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A
Thermal and optical constants for

selected materials

Table A.1: Thermal and optical constants for selected materials at room temper-
ature and normal pressure a

n b 104 × ∂n
∂T 10−6 × Cp κ 1010 × ΣPT 103 × FOM

Substance K−1 J m−3 K−1 W m−1 K−1 m3 J−1 m W−1

BK7 glass 1.52 -0.13 2.2 1.1 0.09 0.02
PMMA 1.49 -1.2 1.4 0.2 1.3 0.90
Water 1.33 -0.9 4.2 0.56 0.29 0.21
Glycerol 1.47 -2.7 2.6 0.28 1.5 1.4
Ethanol 1.36 -4.4 1.9 0.17 3.1 3.5
Hexane 1.37 -5.5 1.5 0.12 5.0 6.1
Pentane 1.36 -6.0 1.5 0.14 5.6 6.0
Chloroform 1.45 -6.2 1.4 0.13 6.3 7.0
Carbon tetrachloride 1.47 -6.1 1.3 0.10 7.1 8.6
Carbon disulfide 1.63 -8.1 1.3 0.16 11 8.2
a The tabulated values for each substance are the refractive index n and its derivative

with respect to temperature ∂n
∂T , the heat capacity at constant pressure Cp, the thermal

conductivity K, the photothermal strength ΣPT = n
∣∣∣ ∂n

∂T

∣∣∣ 1
Cp

, and the photothermal

figure-of-merit FOM = n
∣∣∣ ∂n

∂T

∣∣∣ 1
K . Values are from the CRC Handbook of Chemistry

and Physics (49th ed.) and Bialkowski.94

b For sodium light (λ = 589.3 nm), CRC Handbook of Chemistry and Physics
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B
Optical microscope
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B Optical microscope

baseplate

excitation objective

collection objective
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1D translation stage
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solid base
objective mount

objective mount
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Figure B.1: Optical microscope assembly constructed in this thesis, in a configuration
as used in part of the reported experiments. Three independent constructions are
mounted on a 25 mm thick aluminium baseplate, to support the excitation-objective,
the sample holder/flow-cell and the collection-objective. The constructions can be
removed and repositioned accurately with the help of positioning ledges. The de-
sign aims to achieve high mechanical stability and low thermal drift by a compact,
stiff construction and a minimum number of translation elements. The optimiza-
tion is directed to achieve the highest stability for the relative position between the
excitation objective and the sample holder (flow-cell).
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Figure B.2: Two configurations to mount the flow-cell on the piezo-scanner in the
microscope. a) Fixed mount. b) Mount that allows manual translation in the vertical
direction, while maintaining mechanical stability. The flow-cell is mounted hanging
on a spring-loaded bridge construction, that can be rotated around an axis (two ball
joints) on one end with an adjustment screw on the other end. At the center of the
flow cell, the rotation amounts to an effective vertical translation, over a range up to
±1 mm. This movement facilitates the search for a specific location on the sample
over a region larger than the 100 μm range of the piezo-scanner. The experiments
reported in this thesis were performed with the fixed mount.
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B Optical microscope

PDMS
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channel
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d
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Figure B.3: Details of the flow-cell used in the experiments reported in this thesis. a)
Perspective view. The construction with the flexible in/outlets and the bottom co-
verslip embedded in polydimethylsiloxane (PDMS) can be remade repeatedly, when
desired. A micro-fluidic channel is cut out from the PDMS layer by hand. The top
coverslip forms the closure of the micro-fluidic channel when pressed on the PMDS,
and can be repeatedly re-applied. b) Side view. The inset shows a detailed view of
the connection between the inlet of the cell and the micro-fluidic channel. The design
eliminates contact of the fluid with the metal part of the flow-cell casing. Channel
thickness d could be varied between 40 μm and 1 mm by the use of metal casings
with different chamber depths. The design was based on a design from the group of
Dr. J. van Noort (Leiden University).

