

Unraveling the mechanism of multicopper oxidases : from ensemble to single molecule

Gupta, A.

Citation

Gupta, A. (2014, April 29). *Unraveling the mechanism of multicopper oxidases : from ensemble to single molecule*. Retrieved from https://hdl.handle.net/1887/25397

Version: Not Applicable (or Unknown)

License: Leiden University Non-exclusive license

Downloaded from: https://hdl.handle.net/1887/25397

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle http://hdl.handle.net/1887/25397 holds various files of this Leiden University dissertation

Author: Gupta, Ankur

Title: Unraveling the mechanism of multicopper oxidases: from ensemble to single

molecule

Issue Date: 2014-04-29

Involvement of Tyr108 in the Enzyme Mechanism of the Small Laccase from *Streptomyces coelicolor**

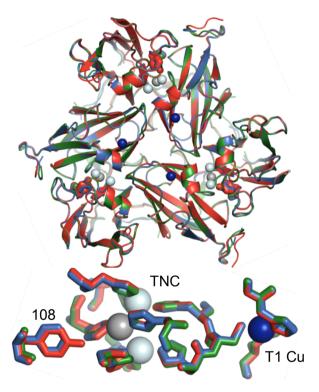
Abstract:

The enzyme mechanism of the multicopper oxidase (MCO) SLAC from *Streptomyces coelicolor* was investigated by structural (XRD), spectroscopic (optical, EPR) and kinetics (stopped-flow) experiments on variants in which residue Tyr108 had been replaced by Phe or Ala through site-directed mutagenesis. Contrary to the more common three-domain MCOs, a tyrosine in the two-domain SLAC is found to participate in the enzyme mechanism by providing an electron during oxygen reduction, giving rise to the temporary appearance of a tyrosyl radical. The relatively low k_{cat}/K_M of SLAC and the involvement of Y108 in the enzyme mechanism may reflect an adaptation to a milieu in which there is an imbalance between the available reducing and oxidizing co-substrates. The purported evolutionary relationship between the two-domain MCO's and human ceruloplasmin appears to extend not only to the 3D structure and the mode of binding of the Cu's in the trinuclear center, as noted before, but also to the enzyme mechanism.

*Adapted from: Gupta, A.; Nederlof, I.; Sottini, S.; Tepper, A.W.J.W.; Groenen, E.J.J; Thomassen, E.A.J.; Canters, G.W. J. Am. Chem. Soc. 2012, 134, 18213.

2.1 Introduction

Multicopper oxidases (MCOs) catalyze the oxidation of a wide variety of substrates while reducing molecular oxygen to water. To achieve this, they utilize four copper atoms: a type 1 (T1) Cu which accepts reducing equivalents from the substrates and a trinuclear Cu cluster (TNC) where oxygen binds and gets converted to water. The TNC consists of a normal or type 2 (T2) Cu and a binuclear type 3 (T3) Cu pair. The mechanism of O₂ reduction at the TNC has been extensively studied by a variety of techniques. It has been proposed that O₂ first binds at the TNC and then gets reduced in two 2e⁻ steps while others have argued for (left open) a first two-electron reduction step and subsequently two consecutive one-electron transfer steps. The conserved residues between T1 Cu and TNC form a covalent link and promote rapid electron transfer from T1 Cu to the TNC. However, views about O₂ binding and the mechanism of reduction have changed over time and still remain a topic of debate. A brief account is presented in Chapter 1.


Analysis of the genome of Streptomyces coelicolor revealed the presence of a gene possibly encoding an MCO,10 "small laccase" (SLAC), which owes its name to its smaller molecular weight as compared to the other well-known MCOs such as ascorbate oxidase, laccase, Fet3p and CueO. SLAC was found to be active as a homotrimer unlike most other MCOs described until now, which are monomeric proteins in solution. 11-14 It has been suggested that the three-domain ascorbate oxidase, the three-domain laccases and the six-domain ceruloplasmins have evolved via formation of a trimer of two-domain cupredoxins. 15 The recent crystal structure of SLAC clearly shows that the enzyme has such a trimeric form with a canocical TNC. 16,17 The structure together with structures of other 2domain MCOs has been used in an attempt to fill in the gaps in the proposed evolution of MCOs. 16,18,19 Thus, it was of interest to study SLAC not only from a fundamental point of view to understand the structure-function relationship of this new enzyme, but also to seek footprints of the proposed ancestor that may have been carried over or discarded by the generations that followed after. Apart from that, SLAC holds potential for its applications in industry and its use as a cathode in biofuel cells to cater for the demands of green energy. 20,21

