram of these dI/dV values by logarithmically
binning them for each bias voltage and plotting them next to each other. This
will result in a 3D graph with on the x-axis the bias voltage, on the y-axis the
log (dI/dV) and on the z-axis (in colour scale) the number of counts. Such a 2D
histogram can be seen as a collection of traditional 1D conductance histograms
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for different bias voltages. In figureC.2 we show such 2D histogram for AQ-MT
for both the full data set (figureC.2a) and the partial data set (figureC.2b). It is
clear from this comparison that removing the contacted and saturated curves
makes the picture more clear. However in the full data set plot the trend in the
dI/dV curve is still easily distinguishable. We also refer to the section Supple-
mentary Figures, where we display raw I(V)-curves, both as an ensemble and
individually, and present alternative methods of analyzing the data.
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FIGURE C.2: dI/dV (Ω−1) 2D histogram for AQ-DT a, without data rejected and b, with data
rejected i.e. the curves with no contact and the saturated curves
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C.3 CALCULATIONS
Below we present our conductance calculations in more detail. Furthermore,
we elaborate on the relationship between the transmission function T(E) and
dI/dV -curves.

C.4 TRANSMISSION CALCULATIONS
The conductance is calculated using DFT in combination with a non-equilibrium
Green function (NEGF) method as described in Ref. [4]. Our DFT-NEGF method
is implemented in GPAW, which is a real space electronic structure code based
on the projector augmented wave method [5, 6]. We use the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional [7], and a 4×4 k-point sam-
pling in the surface plane. The electronic wave functions are expanded in an
atomic orbital basis [6]. All atoms are described by a double-zeta plus polar-
ization (dzp) basis set. We initially relax the molecule and the two closest Au
layers until the forces on the atoms are less than 0.05 eV/Å. In the relaxed con-
figuration, the S-atoms bind to Au at a bridge site slightly shifted toward the
hollow site.

Following the standard DFT-Landauer approach, we calculate the zero-bias
transmission function,

T(E)=Tr[Gr(E)ΓL(E)Ga(E)ΓR(E)], (C.3)

with Gr(E)= (ES−H−ΣL(E)−ΣR(E))−1 being the retarded Green’s function for
the junction (scattering region) described by the single-particle Hamiltonian
H and overlap matrix S, and where the semi-infinite electrodes are included
through left and right self-energies, ΣL,R(E). The advanced Green’s function
Ga(E)= (Gr(E))†, and ΓL,R(E)= i(ΣL,R(E)−ΣL,R(E)†). The low-bias conductance
can finally be obtained from the Landauer formula, G = (2e2/h)T(EF ), where
EF is the Fermi energy.

The DFT transmission for AC-DT, AQ-DT, and AQ-MT is shown in fig-
ureC.3.

C.5 CORRECTION OF HOMO-LUMO GAP
It is well known that DFT is unable to accurately describe energy gaps and level
alignment of molecules at surfaces [8]. To correct for this inability we use a
self-energy correction scheme (DFT+Σ) that has recently been shown to predict
conductance values in good agreement with single-molecule experiments [9, 10].
In the DFT+Σ approach we initially correct the gas phase HOMO-LUMO gap.
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FIGURE C.3: Transmission function vs. energy calculated with with standard DFT + NEGF meth-
ods. The vertical bars mark the HOMO and HOMO-1 (to the left) and LUMO (to the right) positions.
The qualitative shapes of the transmission functions are the same as for the DFT+Σ results shown
in the main text, Fig. 2 (a)

This is done by calculating the ionization potential (IP) and electron affinity
(EA) from total energy calculation:

IP = E(+e)−E(0) (C.4)

EA = E(0)−E(−e), (C.5)