110



C
Optical constants of bulk gold
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C Optical constants of bulk gold

Figure C.1: The optical constants of bulk gold at room temperature as a function
of photon energy, used throughout this thesis. The data are from Johnson and
Christy113 and were obtained from reflection and transmission measurements on
vacuum-evaporated thin films of gold. The individual panels display the real and
imaginary parts of the complex dielectric function ε̃ = ε1 + iε2 and the real and
imaginary parts of the complex refractive index ñ = n + ik. The complex dielectric
function and the complex refractive index are related as ε̃ = ñ2, so that ε1 = n2 − k2

and ε2 = 2nk. The symbols represent tabulated measured values, while the solid
lines are spline interpolations.
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D
Hydrodynamic friction coefficients

As the friction coefficients for the gold nanorod we have used the analytical
expressions derived by Francis Perrin for a prolate spheroid127 with aspect
ratio ρ. The friction coefficient ξr for rotation around a short principal axis is
given as

ξr = 8ηV
ρ4 − 1

(2ρ2 − 1)S(ρ)− 2ρ2 (D.1)

where η is the medium’s viscosity, V is the hydrodynamic volume, and

S(ρ) =
2ρ√

ρ2 − 1
log
{

ρ +
√

ρ2 − 1
}

. (D.2)

For translation, the friction coefficients are given by

ξtr,‖ = 16πη

(
3ρ2V
4π

)1/3
ρ2 − 1

(2ρ2 − 1)S(ρ)− 2ρ2 (D.3)

for translation parallel to the long axis of the spheroid, and

ξtr,⊥ = 32πη

(
3ρ2V
4π

)1/3
ρ2 − 1

(2ρ2 − 3)S(ρ) + 2ρ2 (D.4)

for translation perpendicular to the long axis of the spheroid.
The friction coefficients for translation and rotation are plotted as func-

tions of aspect ratio in Fig. D.1(a) and Fig. D.1(b) respectively, for an ellipsoid
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D Hydrodynamic friction coefficients

Figure D.1: Hydrodynamic friction coefficients for ellipsoids, cylinder and spheres.
a) Translational friction coefficients as functions of aspect ratio for a prolate spheroid
(solid lines127) and a cylinder (dashed lines217) of the same volume V. Black (Grey)
curves: friction coefficients for translation parallel (perpendicular) to the symmetry
axis of the rod. The Stokes equation ξtr = 6πη (3V/(4π))1/3 is shown as a limit
for an aspect ratio of 1 (black dot). b) Rotational friction coefficients as functions of
aspect ratio for a prolate spheroid (solid lines127) and a cylinder (dashed lines129, 217)
of the same volume V. Black (Grey) curves: friction coefficients for rotation around
the long symmetry axis (one of the short symmetry axes) of the rod. The Stokes
equation ξr = 6ηV is shown as a limit for an aspect ratio of 1 (black dot).

of constant volume. As the real shape of our gold nanorods is not an ellipsoid,
but something close to a spherically capped cylinder, the expressions for el-
lipsoids are expected to provide an approximate value only. For comparison,
we also plot the values of the friction coefficients for cylinders, as calculated
by Tirado et al.217 Whereas the expression for the friction coefficients for
spheroids are valid for particles of arbitrary aspect ratio, the expressions for
cylinders are expected to provide reliable results only for aspect ratios larger
than 2.

Temperature-dependent viscosity of water

As can be seen in Fig. D.2, the temperature dependence of the viscosity of
water is well described by a Vogel-Fulcher law as:90

η(T) = η∞ exp
(

A
T − TVF

)
, (D.5)
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Figure D.2: Viscosity of water as function of temperature, at vapor saturation pres-
sure. The influence of pressure on viscosity in this range is small. Squares: data
derived from NIST Chemistry Webbook.218 Solid line: Vogel-Fulcher law with pa-
rameters as used in this study.

