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B
THE SIMMONS MODEL

Full formulation of the Simmons formula. According to ref [1], a full ex-
pression for the current density, J, through a barrier between two similar metal
electrodes over the entire voltage range is given by:

J = c{Ã+ B̃+ C̃}

c = 4πme
h3

Ã = eV
∫ η−eV

0
exp(−A

√
η+ φ̄−Ex)dEx

B̃ = −φ̄
∫ η

η−eV
exp(−A

√
η+ φ̄−Ex)dEx

C̃ =
∫ η

η−eV
(η+ φ̄−Ex)exp(−A

√
η+ φ̄−Ex)dEx.

Here, A = (4π∆s/h)
p

2m, where ∆s = s2 − s1 is the width of the barrier at the
Fermi energy of the metal and φ̄ is the average barrier height. In ref [1], parts
of the integrands are neglected. The consequence of this is that for small A
and/or small φ, the commonly used Simmons expression gives unphysical re-
sults. Below, we calculate the full integrands.
Ã and B̃ are of the same form:

−
∫ e2

e1

exp(−A
√
η+ φ̄−Ex)d(−Ex)> 0
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By substituting y2 = η+ φ̄−Ex and d(−Ex) = d(η+ φ̄−Ex) = d y2 = 2yd y, this
becomes:

−
∫ y2

y1

exp(−A y) ·2yd y

Here, y1,2 =
√
η+ φ̄− e1,2. These integrals can be solved by partial integration

[1]. Boundaries for Ã are e1 = 0, e2 = η−eV , y1 =
√
η+ φ̄, y2 =

√
φ̄+ eV , yielding:

Ã = 2eV
A2 {(A

√
φ̄+ eV +1)exp(−A

√
φ̄+ eV )− (A

√
η+ φ̄+1)exp(−A

√
η+ φ̄)}.

Boundaries for B̃ are e1 = η− eV , e2 = η, y1 =
√
φ̄+ eV , y2 =

√
φ, yielding:

B̃ = φ̄ 2
A2 {(A

√
φ̄+1)exp(−A

√
φ)− (A

√
φ̄+ eV +1)exp(−A

√
φ̄+ eV )}.

Like Ã and B̃, C̃ can again be solved by substituting y2 ≡ η+φ̄−Ex and d(−Ex)=
d(η+ φ̄−Ex) and partial integration.

C̃ = −2
∫ y2

y1

y3exp(−A y)d y

Boundaries for C̃ are e1 = η− eV , e2 = η, y1 =
√
φ̄+ eV , y2 =

√
φ̄, so that:

C̃ = 2
A

{(φ̄3/2 + 3
A
φ̄+ 6

A2

√
φ̄+ 6

A3 )exp(−A
√
φ̄)

−((φ̄+ eV )3/2 + 3
A

(φ̄+ eV )+ 6
A2

√
φ̄+ eV + 6

A3 )exp(−A
√
φ̄+ eV ))}

Taking all integrals together, we can calculate J. Note that for relatively high
and/or thick barriers, i.e. if A

√
φ± eV À 1, the full expression for J reduces to

eq. (26) of reference [1]:

J = J0{(φ− eV /2)exp(−A
√
φ− eV /2)−

(φ+ eV /2)exp(−A
√
φ+ eV /2)}.

where, J0 = e/(2πhs2).
Figure 1 shows Vm versus 1/d for each of the three equations mentioned above;
eq. 26 of ref [1], (black), eq. 1 (Stratton) in the main text (blue) and the full
Simmons expression (red). For thick barriers all three collapse on a single line.
The maximum deviation between the three is in the order of a few percent for
thin barriers (around d = 5Å). These differences are negligible compared to the
spread in the experimental data as discussed in the Letter.
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