where E(0) is the total energy of the neutral molecule, E(+e) is the energy of the
molecule with one electron removed (i.e. positively charged), and E(−e) is the
total energy of the molecule with one extra electron on it. The gas phase HOMO-
LUMO gap is calculated as ∆E =IP-EA. The calculated values are shown in
tableC.4. εLUMO, corresponding to the highest occupied and lowest unoccupied
eigenstates. As shown in tableC.4, the corresponding HOMO-LUMO gaps, ∆ε,
are significantly lower than the ones calculated from total energies, and the
self-energy correction should thus shift the occupied states down in energy and
the unoccupied states up in energy thereby opening the gap. When a molecule
is brought close to a metallic surface, image charge interactions will further
change the energy levels resulting in a shift of the occupied levels up in energy
and the unoccupied states down in energy. From a simple electrostatic model [9]
we get that the electrostatic interactions closes the HOMO-LUMO gap of AC-
DT and AQ-DT by ∆q = 1eV in total: 0.5 eV upward shift of the occupied and
-0.5 eV downward shift of the unoccupied states. The electrostatic interaction is
slightly larger for the OPEs because they are shorter, and we get a gap closing
of ∆q = 1.2eV in total. The resulting shifts of occupied states is then

Σocc =−IP −εH +∆q/2 (C.6)
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IP EA ∆E εH εL ∆ε Σocc Σunocc T0(EF ) TΣ(EF )
AC 6.20 1.59 4.61 -4.87 -3.08 1.79 -0.83 0.99 7.1 ·10−3 0.5 ·10−3

AQ-DT 6.44 2.21 4.23 -5.42 -3.84 1.58 -0.52 1.13 4.6 ·10−5 1.1 ·10−5

AQ-MT 6.73 2.21 4.52 -5.46 -3.87 1.59 -0.77 1.16 8.3 ·10−6 5.7 ·10−7

OPE-DT 6.45 1.22 5.23 -4.99 -2.78 2.21 -0.86 0.96 1.6 ·10−2 1.7 ·10−3

OPE-MT 6.64 1.19 5.46 -5.08 -2.79 2.29 -0.96 1.01 6.2 ·10−4 5.5 ·10−5

TABLE C.4: Ionization potential (IP), electron affinity (EA), and corresponding HOMO-LUMO gap,
∆E, obtained from total energy calculations. Kohn-Sham HOMO, εH , LUMO, εL energy and cor-
responding gap, ∆ε. In the DFT+Σ method, the occupied (unoccupied) states are shifted by Σocc (
Σunocc). T0(EF ) is the pure DFT transmission values at the Fermi energy and TΣ(EF ) is the value
obtained with the DFT+Σ approach. All energies are given in units of eV.

and of the unoccupied states

Σunocc = EA+εL −∆q/2. (C.7)

The calculated values are shown in tableC.4. When comparing the DFT+Σ
transmissions in the main text, Fig. 2(a) with the pure DFT results in figureC.3
we see that the effect of Σ merely is to shift the occupied states down in energy
and the unoccupied states up in energy. While the qualitative behaviour and
the shape of the transmission functions are relatively unchanged the overall
magnitude and quantitative details are changed. Previous studies [9, 10] have
shown that DFT+Σ yields better agreement with experiments.

figureC.4 shows the OPE transmissions calculated with the DFT+Σmethod.
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FIGURE C.4: Transmission function calculated with DFT+Σ for OPE-DT and OPE-MT.

C.6 DI/DV CURVES
We calculate current-voltage relations from the low-bias transmission function.
As discussed in the main text, we allow for an energy shift∆E of the Fermi level.
We also allow for an asymmetric voltage drop at the left and right electrodes de-
scribed by the parameter η. Based on previous finite bias DFT calculations[11]
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on similar molecules, we use an estimated value of η = 0.6 for all the mono-
thiols. The main conclusions are, however, independent of this specific choice.
For the di-thiols we assume a symmetric voltage drop with η= 1/2.

The current is calculated as

I(V )= 2e
h

∫ ∞

−∞
T(E+∆E)

{
fL[Vη]− fR[V (η−1)]

}
dE, (C.8)