with η∞ = 0.0298376 10−3 Pa · s, A = 496.889 K and TVF = 152.0 K.
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E
Calculation of the orientational
trap stiffness from a measured

spectral intensity ratio

We calculate the rotational trap stiffness κr from the time averaged spectral in-
tensity ratio 〈I‖〉t/〈I⊥〉t. Here 〈I‖〉t and 〈I⊥〉t are the time-averaged values of
the intensity of the longitudinal plasmon resonance, detected with analyzer
parallel and perpendicular to the trap laser polarization, respectively. The in-
coming light is white light from a Xenon arc lamp, therefore it is unpolarized
(randomly polarized) thermal light. We assume ergodicity and evaluate the
intensity ratio as

〈I‖〉t

〈I⊥〉t
=

〈cos2 θ〉T

〈sin2 θ cos2 φ〉T
(E.1)

where θ and φ are polar angles of the rod axis with respect to the trap pola-
rization, as defined in Fig. E.1 a), and the subscripted T denotes a thermally
weighted averaging. The weights in the averaging are given by the Boltz-
mann distribution ∝ exp

{
−U(θ)/kBT̃B

}
where the potential is

U(θ) = − 1
2 κr cos2 θ. We find for the numerator219

〈cos2(θ)〉 = 1
2
√

ΞDaw(
√

Ξ)
− 1

2Ξ
(E.2)
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E Calculation of the orientational trap stiffness from a measured spectral intensity

ratio

Trap beam
polarization

Trap beam
propagation

a) b)

Figure E.1: a) Coordinate system. b) Calculated spectral intensity ratio 〈I‖〉t/〈I⊥〉t
versus rotational trap stiffness κr. Solid line: analytical solution (eq. E.6). Dashed
line: Linear approximation for high trap stiffness (eq. E.7).

where we have used the Dawson function defined as

Daw(z) ≡ exp(−z2)
∫ z

0
dt exp(t2) (E.3)

and
Ξ ≡ κr

2kBT̃B
(E.4)

Noting that the angles φ and θ are independent, and that there is no pre-
ferred value for the angle φ we find for the denominator

〈sin2(θ) cos2(φ)〉 = 1
2
(
1 − 〈cos2(θ)〉) (E.5)

and we evaluate the intensity ratio as

〈I‖〉t/〈I⊥〉t =
2
√

Ξ − 2Daw(
√

Ξ)
2ΞDaw(

√
Ξ)−√

Ξ + Daw(
√

Ξ)
(E.6)

The relation is plotted in Fig. E.1 b). For κr � kBT̃B, the function is well
approximated by the first terms in the power series expansion:

〈I‖〉t/〈I⊥〉t � κr

kBT̃B
− 3 (E.7)

which is shown as the dotted line in Fig. E.1 b).
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F
Correlation functions in a

potential

In this appendix we discuss the calculation of the autocorrelation functions
of light scattered by a trapped nanoparticle.

The goal is to evaluate the autocorrelation function of the scattered inten-
sity I, defined as

G(2)(τ) =
〈I(t)I(t + τ)〉t

〈I(t)〉2
t

(F.1)

where I(t) is the scattered intensity at a time t and I(t + τ) is the scattered
intensity a time τ later. The intensity is assumed to be a stationary random
function of time (we take t = 0 in the following).

We make the assumption that the rotational and translational motions of
the trapped particle are independent1, so that we can write

G(2)(τ) = G(2)
tr (τ)G(2)

r (τ) (F.2)

where G(2)
tr (τ) and G(2)

r (τ) are the translational and rotational factors of the
correlation function, respectively.

1This is not strictly true for the gold nanorod in the trap. Indeed, both the translational
friction and translational trap-stiffness depend on the orientation of the rod. The rotational
stiffness is proportional to the local intensity, and thus depends on the position of the rod in
the trap.
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F Correlation functions in a potential

Rotational autocorrelation function

We outline the calculation of the rotational part of the autocorrelation func-
tion of light scattered by the rod in the optical trap, for the case where the
incoming excitation light is linearly polarized parallel to the trap laser, and
the scattered light is collected behind an analyzer perpendicular to the trap
laser polarization. In the particular detection geometry considered here, the
scattered intensity is related to the orientation of the rod as

I ∝ cos2 θ sin2 θ cos2 φ (F.3)

where θ and φ are polar angles of the rod axis with respect to the trap po-
larization, as defined in Fig. E.1 a). We have assumed the scattering by the
transverse plasmon resonance to be negligible, and the absence of any back-
ground intensity.