SLAC was found to be excreted in the growth media of *S. coelicolor* cultures and, thus, was identified as an extracellular enzyme. The physiological roles of most extracellular enzymes, including SLAC, are unclear, researchers have mixed views, 22 but it is well known that members of the Streptomycetes genus produce dozens of antibiotics as secondary metabolites using such secreted enzymes.²³ For ease of expression and purification in higher yields, the gene encoding SLAC was isolated and recombinantly expressed in E. coli. Following the preliminary characterization, it was recently reported that reduced, type 1 depleted (T1D) SLAC, upon reaction with oxygen, forms an unusual biradical intermediate which has not been reported for the more common laccases.²⁴ Spectroscopic signatures, when compared with those of other enzymes and model systems, led to the hypothesis that a ferromagnetically coupled triplet state arises in SLAC due to exchange coupling of two unpaired spins, one residing on T2 Cu and the other on a tyrosyl radical ~5Å away. Similar spectroscopic features were also observed during turnover of the native enzyme, and a role of the radical in catalytic turnover was implicated (see also ref 21²⁵). The present study attempts to identify the position of the radical and its role in enzyme catalysis. The preliminary results indicate that Tyr108 is the site carrying the unpaired spin. Its absence in site-directed mutants affects the enzyme kinetics. To the best of our knowledge, this is the first example where direct involvement of a tyrosyl radical in MCO catalysis has been demonstrated.

2.2 Results and Discussion

The crystal structure of wild-type (*wt*) SLAC (PDB: 3CG8)¹⁶ shows the presence of a tyrosine residue (Y108) ~5Å away from the T2 Cu, as predicted from electron paramagnetic resonance (EPR) results.²⁴ This residue is located at the interface of two subunits in the trimeric form of the enzyme. Site-directed mutagenesis was carried out to prepare SLAC variants in which the tyrosine is replaced by phenylalanine (Y108F) or alanine (Y108A) in both the *wt* and the T1D (C288S) sequences.²⁶ All variants containing mutations in the wt sequence at position 108 were crystallized and analyzed by X-ray diffraction to a resolution of 2.7-2.8 Å.²⁶ The diffraction data confirm single amino acid

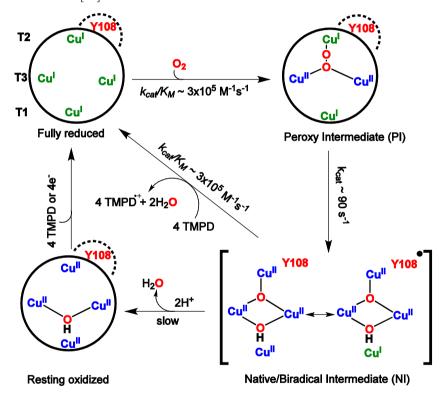
replacements at the desired position as well as intact active sites. No significant changes in the overall fold of the enzyme or near the active sites were observed (Figure 1). This facilitates a direct comparison of the enzyme kinetics and spectroscopic features of the mutants to those of the *wt* SLAC.²⁶

Figure 1: Ribbon representations of *wt* SLAC (red, PDB: 3CG8) overlaid with those of the mutants Y108F (blue, PDB: 4GXF) and Y108A (green, PDB: 4GY4). The bottom shows an expanded view of residues near the T1 Cu and TNC. The T3 Cu's are shown in light blue and the T2 Cu is colored in gray. Clearly the overall fold and active sites are intact in the mutants.

Steady-state kinetics experiments were performed using N,N,N'N'-tetramethyl-p-phenylenediamine (TMPD) as a substrate. The enzymatic rate of reaction was monitored by following the formation of the oxidation product of TMPD at 610 nm at a given concentration of O_2 . Alternatively, the rates of O_2 consumption during the reaction were measured using a Clark-type O_2 electrode. TMPD is a one electron reductant, and the ratio of reaction rates monitored by optical spectroscopy versus those obtained by monitoring O_2

consumption was $_{\cdot}4$ for any given concentration of substrates for the mutants studied. This implies complete reduction of O_2 to H_2O and shows that no H_2O_2 is released to solution. Addition of catalase to the reaction chamber, did not affect apparent O_2 uptake kinetics, nor did it show any increase in O_2 concentration, which strengthens this conclusion. The kinetic parameters obtained from the fits to the data are shown in Table I. The ratio of $^{app}k_{cat}$ obtained by the two methods is not exactly 4 owing to the fact that the solubility of O_2 is limited in buffer, and therefore rates at enzyme–saturating O_2 concentrations could not be measured.