where fL/R(V )= 1/[exp(EF + eV )/kBT +1] are the Fermi-Dirac distributions
for the left and right contact. The dI/dV curves are found by differentiation of
(C.8). Results for AQ-MT and OPE-MT are shown in the main text (Fig. 4),
while dI/dV curves for AQ-DT, AC-DT, and OPE-DT are shown in figureC.5, for
various values of ∆E.
The most important case is that of AQ-DT (left panel). Let us extend the dis-
cussion at the end of the main paper while inspecting figure C.5. Just like for
AQ-MT (see Fig. 4a), we see that for AQ-DT, the shape of the dI/dV curves
depends strongly on the energy shift ∆E. For ∆E = −0.7 eV, the calculations
of dI/dV yield a clear zero-bias anomaly for AQ-DT. The reason is that in that
case, the dip in the transmission function T(E) lies very close to the Fermi level
(in the section below, we go into this more generally). However, for other values
of ∆E, the shape of the dI/dV curves tends towards a parabola-like curve. The
latter is in correspondence with our measurements in Fig. 3a, where we find
a strongly suppressed conductance for AQ-DT (with respect to AC-DT), but no
zero-bias anomaly. In other words, although both AQ-DT and AQ-MT exhibit
quantum interference, the zero-bias anomaly is only visible for AQ-MT, since
for that molecule the transmission dip is much closer to EF .
Of course, we need to consider the question why the transmission minimum is
shifted to different positions for AQ-DT and AQ-MT. This is explained by the
fact that AQ-DT junctions comprise two Au-S dipoles, whereas AQ-MT junc-
tions have only one. The accompanying charge transfer results in a higher
upward energy shift for the transmission function of AQ-DT than for AQ-MT
(by ≈ 0.2 eV in our calculations). Hence, in AQ-DT, the transmission dip is posi-
tioned more above EF . Consequently, no anomaly shows up in dI/dV -curves as
illustrated in figure C.5. Interestingly, the inherent difference in charge trans-
fer for AQ-DT and AQ-MT implies that it is very unlikely to see a zero-bias
anomaly in the dI/dV -curves of both AQ-DT and AQ-MT.



{{C

154

-1 -0.5 0 0.5 1
bias voltage  [V]

10
-10

10
-8

10
-6

10
-4

dI
/d

V 
[S

]

-1 -0.5 0 0.5 1
bias voltage  [V]

10
-10

10
-8

10
-6

10
-4

-1 -0.5 0 0.5 1
bias voltage  [V]

10
-10

10
-8

10
-6

10
-4

AQ-DT AC-DT OPE-DT

0.5 eV

0.0 eV

-0.5 eV

-0.7 eV

0.5 eV
0.0 eV

-0.5 eV

0.5 eV
0.0 eV

-0.5 eV

FIGURE C.5: dI/dV -curves calculated from the transmission function shifted by ∆E = 0.0 eV ∆E =
0.5 eV and ∆E = −0.5 eV, relative to the Fermi energy. In the case of AQ-DT (left panel), we
also show the result for ∆E =−0.7 eV to illustrate that a dI/dV dip similar to that experimentally
seen for AQ-MT could in principle be observed for AQ-DT, with a larger energy shift. In order
to simulate the experimental situation with multiple molecules in contact with the AFM tip, the
DFT+Σ transmission functions have been multiplied by a factor of 100.

C.7 RELATIONSHIP BETWEEN DI/DV CURVES AND
THE POSITION OF THE MINIMUM IN T(E)

In the previous section, we stated that an anti-resonance in T(E) leads to an
anomaly in dI/dV only if this anti-resonance is situated near the Fermi level.
Here, we discuss this relationship further, first mathematically, then with a
model calculation.
Mathematically, the relation between dI/dV and T(E) can be written (using the
Landauer formula at T = 0K) as:

dI
dV

= 2e2

h
(ηT(EF +ηeV )+ (1−η)(T(EF − (1−η)eV ))) (C.9)

where η expresses the symmetry of the junction (η = 0.5 for a symmetric
junction). As a first consequence, symmetric dI/dV -curves are necessarily ob-
tained for symmetrically coupled molecules, irrespective of the (a)symmetry of
T(E) around the Fermi level EF . This is easily seen by inserting η= 0.5 into the
formula above, and interchanging +V and -V.
Indeed, from eq. C.9, we can also see that if the dip in T(E) is located at or
near EF , the dI/dV -curves will show a zero-bias anomaly. However, if the anti-
resonance of T(E) does not lie close to EF , no dip will be observed in dI/dV . To
understand this, let us suppose the transmission dip is significantly above EF ,
at a distance δE. Then, it will come inside the bias window at a bias voltage
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eV = δE/η. At this voltage, the first term in the expression will obviously be-
come very small. However, there is still the second term (the negative border of
the bias window), which will not be small at all (cf. Fig. 2a and note the logarith-
mic scale). Hence, the second term will dominate the conductance and the dip
is washed out. We note that this reasoning also holds if the dip in T(E) is below
EF , provided the molecular junctions are nearly-symmetrically coupled. Only if
the asymmetry is very strong (η= 0 or η= 1), one could probe a dip at non-zero
biases. However, this limit is only attained under strong tunnelling conditions
and it is not relevant for the junctions considered here. For our experiments, we
have η between symmetric (0.5, for dithiols) and moderately asymmetric (0.6,
monothiols).