The orientational dynamics of the rod in the optical potential are gov-
erned by the Fokker-Planck equation,220–222 which relates the probability dis-
tribution of orientation of the rod p(θ, φ, t) to the rotational friction coefficient
ξr for rotation around a short principal axis, and the potential
U(θ) = −1/2κr cos2 θ as

∂p
∂t

=
1
ξr

[
kBT∇2

S p +∇S · (p∇SU)
]

(F.4)

where ∇S denotes the gradient operator restricted to the surface of a sphere
with radius 1.

To proceed with the calculation, we assume ergodicity to replace the time
average 〈...〉t in the correlation function by the thermally weighted ensemble
average 〈...〉T. The expressions for I(0) and I(τ) can be formulated in terms
of the probability p(θ0, φ0, 0) to find the rod at an orientation (θ0, φ0) at time
0 (we take this to be the Boltzmann distribution) and the conditional proba-
bility p(θ, φ, τ|θ0, φ0, 0) to find the rod at an orientation (θ, φ) at time τ given
that it was at an orientation (θ0, φ0) at time 0.

An analytic solution for p(θ, φ, τ|θ0, φ0, 0) can be found in the limit of
high rotational trap stiffness. When κr � kBT, the angular deviations of the
rod from the orientation parallel to the trap laser polarization will be small:
θ  1. The problem then becomes that of a thermally excited harmonic oscil-
lator. The potential is U(θ) = 1

2 κrθ2 + constants, and we consider the expres-
sion for the thermal average with terms up to third order in θ. In addition,
the evaluation of integrals for the thermal averaging can be simplified by ex-
tending the integration limits from θ ∈ [0, 2π) to θ ∈ [0, ∞) as the probability
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for the occupation of large angles is negligible. To simplify the calculation,
and allowed because we have assumed to the excursions from equilibrium to
be small, we change from 2D polar to 2D Cartesian coordinates χ = θ cos φ
and Ψ = θ sin φ. The required solution to the Fokker-Planck equation is:220

p(χ, t|χ0, t0) =

√
κr

2πkBTS(τ, 0)
exp

⎡⎢⎣−κr

(
χ − χ0e−(t−t0)/(2τr)

)2

2kBTS(t, t0)

⎤⎥⎦ (F.5)

with

τr =
ξr

2κr
(F.6)

and
S(t, t0) = 1 − e−(t−t0)/τr (F.7)

Evaluating the expression for the correlation function with these approx-
imations, we find

G(2)
r (τ) = 1 + 2 exp(−τ/τr) (F.8)

where

τr =
ξr

2κr
(F.9)

It is interesting to compare the rotational correlation times as discussed
here for a gold nanorod in an optical potential to correlation times measured
on ensembles of gold nanorods, both freely diffusing80, 133 and weakly trap-
ped.80 In the case of freely diffusing nanorods the correlation times are deter-
mined by the inverse of the rotational diffusion constant Dr, itself the ratio of
the thermal energy kBT to the rotational friction coefficient ξr. Specifically, the
rotational contrast observed in a configuration with vertically polarized exci-
tation light and horizontally polarized detection decays with a time constant
τr,free = 1/12Dr = ξr/(12kBT).133

As the orientational trap stiffness κr can reach values significantly exceed-
ing 6 kBT (we demonstrate an orientational trap stiffness up to 40 kBT in this
thesis), the rotational correlation times observed on a gold nanorod in an op-
tical trap can be significantly shorter than rotation times for freely diffusing
rods. In addition, correlation times in a trap will be shorter due to the heat-
ing of the rods: the effective viscosity for the rotation of the hot rod can be
significantly below the viscosity of the medium at room temperature.
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F Correlation functions in a potential