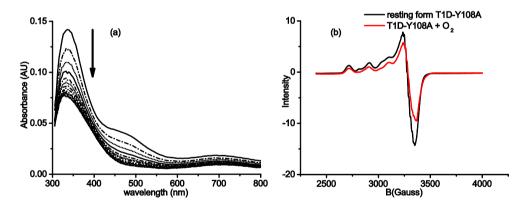
Table 1: Turnover Number (k_{cat}) and Second-Order rate constant k_{cat}/K_{M} of wt and Mutant SLAC at 295 K in Phosphate Buffer at pH 6.^a


	$^{\mathrm{app}}\mathbf{\textit{k}}_{\mathrm{cat}}(\mathrm{s}^{-1})$		$^{app}k_{cat}/K_{M} (M^{-1}s^{-1}) (x10^{-5})$	
	$\mathrm{O_2^b}$	$TMPD^{c}$	${ m O_2}^{ m b}$	$TMPD^{c}$
wt-SLAC	90 ± 3	315 ± 9	2.8 ± 0.2	3.2 ± 0.4
Y108A	34 ± 1	128 ± 3	2.7 ± 0.2	3.8 ± 0.4
Y108F	35 ± 1	132 ± 4	2.6 ± 0.2	2.4 ± 0.3

^aFor Michaelis–Menten plots see SI.²⁶ Parameters based on concentration of single subunit of SLAC as determined from the 280nm absorption (*i.e.*, equal to three times the SLAC concentration). ^bmonitoring decrease in O₂ concentration *vs* time. ^cmonitoring increase in absorption as a result of TMPD oxidation *vs* time.

It is evident from the data in Table 1 that the mutation affects only the turnover number (k_{cat}) of the enzyme and not the second-order rate constants (k_{cat}/K_M). While one would expect such a result for TMPD, as the mutations are far away from the T1 Cu reaction site for the TMPD (Figure 1), it is not immediately obvious why the second-order rate constant for O_2 remains unaffected. After all, the mutations are close to the O_2 reaction site (i.e., the TNC). For any given enzyme, k_{cat}/K_M encompasses the steps from substrate binding up to and including the first irreversible step, whereas k_{cat} signifies the steps related to turnover of the ES complex and/or product release. From single-turnover experiments on SLAC, it is found that O_2 binding to the TNC is practically irreversible. This is in agreement with the enzymatic mechanism proposed for laccases, where the binding of O_2 followed by its reduction to the peroxide intermediate (PI) at the TNC was found to be irreversible. We conclude that

the rate-limiting step(s) must occur after the binding of O_2 and reduction to PI and may involve the decay of PI to the native intermediate (NI).²⁹ TMPD or another co-substrate may then reduce the NI, thereby completing the reaction cycle and regenerating fully reduced SLAC ready to bind and reduce oxygen (Scheme I). Since k_{cat} is affected by the mutations at position 108, the rate-limiting step(s) must involve Y108 in the case of wt SLAC.


Scheme 1: Proposed Pathway in the Reaction Mechanism of SLAC with a role for Y108 as postulated initially.³⁰ The scheme may need modification in the light of more recently obtained evidence [33].^a

^aReduced copper sites are depicted in light green and oxidized ones in blue. Tyrosine is shown in red. The rate constants are those obtained for SLAC in this study. Work is going on to characterize the Native/Biradical Intermediate (NI) in more detail.

The results from transient absorption spectroscopy and EPR spectroscopy support the original hypothesis about the localization of the unpaired spins on Y108 and T2 Cu in the T1D SLAC.²⁴ Experiments analogous to those

performed earlier^{24,26} with the T1D SLAC were now carried out with the double mutants, T1D-Y108F and T1D-Y108A, i.e., where both C288S and Y108A or Y108F mutations are present. Pre-steady-state kinetics experiments reveal that the absorption feature around 410 nm which was earlier attributed to the formation of a tyrosyl radical, is not observed in these variants. Instead, an intermediate resembling the PI³¹ (absorption maxima around 340, 470 and 710 nm) is observed (Figure 2a). In conjunction with the results above, no biradical signal is observed in the EPR spectrum of T1D-Y108A mutant (Figure 2b). It is interesting to note that a new radical signal is observed in the T1D-Y108F mutant, which is distinct from the signal reported for T1D itself (not shown). However, the intensity of the new radical signal compared to that of the total spin is very low (<10%). While similar turnover numbers are observed for Y108A and Y108F variants, we conclude that this signal cannot be catalytically relevant and is formed only in the absence of Y108. High-field magnetic resonance spectroscopy studies are underway to determine if this signal may correspond to a phenylalanine or possibly a tryptophan (W284, see SI) radical.