To further illustrate this, we make use of a model tight binding calculation
of T(E). In figureC.6 (left panel), we show three transmission functions, that
differ only by a shift in energy. Three cases are chosen: one in which the min-
imum of T(E) is exactly at EF (red), one where it is 0.4 eV below EF (black),
and one where it is 0.2 eV above EF . The peaks where T(E) = 1 correspond to
the position of the HOMO and LUMO resonances. The resulting dI/dV -curves
are shown in the right panel of figureC.6 (same colour coding). These dI/dV -
curves have been calculated from formula (C.8) using asymmetry parameters of
η= 0.5 (full line) and η= 0.6 (dashed line). These values correspond to voltage
drop occurring symmetrically and slight asymmetrically over the molecule, re-
spectively. The symmetric choice applies to our dithiol bonded jucnctions while
the slightly asymmetric corresponds to our monothiol bonded junctions. The
value η= 0.6 is estimated on basis of first-principles finite bias calculations for
similar molecular junctions [11].

It is clear from figureC.6 that the characteristic V-shape in the dI/dV, ob-
served for AQ-MT in Fig. 3 of the main paper, only appears when the transmis-
sion node is positioned close to the Fermi energy. When the transmission node
appears below or above the Fermi energy, the shape of the dI/dV is parabola-
like, similar to that observed for the conjugated molecules OPE3 and AC, see
Figs. 3c-d and Fig. 1c. This shows that the presence of QI is a necessary but
not a sufficient condition for observing a dip in the dI/dV curve. In particular
it shows that in cases where the transmission dip lies away from the Fermi en-
ergy, destructive QI would reveal itself as a strong reduction of the numerical
value of the conductance rather than a qualitative effect on the dI/dV -curve.
This is indeed what we observe experimentally for AQ-DT.
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FIGURE C.6: Left panel: Calculated transmission function for a model tight binding calculation.
The three curves shown are similar, but the transmission minimum is shifted in energy with respect
to EF , i.e., by −0.4 eV (black), 0 eV (red) and +0.2 eV (blue), respectively. The right panel shows
the corresponding dI/dV curves (same colour coding). They have been obtained from equation C.8
assuming a symmetric junction with η= 0.5 (full line) and slightly asymmetric junction with η= 0.6
(dashed line), respectively.

C.8 3-SITE MODEL
We shall now show that the two different paths in the three site model have a
phase difference of π, and thus contribute with different signs. The three-site
model derived from localized molecular orbitals (LMOs) is shown in figure C.7
with the LMO on-site energies and hopping parameters indicated.

FE

ε
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ε
0

ε
1

En
er

gy

α

β β
γγ

FIGURE C.7: Three-site model with on-site energies and hopping parameters indicated. For the
calculations in Fig. 2 in the main text we use ε0 =−1.2eV, ε1 = 2.1eV, α= 0.04eV, β= 0.24eV, and
γ= 0.4eV.[12]

Since only the left and right orbitals couple to the left and right electrodes,
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respectively, the coupling matrices ΓL,R in Eq. (C.3) have the shapes

ΓL =
 γ 0 0

0 0 0
0 0 0

 , ΓR =
 0 0 0

0 γ 0
0 0 0

 , (C.10)

where we have assumed that the coupling is energy independent (the wide band
limit approximation). From the general transmission formula (C.3) we then get

T(E)= γ2|G12(E)|2, (C.11)

so the transmission is determined by the (1,2) matrix element of the Green’s
function. Physically this quantity describes the propagation of an electron from
site ’1’ (left) to site ’2’ (right). The 3-site Hamiltonian may be written as H =
H0 +V, where

H0 =
 ε0 0 0

0 ε0 0
0 0 ε1

 (C.12)

is the on-site Hamiltonian and

V=
 0 α β

α 0 β

β β 0

 (C.13)

is the coupling between the sites. We now consider the two routes separately
and set α= 0 for the upper route and β= 0 for the lower route. Treating V as a
perturbation we may obtain the full Green’s function from the Dyson equation