Translation autocorrelation function

The calculation of the translational part of the autocorrelation function fol-
lows along the same line as the calculation of the rotational part. For the
translational motion, the relevant intensity function is a Gaussian beam

I(x, y, z) ∝ exp

{
−2

(
x2

w2
x
+

y2

w2
y
+

z2

w2
z

)}
(F.10)

with widths wx, wy, wz in x, y and z directions respectively.
In each dimension, the potential for a trapped particle is harmonic, for ex-

ample in the x-direction given by U = 1
2 κtr,xx2, with κtr,x the relevant transla-

tional friction coefficient. We assume that the motions in the three dimensions
are independent, so that the correlation function is simply a product over the
functions in the one-dimensional case.

As for the rotational case, the translational dynamics of the trapped par-
tial are governed by the Fokker-Planck equation (as in F.4, with now the trans-
lational friction coefficient, and the gradient operator ∇). Because the poten-
tial for translations is harmonic, as approximated for the rotational case, the
solution of the Fokker-Planck equation is as in Eq. F.5, now with

τtr =
ξtr

2κtr
(F.11)

Evaluating the expression for the correlation function we find, for each
dimension,

G(2)
tr (τ) =

√
A + 1

A + (1 − exp(−τ/τtr))
(F.12)

where

A =
1
4

(
κtrw2

2kBT

)2

+
κtrw2

2kBT
(F.13)

with w the width of the Gaussian beam in the evaluated dimension and

τtr =
ξtr

2κtr
(F.14)

For a stiff trap, the translational fluctuations are much smaller than the
focus size w, and we have κtrw2/(2kBT) � 1. In this case we can approximate
Eq. F.12 in each dimension by a Taylor expansion in 1/A as

G(2)
tr ≈ 1 +

1
2A

exp (−τ/τtr) (F.15)
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G
Heat dissipation of metal spheres

and ellipsoids in water

We examine the difference between the steady-state temperature profiles a-
round a heated metal sphere and an prolate spheroid with a moderate aspect
ratio (less than 5), for particles dissipating a power Pdiss in a medium with
a thermal conductivity Km (independent of temperature). We take the ap-
proximation that the heat conductivity of the metal is infinite, therefore that
the temperature in the particle is uniform. Within these approximations, the
steady-state heat diffusion equation is a Poisson-type equation223

∇2T = − q̇
Km

(G.1)

where q̇ is the volumetric heat release rate and K the thermal conductivity
of the medium. Following the analogy with the equation for an electrostatic
potential, the solution of Poisson’s equation for heat conductivity in steady
state for a prolate spheroidal source is224

ΔT(ξ) =
1

8πKm

Pdiss√
a2 − b2

log

(√
ξ + a2 +

√
a2 − b2√

ξ + a2 −√
a2 − b2

)
(G.2)
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G Heat dissipation of metal spheres and ellipsoids in water

with a and b the major and minor semi-axis of the spheroid respectively, and
ξ an ellipsoidal coordinate given by

ξ =
1
2
{(

x2 + y2 + z2)− (a2 + b2)
}

+
1
2

√
(a2 + b2)2 + (x2 + y2 + z2)2 − 2x2(b2 − a2)− 2(y2 + z2)(a2 − b2)

(G.3)

The surface temperature of the particle is found for ξ = 0.
The analytical solution for the temperature change of the ellipsoid com-

pared to that of the sphere with the same volume is shown in Fig. G.1. For an
aspect ratio of 2, the temperature change is less than 5 %. This means that, to
this degree of accuracy, we can replace the nanorod by a sphere with the same
volume. The temperature profile around an ellipsoidal particle is presented
in Fig. G.2.

Figure G.1: Heat loss of an ellipsoid of revolution, relative to a sphere of the same
volume, for a given dissipative power.