Figure 2: (a) Decay of the peroxide intermediate (PI) monitored by absorption spectroscopy following rapid mixing of reduced T1D-Y108A mutant (100 μM) with airsaturated phosphate buffer (pH 6.8) at 295 K. The PI is formed within 200 ms of mixing and then decays slowly with a half-life of 2.5 s. (b) X-band EPR spectrum of the resting form of T1D-Y108A mutant (black) overlaid with the spectrum of the same enzyme after it had been reduced, reoxidized, and frozen immediately (red). The spectra were recorded at 40 K (see also SI).

It is of interest here to contrast the sequence of O₂ reduction events as observed for SLAC (Scheme 1) with the sequence observed for the three-domain laccases. In Rhus vernicifera laccase (Lac), for instance, in which the T1Cu site has been inactivated by replacement of the T1Cu with a redox-innocent mercuric ion (T1Hg), complete reduction of the enzyme followed by reaction with O₂ results in the PI.²⁸ Similar behavior and rate constants are observed for another member of the three-domain MCOs, Fet3p, where the T1 site is inactivated by sitedirected mutagenesis to prepare a T1D form of Fet3p.32 Since in both cases there are only three electrons available in the reduced enzyme (i.e., at the T2 and the T3 sites), reduction of O2 stops at the PI. In SLAC, on the other hand, under similar circumstances no PI is observed, but the optical and paramagnetic signatures of a Tyr radical appear instead. This is because the fourth electron, which is lacking in the T1D or T1Hg Lac, is now provided, apparently, by the Tyr moiety in the T1D SLAC, leading to the complete reduction of O_2 to H_2O . Consistent with this interpretation, we observe that only when the T1Cu site and Y108 have been deleted in SLAC does the spectroscopic evidence of PI be observed. We have not characterized the mode of peroxide binding at the TNC and other binding modes are possible than the one presented in Scheme 1. In addition, we can't exclude the possibility that under turnover conditions, two- or three-electron reduced SLAC can already start reacting with O₂.33

Multiple sequence alignment of SLAC with other multicopper proteins reveals that Y108 is conserved among the homologous two–domain MCOs²⁶ and also in human ceruloplasmin (hCp), for which a crystal structure has been published.³⁴ The appearance of a 410 nm intermediate (presumably oxidized tyrosine) during oxidation of fully reduced hCp was observed several years ago^{35,36} but was not investigated further owing to the challenging mutagenesis of the recombinant protein and its purification in soluble form.³⁷ By analogy with SLAC, we now can assign, tentatively, this intermediate to a tyrosine radical. It is noteworthy that, among all known MCOs, only the six–domain ceruloplasmins and SLAC bind to the Cu sites with eight $2N\epsilon$ –His coordination whereas the three–domain laccases and ascorbate oxidase contain seven $2N\epsilon$ –His and one $1N\delta$ –His as a ligand, leading to a distinct asymmetry between the T3 α (two $2N\epsilon$ –His and one $N\delta$ 1–His) and T3 β (three $2N\epsilon$ –His) Cu's.³⁸ It has been suggested that this

structural difference between the T3α and T3β Cu's has important mechanistic consequences for O₂ binding and reduction in the three–domain laccases.³⁸ It will be of interest to see if the more symmetric coordination of the T3 site in SLAC (as in hCp) leads to different reaction kinetics than in the 3–domain laccases. Thus, SLAC and hCp share not only the conserved Y108 (Y107 in hCp) and the above same features of unique copper binding motifs but possibly also a similar enzyme mechanism.²⁶ We therefore propose SLAC to be suited as a model system to study the structure–function relationship of the more complicated hCp. We conclude that, not only from a structural viewpoint but also from a mechanistic point of view, our experiments appear to support the earlier postulated evolution of copper proteins, where the two–domain MCOs are proposed to be ancestors to the six–domain hCp. ^{15,39,40}

