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THE SIMMONS MODEL

Full formulation of the Simmons formula. According to ref[1], a full ex-
pression for the current density, J, through a barrier between two similar metal
electrodes over the entire voltage range is given by:

J = c{A+B+C}

_ A4zmme
¢ T
- n-ev =
A = erO exp(-A\/n+¢—-E,)dE,
~ _ [ —
B = —¢ Vexp(—A\/n+gb—Ex)dEx
n—e
C' =

T, - -
f V(n +¢p—Eexp(—-A\/n+d—E,)dE,.
n—e

Here, A = (4nAs/h)V2m, where As = s9 — s1 is the width of the barrier at the
Fermi energy of the metal and ¢ is the average barrier height. In ref [1], parts
of the integrands are neglected. The consequence of this is that for small A
and/or small ¢, the commonly used Simmons expression gives unphysical re-
sults. Below, we calculate the full integrands.

A and B are of the same form:

_ fez exp(—A\/n+¢—E)d(-Ex) >0
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By substituting y2 =n+¢—E, and d(-E,) =d(n+p—E,) = dy® = 2ydy, this
becomes:

ye
—f exp(—Ay)-2ydy
y

1

Here, y12=1/n+ ¢- e1,2. These integrals can be solved by partial integration
[1]. Boundaries for A aree; =0, eg =n—eV, y; = \/n +, yo = \/([_)+ eV, yielding:

2eV
A2

Boundaries for B are ey =n—eV,es =1, y1 = \/P+eV, yo = \/_, yielding:

A= {(A\/p+eV +Dexp(-A\/Pp+eV)—(A\/n+d+Dexp(-=A\/n+ D).

. -2 _ _ -
B=¢ 5l ¢+ Dexp(—A\/)—(A\/ P +eV + Dexp(-~A\/Pp+eV)).

Like A and B, C can again be solved by substituting y? = n+¢—E, and d(-E,) =
d(n+¢—E,) and partial integration.
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Boundaries for C are e; =n—eV,eg =1, y1=1\/P+eV, yo = \/T, so that:
5~ 2 .99 3. 6 /- 6 Z
CcC = Z{((P +Z(P+P\/;+F)exp(—A\/;)
- 3 - 6 /-~ . 6 _
3/2
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Taking all integrals together, we can calculate J. Note that for relatively high
and/or thick barriers, i.e. if Ay/¢p +eV > 1, the full expression for J reduces to
eq. (26) of reference [1]:

J = Jol(p—eV/2)exp(—A\/Pp—eV/2)—
(p+eV/2)exp(—A\/p+eV/2)}.

where, Jg = e/(21hs?).

Figure 1 shows V,,, versus 1/d for each of the three equations mentioned above;
eq. 26 of ref [1], (black), eq. 1 (Stratton) in the main text (blue) and the full
Simmons expression (red). For thick barriers all three collapse on a single line.
The maximum deviation between the three is in the order of a few percent for
thin barriers (around d = 5A). These differences are negligible compared to the
spread in the experimental data as discussed in the Letter.
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