The change of thermal conductivity conductivity is less than a few percent
in the whole temperature range of our experiments.218 We therefore took the
conductivity of water at room temperature in all our calculations.
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G Heat dissipation of metal spheres and ellipsoids in water
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Figure G.3: Thermal conductivity of water as function of temperature, at 1 Atm.
(bottom curve) and 200 Atm. (top curve). Data from NIST Chemistry Webbook.218
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H
Model of temperature dependent

dynamics in the optical trap

In this appendix we provide an overview of the model of the temperature de-
pendent dynamics of gold nanorods in the optical trap as presented in Chap-
ter 4, and discuss the assumptions made. We apply the model to measure-
ments on three individual nanorods, the nanorod from Figure 4.3 in Chapter
4, as well as two additional rods.

Assumptions in the model

The model used to fit all experimental data in Chapter 4 in a consistent way
involves a fair number of assumptions. The most important ones are listed
hereafter.

1. Point-spread-function of the trap intensity – As discussed in Chap-
ter 3, the local intensity in the trap was consistent with an effective nu-
merical aperture NA= 1.0. We took the intensity at the focus of a Gaus-
sian beam with this NA to calculate the local intensity acting on the rod,
neglecting the shift along the axis and further aberrations of the beam.

2. Absorption cross-section of rod – This was calculated in the dipole
approximation for an ellipsoid. This neglects shape deviations of the
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H Model of temperature dependent dynamics in the optical trap

actual rod, which, to a good approximation, is a cylinder capped with
two hemispheres. Moreover, we tuned the ellipsoid’s aspect ratio to
match the longitudinal plasmon frequency found in the experiment. In
addition, we introduced corrections for spontaneous emission, and for
electron scattering at the rod’s surfaces. With this model, we found a
good agreement of the spectrum, including the width. This broaden-
ing of the plasmon may be induced by temperature, or by thiol-PEG
groups. The absorption cross-section found in this model was 30%-50%
too large to account for the observed temperature rise.

3. Radiation pressure – The weak absorption of trap photons by the na-
norod gives rise to a recoil force that shifts the nanorod from the trap’s
center by some 200-300 nm. This effect was neglected in the calcula-
tion of the local intensity and of the restoring forces, as well as any
photophoretic effect caused by an inhomogeneous temperature profile
within the nanorod.

4. Friction coefficients – The translational and rotational damping of the
rod was calculated with Perrin’s formulas225 for an ellipsoid, not for the
cylindrical shape of the rod.

5. Heat conduction around the rod – We neglected the variation of the
heat conductivity of water with temperature. Furthermore, we also ne-
glected the effect of the PEG capping on heat conduction.

6. Hot Brownian motion – The effective viscosity for translation motion in
the trap was taken as the one for free translational diffusion calculated
by Rings et al.90 This is a good approximation because the translational
movement in the trap is slow, of the order of 100 μs.

7. Effective rotational viscosity – To fit the measured dependence of rota-
tional times on translational times (see Fig. 3 in the main text), we had
to introduce an effective viscosity for rotation which was lower than the
previous one for translation. Whereas this viscosity cannot be smaller
than the viscosity of water at the temperature of the nanorod, we found
that this minimum viscosity reproduces well the measured vibrational
damping. Therefore, we kept this effective viscosity without further
justification.

8. Polarization inhomogeneity in the focus – Although the trap light at
the center of the focus is linearly polarized in the focal plane along the
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polarization of the trap laser, the polarization state seen by the nanorod
changes when it moves around. We have neglected all depolarization
effects induced by the motion of the nanorod, assuming the position of
the rod to be very close to the focus. The deviation from linear pola-
rization of the trap light will induce slight orientational deviations of
the rod, which do not follow Boltzmann’s statistics. However, the cor-
relation time of these fluctuations should be that of the translational
diffusion, much longer than that of the rotational diffusion. Such orien-
tational effects were not considered in the analysis of the translational
correlation. Similarly, deviations from the center of the trap give rise to
depolarization of the scattered light which was neglected.