G=G0 +G0 VG, (C.14)

where G0(E)= (EI−H0−ΣL−ΣR)−1, and the self energy matrices are related to
the Γ-matrices by ΓL,R(E)= i(ΣL,R(E)−ΣL,R(E)†). For the lower route we iterate
the Dyson equation (C.14) once to get the lowest order contribution and find

G lower
1,2 = α

(E−ε0 + iγ/2)2
. (C.15)

Taking the upper route we need to iterate the Dyson equation twice (since there
are two hops from left to right) and get

Gupper
1,2 = β2

(E−ε0 + iγ/2)2(E−ε1)
. (C.16)



{{C

158

Taking the ratio of the two contributions

Gupper
1,2

G lower
1,2

= β2(E−ε1)
α

, (C.17)

we observe that for energies E < ε1 the ratio has a negative sign showing that
the two paths have a phase difference of π. Since the transmission depends
quadratically on the Green’s function element, the transmission through the
three-site model is to leading order given by

T(E)= |
√

Tupper −
√

Tlower|2. (C.18)

for energies E < ε1 ≈ ELUMO.

C.9 MEASUREMENTS ON OTHER SAMPLES
Here we present supplementary figures showing results for AQ-MT for differ-
ent samples (named sample 2 and 3 for clarity). First the 2D histogram of AQ-
MT for sample 2 is shown in figureC.8. The overall shape of the dI/dV curves
shown in figure 3b is well reproduced on this sample although the conductance
values are lower than the ones found in figure 3b in the main text. The num-
ber of contacted molecules varies from tip to tip due to intrinsic differences in
tip geometry. The displayed dI/dV curve is in agreement with theoretical cal-
culations (see figure 4a, with a -0.5 eV shift) assuming we have 100 molecules
bridging the junction.

A similar V-shaped dI/dV -curve is observed in the data displayed in fig-
ureC.9a. However, here the conductance values are much larger than in figure
3b of the main text. To investigate this interesting case further, we took a closer
look at the tip geometry. On the scanning electron micrographs shown in fig-
ureC.9b we can clearly see the remains of a broken cantilever next to and more
importantly below the actual cantilever used.

As a result the contact area in this case is much larger than for a regular
tip i.e. much more molecules are contacted. Hence, this experimental incident
confirms that the conductance is dependent on the number of molecules con-
tacted. However, such an increase in contacted molecules does not affect the
typical shape of the dI/dV-curve. We therefore show here that the overall shape
of the dI/dV is independent on the number of molecules contacted.

C.10 I(V)-CURVES AND ALTERNATIVE ANALYSIS
Here, we inspect the raw I(V)-curves obtained for AC-DT, AQ-DT and AQ-MT in
more detail. We do so both for individual curves and for the ensemble of I(V)’s.
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FIGURE C.8: 2D histogram for AQ-MT on sample 2 with the dI/dV (Ω−1)
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FIGURE C.9: a, 2D histogram for AQ-MT on sample 3 with the dI/dV (Ω−1). b, SEM picture of the
tip used for measurements shown in panel a. The overview of the chip is shown with the cantilever
used and the remains of the broken one clearly at a lower position. In the inset we show a magnified
picture of the broken cantilever. The scale bar in the picture is 50 µm and 10 µm in the inset.
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This allows us to demonstrate the robustness of the features displayed in Figs.
1c (AC-DT) and 3a (AQ-DT) and 3b (AQ-MT).
In the Supplementary Methods section, we have explained how individual I(V)-
curves are treated to obtain a 2D-histogram of dI/dV data for the ensemble.
For AQ-MT, a clear zero-bias anomaly is observed in the resulting 2D-histogram
(Fig. 3b). Here, we go back to the individual measurements to check that the
zero-bias anomaly is truly intrinsic to single I(V)-curves. In figure C.10, we
show three representative I(V)-curves for AQ-MT (a subset of the data in Fig.
3b, another curve is shown in figure C.1a). Each contains 1000 points, taken
at a sample rate of 10 kHz (i.e. 0.1 s per curve). Raw data are presented, with
original noise and a slight hysteresis. The latter is a result of the relatively
large RC-time of the system at these high resistances. In figure C.11, we show
a representative I(V)-curve for AC-DT. Upon inspection by eye, there is indeed
a difference between the I(V)’s for AQ-MT and AC-DT. Whereas the curves in
figure C.10 display a plateau with near-zero slope around zero bias, the curve in
Fig. SC.11 has finite slope around zero bias. However, this distinction may be
in the eye of the beholder. For that reason, we have taken the derivative of the
individual I(V)’s, after smoothing. The resulting dI/dV -curves are displayed in
Figs. SC.10b, d, and f for the AQ-MT case. Clearly, these curves show a negative
curvature, except near zero bias where an anomaly is seen. This demonstrates
that the anomaly in Fig. 3b stems from the individual I(V)-curves indeed. fig-
ureC.11b shows the dI/dV calculated from figure C.11a. It shows the same
parabola-like shape that we found in Fig. 1c.

