

Molecular charge transport : relating orbital structures to the conductance properties

Guédon, C.M.

Citation

Guédon, C. M. (2012, November 6). *Molecular charge transport : relating orbital structures to the conductance properties. Casimir PhD Series.* Retrieved from https://hdl.handle.net/1887/20093

Version:Not Applicable (or Unknown)License:Leiden University Non-exclusive licenseDownloaded from:https://hdl.handle.net/1887/20093

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/20093</u> holds various files of this Leiden University dissertation.

Author: Guédon, Constant Marcel Title: Molecular charge transport : relating orbital structures to the conductance properties Issue Date: 2012-11-06

B

THE SIMMONS MODEL

Full formulation of the Simmons formula. According to ref [1], a full expression for the current density, J, through a barrier between two similar metal electrodes over the entire voltage range is given by:

$$\begin{split} J &= c\{\tilde{A} + \tilde{B} + \tilde{C}\} \\ c &= \frac{4\pi me}{h^3} \\ \tilde{A} &= eV \int_0^{\eta - eV} exp(-A\sqrt{\eta + \bar{\phi} - E_x}) dE_x \\ \tilde{B} &= -\bar{\phi} \int_{\eta - eV}^{\eta} exp(-A\sqrt{\eta + \bar{\phi} - E_x}) dE_x \\ \tilde{C} &= \int_{\eta - eV}^{\eta} (\eta + \bar{\phi} - E_x) exp(-A\sqrt{\eta + \bar{\phi} - E_x}) dE_x \end{split}$$

Here, $A = (4\pi\Delta s/h)\sqrt{2m}$, where $\Delta s = s_2 - s_1$ is the width of the barrier at the Fermi energy of the metal and $\bar{\phi}$ is the average barrier height. In ref [1], parts of the integrands are neglected. The consequence of this is that for small A and/or small ϕ , the commonly used Simmons expression gives unphysical results. Below, we calculate the full integrands.

 $ilde{A}$ and $ilde{B}$ are of the same form:

$$-\int_{e_1}^{e_2} exp(-A\sqrt{\eta + \bar{\phi} - E_x}) d(-E_x) > 0$$

By substituting $y^2 = \eta + \bar{\phi} - E_x$ and $d(-E_x) = d(\eta + \bar{\phi} - E_x) = dy^2 = 2ydy$, this becomes:

$$-\int_{y_1}^{y_2} exp(-Ay) \cdot 2y dy$$

Here, $y_{1,2} = \sqrt{\eta + \bar{\phi} - e_{1,2}}$. These integrals can be solved by partial integration [1]. Boundaries for \tilde{A} are $e_1 = 0$, $e_2 = \eta - eV$, $y_1 = \sqrt{\eta + \bar{\phi}}$, $y_2 = \sqrt{\bar{\phi} + eV}$, yielding:

$$\tilde{A} = \frac{2eV}{A^2} \{ (A\sqrt{\bar{\phi}} + eV + 1)exp(-A\sqrt{\bar{\phi} + eV}) - (A\sqrt{\eta + \bar{\phi}} + 1)exp(-A\sqrt{\eta + \bar{\phi}}) \}.$$

Boundaries for \tilde{B} are $e_1 = \eta - eV$, $e_2 = \eta$, $y_1 = \sqrt{\bar{\phi} + eV}$, $y_2 = \sqrt{\phi}$, yielding:

$$\tilde{B} = \bar{\phi} \frac{2}{A^2} \{ (A\sqrt{\bar{\phi}} + 1)exp(-A\sqrt{\phi}) - (A\sqrt{\bar{\phi}} + eV + 1)exp(-A\sqrt{\bar{\phi}} + eV) \}.$$

Like \tilde{A} and \tilde{B} , \tilde{C} can again be solved by substituting $y^2 \equiv \eta + \bar{\phi} - E_x$ and $d(-E_x) = d(\eta + \bar{\phi} - E_x)$ and partial integration.

$$\tilde{C} = -2\int_{y_1}^{y_2} y^3 exp(-Ay) dy$$

Boundaries for \tilde{C} are $e_1 = \eta - eV$, $e_2 = \eta$, $y_1 = \sqrt{\bar{\phi} + eV}$, $y_2 = \sqrt{\bar{\phi}}$, so that:

$$\begin{split} \tilde{C} &= \frac{2}{A} \{ (\bar{\phi}^{3/2} + \frac{3}{A}\bar{\phi} + \frac{6}{A^2}\sqrt{\bar{\phi}} + \frac{6}{A^3}) exp(-A\sqrt{\bar{\phi}}) \\ &- ((\bar{\phi} + eV)^{3/2} + \frac{3}{A}(\bar{\phi} + eV) + \frac{6}{A^2}\sqrt{\bar{\phi} + eV} + \frac{6}{A^3}) exp(-A\sqrt{\bar{\phi} + eV}) \} \end{split}$$

Taking all integrals together, we can calculate J. Note that for relatively high and/or thick barriers, i.e. if $A\sqrt{\phi \pm eV} \gg 1$, the full expression for J reduces to eq. (26) of reference [1]:

$$J = J_0\{(\phi - eV/2)exp(-A\sqrt{\phi - eV/2}) - (\phi + eV/2)exp(-A\sqrt{\phi + eV/2})\}.$$

where, $J_0 = e/(2\pi h s^2)$.

Figure 1 shows V_m versus 1/d for each of the three equations mentioned above; eq. 26 of ref [1], (black), eq. 1 (Stratton) in the main text (blue) and the full Simmons expression (red). For thick barriers all three collapse on a single line. The maximum deviation between the three is in the order of a few percent for thin barriers (around d = 5Å). These differences are negligible compared to the spread in the experimental data as discussed in the Letter.

REFERENCES

 J. G. SIMMONS, Generalized Formula For Electric Tunnel Effect Between Similar Electrodes Separated By A Thin Insulating Film, Journal Of Applied Physics 34, 1793 (1963).