9. Gold heating – The temperature change in the trap leads to a change of
the optical response of gold. According to the literature,123 this effect is
small and was neglected.

10. Polymer conformational changes – All effects related to the tempera-
ture dependence of the polymer brush on the nanoparticles have been
neglected. The only effect of the polymer we consider is the introduc-
tion of a temperature-independent change of hydrodynamic volume
compared to that of the bare nanorod.

Trap characteristics for three nanorods

Here we discuss the results of the combined measurement of the spectral in-
tensity ratio and the correlation times on a single particle. We performed the
measurements on a set of three individual nanorods from the same sample
under identical parameters of the optical trap. The nanorods have slightly
different aspect ratios, as we can conclude from the measured scattering spec-
tra with resonances at 617 nm, 624 nm and 636nm.

The results are shown in Fig. H.1, with the same series of measurements
on each rod organized in vertical columns. The measurements in the first col-
umn are on the same nanorod as in Fig. 1 of Chapter 4, the second and third
column display the results on two additional rods. Row (a-f-k) displays the
measured spectral intensity ratios. The rotational trap stiffness κr deduced
from this ratio using eq. E.6 is shown in row (b-g-l). The bottom three rows
display the measured rotation and translation correlation times, and their ra-
tio. All three nanorods display qualitatively the same behavior.
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H Model of temperature dependent dynamics in the optical trap

Figure H.1: Trap characteristics as functions of trapping power, for 3 individual gold
nanorods, with resonance wavelength 624 nm (Column a-e, rod 1, the nanorod from
Chapter 4), 636 nm (Column f-j, rod 2 ) and 617 nm (Column k-o, rod 3). See text for
further details.
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λL (nm) κr (kBT̃B) Vp ( 104 nm3) κt (10−6pN nm−1 mW−1) ΔTp (K mW−1)

624 ± 1 30.9 ± 0.6 2.1 ± 0.1 8.8 ± 0.5 0.89 ± 0.1
636 ± 1 39.5 ± 1.0 2.5 ± 0.1 11.7 ± 1.0 0.89 ± 0.1
617 ± 1 27.8 ± 1.0 2.2 ± 0.1 8.8 ± 0.5 0.93 ± 0.1

Table H.1: Trapping parameters for the three nanorods of Fig. H.1. The wavelength
of the longitudinal plasmon resonance λL is determined experimentally. The rota-
tional trap stiffness κr is directly computed from the experimentally measured spec-
tral intensity ratio 〈I‖〉t/〈I⊥〉t via equation E.6. The values for the particle volume
Vp and the transverse trap stiffness κt are determined from the fitting procedure. The
value of the intensity at the trap focus at an incident trapping power of 80 mW was
taken for all three particles as I0 = 2.12 · 1011 W/m2. The hydrodynamic thickness
of the PEG capping layer of the gold nanorods was fitted to 5 nm.

Overview of the fitting procedure

The vertical display sequence of the measurements in Fig. H.1 follows the
procedure that was used to make a global fit of our model with an effec-
tive temperature T̃B and two effective viscosities ηr and ηt. In the model, the
fitting parameters are the individual volumes of the three nanorods, the in-
tensity of the trap laser, the effective hydrodynamic thickness of the capping
layer of the rods and the transverse trap stiffness. For a given incident trap
power, the measurements were fitted with a single intensity at the trap focus
for all three particles. The hydrodynamic thickness of the capping layer was
also kept the same for all three particles, independent of trapping power. The
parameters determined from the fit are summarized in Table H.1.

Here we outline the sequence of steps in the procedure used to fit the
parameters in the model.