As for the evolutionary history of the three-domain laccases, it may be that the evolution of ascorbate oxidase and other three-domain MCOs such as the laccases took separate divergent paths or that, in the evolutionary process, subtle changes were incorporated in the primary coordination sphere of the TNC and also in the nearby protein environment by reorganizing the residues and the overall arrangement of the cupredoxin domains to provide a more efficient oxidase activity in laccases as compared to SLAC and hCp. In this connection, it must be noted that SLAC is secreted outside the cell and is supposed to perform its function there at relatively higher levels of oxygen (~5–8–fold) than inside the cell. Thus, the 7-fold difference observed between the $k_{\rm cat}/K_{\rm M}$ (and $K_{\rm M}$) of ${\rm O_2}$ between three-domain laccases and SLAC might reflect an evolutionary adaptation to the O_2 rich environment SLAC operates in. The lower k_{cat}/K_M of SLAC might be brought about by a reduced accessibility of the TNC connected with the access channel to the TNC in the trimeric form of SLAC. 42 Moreover, S. coelicolor is a soil and aqueous dwelling aerobe. It is conceivable that the concentration of reducing co-substrate is substantially less than that of oxygen. This may result in a slow loading of the enzyme with reducing equivalents, entailing the risk of producing long-lived forms of a three-electron loaded (PI + 1e) intermediate which could lead to the generation of reactive oxygen species and consequent damage to the enzyme or the organism. In this case Y108 would be able to provide the fourth electron, thereby reducing the lifetime of a deleterious three-electron reduced oxygen intermediate. This way, Y108 would act as a kinetic buffer of redox equivalents, thus preventing the generation of reactive oxygen species that might harm the enzyme and possibly also the bacterium. The danger posed at the same time by the presence of a reactive tyrosyl radical might be mitigated by the surrounding protein shell.

While the physiological significance of SLAC in the morphological development or metabolic system of S. coelicolor is not clear, along with the question of its natural substrates, it is evident that residue Y108 does form an integral part of the active site and is involved in the oxidase activity of this enzyme. If the natural substrate of SLAC has much higher turnover number for the wt SLAC, as known for the ferroxidase in yeast (Fet3p) and hCp, 43 the effect of mutation may be much more pronounced across the mutants. While we have noticed that SLAC catalyzes oxidative coupling of *o*-phenylenediamines and *o*-aminophenols to phenazines and phenoxazines, respectively, which are speculated to be extracellular secondary metabolites for signaling or self-defense of *Pseudomonas* aeruginosa and S. antibioticus, 44,45 their turnover numbers are too low to identify them as the natural substrates. The ability of SLAC to catalyze such reactions, along with a recombinant expression system, indeed holds new promises for the use of SLAC in industry for large-scale production of antibiotics for further studies or for human welfare. We are currently investigating other possible substrates and also attempting to identify the substrate binding pocket using crystallography, which may shed more light on the enzyme function and its similarities and dissimilarities relative to the other members of the family of MCOs.

2.3 Supplementary Information

Site-directed mutagenesis: Site-directed mutagenesis was carried out using the Quick Change site-directed mutagenesis kit (Stratagene). The primers used for respective mutations are given below where mutations are in bold and underlined.

Y108F

Forward primer: 5'—G CAC GGC CTG GAC TTC GAG ATC TCC

AGC G-3'

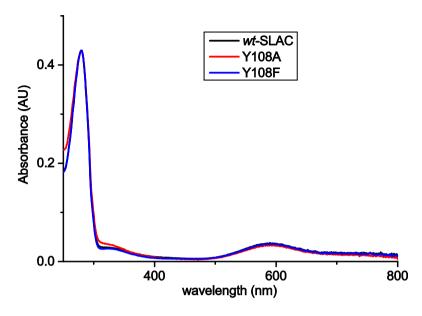
Reverse primer: 5'—C GCT GGA GAT CTC GAA GTC CAG GCC

GTG C-3'

Y108A

Forward primer: 5'—G CAC GGC CTG GAC GCC GAG ATC TCC

AGC G-3'


Reverse primer: 5'—C GCT GGA GAT CTC **GGC** GTC CAG GCC

GTG C-3'

Same set of primers were used to make mutations in the wt-SLAC or T1D-SLAC where the C288S mutant was used as a template. Desired mutations were confirmed by DNA sequencing (BaseClear).