Now that we have checked individual I(V)- and dI/dV -curves, let us turn
to the full ensembles of I(V)-curves. In figure C.12, we present the full batch
of I(V)-curves for AC-DT (corresponding to Fig. 1c), AQ-DT (cf. Fig. 3a) and
AQ-MT (samples presented in Fig. 3b and in figure C.9, i.e. with broken tip),
respectively. To allow for a good comparison between the data sets for differ-
ent molecules, all I(V)-curves have first been normalized in the current scale.
Apart from that, these are raw data. Upon visual inspection, a plateau around
zero bias is visible for the AQ-MT data set (Fig. SC.12c,d), which is not there
for AC-DT and AQ-DT. However, such a distinction should be checked to be
independent of the observer. It is for that reason that we performed the data
analysis described in the Supplementary Methods section. Clearly, it is also
important to demonstrate that the final conclusions do not depend on the exact
analysis method chosen. Hence, we use a different statistical treatment below,
by first determining average I(V)’s for the entire batch and then calculating the
corresponding dI/dV .
In all panels of figure C.12, a red line represents the average of all I(V)-curves
in the panel. In addition, a blue line represents an average of all curves, after
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FIGURE C.10: a, c, e) typical raw I(V) traces for AQMT. b, d, f) dI/dV -traces based on the I(V)’s
shown in a, c, e), respectively. The I(V)’s were first smoothed and then numerically differentiated
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a b

FIGURE C.11: a) typical raw I(V) trace for ACDT. b) dI/dV -trace based on the I(V) shown in a.
The I(V) was first smoothed and then numerically differentiated

each I(V)-curve has first been smoothed (the blue line is almost indistinguish-
able from the red line). In figure C.13, we present the derivative of these two
averaged I(V)-curves (again in red and blue, respectively) on a semi-log scale.
For AC-DT and AQ-DT, these dI/dV ’s display a parabolic shape. For AQ-MT,
however, the blue and red lines display negative curvature at all voltages ex-
cept near V = 0, where an anomaly is seen. It is instructive to compare these
curves to the data sets obtained by the analysis method described above. For
this reason, the set of dI/dV -curves that were represented in Figs. 1c (AC-DT),
3a (AQ-DT), 3b (AQ-MT) and SC.9 (AQ-MT, "broken tip") are also plotted in Fig.
SC.13a, b, c, and d respectively (in black, each curve is 99% transparent). We
see that the shape of the average curves (red, blue lines) corresponds well with
the individual curves, although there is some rounding off. For completeness,
we note that logarithmic averaging of the absolute I(V)-curves leads to the same
conclusions, i.e., a negative curvature and an anomaly is observed for AQ-MT,
but not for AC-DT and AQ-DT.
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FIGURE C.12: I(V)-curves, with the current normalized. In grey, we show all the measured raw
I(V)-traces. The black line represents the linearly averaged raw traces; the dark gray line repre-
sents linear average of the traces after they have been smoothed with a 50 points window. a) for
ACDT, b) for AQDT, c) for AQMT and d) for AQMT with a broken tip as explained above
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a b

c d

AQMT broken tip

FIGURE C.13: dI/dV curves a) for ACDT, b) for AQDT, c) for AQMT and d) for AQMT with a
broken tip as explained above. In grey: all the raw I(V) traces after smoothing and numerical
differentiation, on a semi log scale. Black (dark gray) lines: numerical derivative of the black (dark
gray) lines in the corresponding panels in Fig. C.12.
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