Universiteit
Leiden
The Netherlands

Molecular charge transport : relating orbital structures to the conductance properties

Guédon, C.M.

Citation

Guédon, C. M. (2012, November 6). Molecular charge transport : relating orbital structures to the conductance properties. Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/20093

Version:	Not Applicable (or Unknown)
License:	Leiden University Non-exclusive license
Downloaded from:	https://hdl.handle.net/1887/20093

Note: To cite this publication please use the final published version (if applicable).

Universiteit Leiden

The handle http://hdl.handle.net/1887/20093 holds various files of this Leiden University dissertation.

Author: Guédon, Constant Marcel
Title: Molecular charge transport : relating orbital structures to the conductance properties
Issue Date: 2012-11-06

B

The Simmons model

Full formulation of the Simmons formula. According to ref [1], a full expression for the current density, J, through a barrier between two similar metal electrodes over the entire voltage range is given by:

$$
\begin{aligned}
J & =c\{\tilde{A}+\tilde{B}+\tilde{C}\} \\
c & =\frac{4 \pi m e}{h^{3}} \\
\tilde{A} & =e V \int_{0}^{\eta-e V} \exp \left(-A \sqrt{\eta+\bar{\phi}-E_{x}}\right) d E_{x} \\
\tilde{B} & =-\bar{\phi} \int_{\eta-e V}^{\eta} \exp \left(-A \sqrt{\eta+\bar{\phi}-E_{x}}\right) d E_{x} \\
\tilde{C} & =\int_{\eta-e V}^{\eta}\left(\eta+\bar{\phi}-E_{x}\right) \exp \left(-A \sqrt{\eta+\bar{\phi}-E_{x}}\right) d E_{x}
\end{aligned}
$$

Here, $A=(4 \pi \Delta s / h) \sqrt{2 m}$, where $\Delta s=s_{2}-s_{1}$ is the width of the barrier at the Fermi energy of the metal and $\bar{\phi}$ is the average barrier height. In ref [1], parts of the integrands are neglected. The consequence of this is that for small A and/or small ϕ, the commonly used Simmons expression gives unphysical results. Below, we calculate the full integrands.
\tilde{A} and \tilde{B} are of the same form:

$$
-\int_{e_{1}}^{e_{2}} \exp \left(-A \sqrt{\eta+\bar{\phi}-E_{x}}\right) d\left(-E_{x}\right)>0
$$

By substituting $y^{2}=\eta+\bar{\phi}-E_{x}$ and $d\left(-E_{x}\right)=d\left(\eta+\bar{\phi}-E_{x}\right)=d y^{2}=2 y d y$, this becomes:

$$
-\int_{y_{1}}^{y_{2}} \exp (-A y) \cdot 2 y d y
$$

Here, $y_{1,2}=\sqrt{\eta+\bar{\phi}-e_{1,2}}$. These integrals can be solved by partial integration [1]. Boundaries for \tilde{A} are $e_{1}=0, e_{2}=\eta-e V, y_{1}=\sqrt{\eta+\bar{\phi}}, y_{2}=\sqrt{\bar{\phi}+e V}$, yielding: $\tilde{A}=\frac{2 e V}{A^{2}}\{(A \sqrt{\bar{\phi}}+e V+1) \exp (-A \sqrt{\bar{\phi}+e V})-(A \sqrt{\eta+\bar{\phi}}+1) \exp (-A \sqrt{\eta+\bar{\phi}})\}$.
Boundaries for \tilde{B} are $e_{1}=\eta-e V, e_{2}=\eta, y_{1}=\sqrt{\bar{\phi}+e V}, y_{2}=\sqrt{\phi}$, yielding:

$$
\tilde{B}=\bar{\phi} \frac{2}{A^{2}}\{(A \sqrt{\bar{\phi}}+1) \exp (-A \sqrt{\phi})-(A \sqrt{\bar{\phi}+e V}+1) \exp (-A \sqrt{\bar{\phi}+e V})\}
$$

Like \tilde{A} and \tilde{B}, \tilde{C} can again be solved by substituting $y^{2} \equiv \eta+\bar{\phi}-E_{x}$ and $d\left(-E_{x}\right)=$ $d\left(\eta+\bar{\phi}-E_{x}\right)$ and partial integration.

$$
\tilde{C}=-2 \int_{y_{1}}^{y_{2}} y^{3} \exp (-A y) d y
$$

Boundaries for \tilde{C} are $e_{1}=\eta-e V, e_{2}=\eta, y_{1}=\sqrt{\bar{\phi}+e V}, y_{2}=\sqrt{\bar{\phi}}$, so that:

$$
\begin{aligned}
\tilde{C}= & \frac{2}{A}\left\{\left(\bar{\phi}^{3 / 2}+\frac{3}{A} \bar{\phi}+\frac{6}{A^{2}} \sqrt{\bar{\phi}}+\frac{6}{A^{3}}\right) \exp (-A \sqrt{\bar{\phi}})\right. \\
& \left.\left.-\left((\bar{\phi}+e V)^{3 / 2}+\frac{3}{A}(\bar{\phi}+e V)+\frac{6}{A^{2}} \sqrt{\bar{\phi}+e V}+\frac{6}{A^{3}}\right) \exp (-A \sqrt{\bar{\phi}+e V})\right)\right\}
\end{aligned}
$$

Taking all integrals together, we can calculate J. Note that for relatively high and/or thick barriers, i.e. if $A \sqrt{\phi \pm e V} \gg 1$, the full expression for J reduces to eq. (26) of reference [1]:

$$
\begin{aligned}
J= & J_{0}\{(\phi-e V / 2) \exp (-A \sqrt{\phi-e V / 2})- \\
& (\phi+e V / 2) \exp (-A \sqrt{\phi+e V / 2})\} .
\end{aligned}
$$

where, $J_{0}=e /\left(2 \pi h s^{2}\right)$.
Figure 1 shows V_{m} versus $1 /$ d for each of the three equations mentioned above; eq. 26 of ref [1], (black), eq. 1 (Stratton) in the main text (blue) and the full Simmons expression (red). For thick barriers all three collapse on a single line. The maximum deviation between the three is in the order of a few percent for thin barriers (around $d=5 \AA$). These differences are negligible compared to the spread in the experimental data as discussed in the Letter.

REFERENCES

[1] J. G. SIMMONS, Generalized Formula For Electric Tunnel Effect Between Similar Electrodes Separated By A Thin Insulating Film, Journal Of Applied Physics 34, 1793 (1963).