The purification of the wt–SLAC and the mutants was carried out as reported previously.¹⁰ The proteins were aliquoted and stored at –80 ^oC till further use. The absorption spectra of the *wt*–SLAC, Y108A and Y108F mutants are shown in Figure S1.

Crystallization and data collection: Crystallization experiments with SLAC were setup around conditions previously published. SLAC crystals grew after 3 days in 35–45 % polyethylene glycol–550–monomethyl ether, 0.15–0.5 M NaCl and 0.1 M TRIS pH 8.5. Crystals were transferred to cryo–protectant containing 80 % mother liquor and 20 % glycerol, and frozen in liquid nitrogen. Single–crystal diffraction data were collected at the ESRF on beamline ID 14–4 (Grenoble) using an ADSC Q315 x–ray detector at a temperature of 100 K.

Figure S1: Absorption spectrum of the *wt*-SLAC overlaid with that of Y108A and Y108F. The spectra have been normalized at the 280nm absorption.

Diffraction data were indexed and integrated using Mosflm and imported into the CCP4 software package. SCALA was used for scaling the data. Crystals of SLAC variants belonged to the P43212 spacegroup and the cell dimensions are mentioned in table S1. Molrep was run for molecular replacement using 3CG8 as a homologous structure. Refmac was used to refine the structure. Terminal residues and mutations were built using Coot. The final structure parameters are summarized in Table S2.

Table S1. Data collection and processing statistics parameters for the SLAC variants studied (values in parenthesis correspond from highest resolution shell).

	Slac Y108F	Slac Y108A
Space Group	P4 ₃ 2 ₁ 2	P4 ₃ 2 ₁ 2
Unit Cell Parameters Å	$a = b = 176.66 \ c = 176.85$	$a = b = 178.44 \ c = 177.77$
Resolution Range Å	53.27 - 2.73 (2.88 - 2.73)	79.80 – 2.67 (2.81 – 2.67)
No of observations	370849 (46537)	1047174 (131331)
No of unique reflections	59361 (8756)	82018 (11803)
Data Completeness	80.5 (82.3)	100.0 (100.0)
Redundancy	6.2 (5.3)	12.8 (11.1)

Mosaicity (°)	0.45	0.65
Mean I/σ (I)	12.9 (3.5)	5.7 (0.9)
R _{pim}	0.043 (0.202)	0.099 (0.768)

Table S2. Structure parameters of SLAC variants.

	SLAC Y108F	SLAC Y108A
R _{work}	0.18204	0.21452
R _{free}	0.19858	0.22710
R _{all}	0.18238	0.21515
Mean <i>B</i> -factor (Å ²)	36.507	49.31
RMSD bond length from ideal (Å)	0.010	0.020
RMSD bond angles from ideal (°)	1.590	1.925
No of non hydrogen atoms	6888	6694
No of monomers in asymmetric	3	3
units		
No of water molecules	280	232
Other localized molecules	12 x Cu, 3 O , 8 PEGs	12 x Cu, 3 O , 8 PEGs
Solvent content (%)	84	84
Matthews Coefficient (ųDA¬¹)	7.52	7.78

EPR spectroscopy: Samples for EPR measurements were prepared as reported earlier. Typically the enzyme concentration was ~1mM in 100mM phosphate buffer (pH 6.8). Spectra were recorded for the enzyme in the resting form. Alternatively, the enzyme was titrated with sodium dithionite to afford complete reduction of the copper centers and then reoxidized and immediately frozen in liquid N₂. The cw–EPR measurements were performed at X– band on a Bruker Elexsys E680 spectrometer at a temperature of 40K. All the spectra were acquired with a microwave power of 2 mW, a field modulation of 100 kHz, and a modulation amplitude of 0.5 mT. Spin quantification was performed against azurin or CuSO₄ as standard which reveals the content of paramagnetic Cu(II) in the resting form of the variants studied. The EPR spectrum of the resting form of wt–SLAC overlaid with those of Y108A and Y108F is shown in Figure S2.