1. The volume of the nanorods Vp and the intensity I0 at the trap focus
were fitted from the measurement of the spectral intensity ratio (row
a-f-k). Via eq. E.6 this spectral intensity ratio can be directly related
to the rotational trap stiffness κr, in units of kBT (row b-g-l). Since the
rotational trap stiffness is proportional to both the trap intensity and
the rod volume (Re {Δα} ∝ Vp), the product of these two quantities can
be fitted by matching the slope of the plot of κr versus trap power. The
value for the intensity at the trap power can be fixed by demanding
that the particle volume lies within the distribution of particle volumes
measured from electron microscopy on the sample. Here, we still allow
the volume of each of the three nanorods to be different, keeping the
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average volume equal to the ensemble volume.

2. The effective temperature T̃B for the orientation distribution can be found
by fitting the observed curvature in the plot of κr versus trap power us-
ing a thermal energy that increases with trap power. Specifically, we
evaluate the thermal energy as kBT̃B = kB(T0 + Δ̃TB), where T0 is the
bath temperature and the effective temperature increase Δ̃TB is propor-
tional to the trap intensity. As the effective temperature increases, the
plot of κr vs trap power becomes sublinear.

3. Step 1 and 2 are optimized recursively until satisfactory agreement is
obtained. The values for the intensity of the trap I0, the particle volume
Vp and the effective temperature T̃B are now fixed.

4. With the trap intensity and particle volume determined, the model is
adjusted to the measured correlation times in row c-h-m. The rotation
times are given as τr = ξr/(2κr). In the fit, we allow for an effective
hydrodynamic volume Vhyd in the rotation friction coefficient ξr of the
rod : ξr = η̃rVhydCr, with Cr a geometrical factor. The geometrical factor
is taken as the one calculated for an ellipsoid (see Appendix D). In com-
bination with the previously determined particle volume, the effective
hydrodynamic volume determines the thickness of the capping layer.
We adjust the hydrodynamic volumes of the three individual rod such
that the thickness of the capping layer is the same for all three nanorods.

5. We find an effective rotational viscosity η̃r as function of temperature
by matching the observed curvature in the plot of rotation times versus
trap power, using the known temperature dependence of the viscos-
ity of water ( Appendix D). Specifically, we evaluate the viscosity as
η̃r = η(T0 + Δ̃Tr), where η is the viscosity of water and the effective
temperature increase Δ̃Tr is proportional to the trap intensity.

6. Step 4 and 5 are optimized recursively until satisfactory agreement is
obtained. The values for the hydrodynamic thickness and the effective
rotational viscosity ηr are now fixed.

7. We fit the transverse trap stiffness κt from the measured translation cor-
relation times τt (row d-i-n) using the relation τt = ξt/(2κt), where ξt
is the friction coefficient for translations along the long axis of the rod.
For the friction coefficient we use the value calculated for an ellipsoid
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(Appendix D), taking into account the determined particle volume and
the hydrodynamic thickness of the capping layer.

8. We find an effective translation viscosity ηt by matching the observed
curvature in the plot of translation times versus power, using the known
temperature dependence of the viscosity of water. Here we assume
again that the increase of the particle temperature scales linearly with
trapping power. However, in contrast to step 5, we evaluate the effec-
tive viscosities for translations as ηt = ηHBM, providing values for the
effective temperature for Hot Brownian Motion THBM and the particle
temperature Tp.

9. We interpret the values found for effective temperature T̃B and effective
viscosities η̃r and η̃t in terms of a corresponding particle temperature
Tp. This particle temperature can be compared to a temperature calcu-
lated independently from the absorption cross section calculated for a
gold nanorod with the fitted volume and measured aspect ratio, and
the fitted trap intensity (see Appendix G).

The measurements on all three nanorods are well described by our model,
when we take the effective viscosity for rotations η̃r as the viscosity at the
particle temperature, and the effective temperature T̃B equal to the particle
temperature. For simplicity, we have chosen to fit all three nanorods with the
same hydrodynamic thickness of the PEG capping layer. The quality of the
global fit could possibly be further improved by allowing for a variation of
this parameter for the individual nanorods. This would be reasonable as the
amount of PEG molecules may vary from rod to rod.
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