Steady-state kinetics: Steady state kinetics measurements were performed in sodium phosphate buffer (200mM) at pH 6. The buffer concentration had no effect on the enzyme kinetics. A high buffer concentration was used owing to the

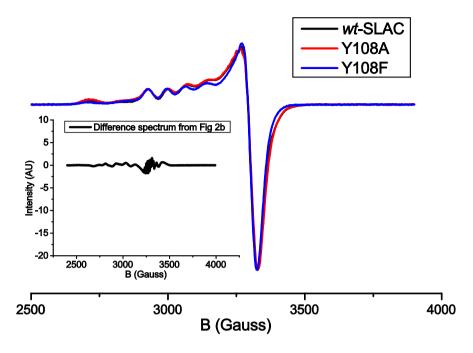
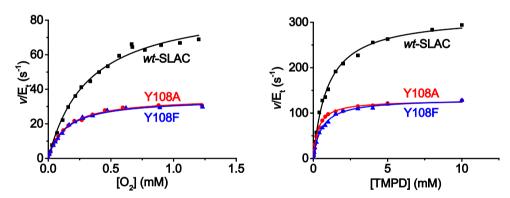



Figure S2: Normalized EPR spectra of the resting forms of wt-SLAC (black), Y108A (red) and Y108F (blue) overlayed on each other. The corresponding double integration reveals 2.0 ± 0.2 equivalents of Cu(II) per mol of monomer for wt-SLAC and Y108A and 1.7 ± 0.2 equivalents for Y108F mutant. The type-3 copper atoms are antiferromagnetically coupled and invisible, therefore, in the EPR spectrum. The inset shows the difference between the spectra reproduced in Figure 2b after normalization, which corresponds to less that 5% of total spin ($\sim 1.1 \pm 0.2$ equivalents of Cu(II) since T1 site is vacant).

higher concentration of the hydrochloride salts of the substrates used for the assays. The temperature was kept constant at 22 0 C using a circulating water bath (Neslab). The measurements were made in two different ways: (1) by monitoring the absorption spectrum of the oxidized substrate with a UV-vis spectrometer (Varian) and (2) by monitoring O_{2} consumption using a Clark-type O_{2} electrode (Hansatech). Several organic and inorganic substrates were tested for activity and TMPD (N,N,N',N' tetramethyl-p-phenylenediamine) was chosen for measurements because of its high turnover and linear response with time. For solubility reasons, the dihydrochloride salt of this substrate was used.

TMPD oxidation was monitored at 610 nM ($\epsilon_{610} = 12,200 \text{ M}^{-1}\text{cm}^{-1}$). The stock solution of substrate was prepared fresh by dissolving the required amount in distilled water (MilliPore) up to a concentration of 250mM. The stock was diluted in desired buffer immediately prior to the measurement and the reaction was initiated by enzyme injection. Absorbance increase at 610 nM or O_2 consumption was monitored against time and the method of initial rates was used to analyze the data. In a typical measurement, the initial concentration of one of the substrates (O_2 or TMPD) was kept fixed while that of the other was varied to obtain data points at low rates and up to saturation (where possible). For O_2 , the concentration is limited by its solubility (~ 1.3 mM at O_2 saturation at room temperature) and so the data for higher concentrations could not be obtained. The rates for background oxidation of substrates or O_2 electrode drifts were subtracted before analyzing the data. The rates were fitted to a Michaelis-Menten type equation to obtain the kinetic parameters. As an example the plots are shown in Figure S3.

Figure S3: (a) Rate of O₂ consumption plotted against the respective O₂ concentration while keeping the initial TMPD concentration fixed at 10mM for each measurement. (b) Rate of TMPD oxidation plotted against the respective TMPD concentration while keeping the O₂ concentration fixed at maximum O₂ solubility (~ 1.3mM). Typical enzyme concentrations used in the assays were around 15–50 nM. Measurements were made at 295K in 200mM phosphate buffer (pH 6). The data were fitted to Michelis-Menten equation shown in bold lines. *wt*-SLAC shown in black, Y108A mutant in red and Y108F mutant in blue.

Transient kinetics: Transient kinetics was monitored using a stopped flow instrument (SX.18MV– Applied Photophysics). The instrument was used in a single mixing mode. It was made rigorously anaerobic by purging argon through all tubing and, where necessary, the argon flow was maintained throughout the measurement. One of the syringes was filled with buffer of known O_2 concentration while the other was filled with anaerobic buffer containing reduced enzyme. The enzyme concentration was typically $100 \, \mu\text{M}$. Extinction coefficient of the ~340 nm band of the PI (Figure 2a) was estimated to be ~3000 $\,\text{M}^{-1}\text{cm}^{-1}$. The instrument dead time is ~2.5ms and 400 data points were recorded for each experiment. The spectra were recorded using a photo–diode array detector (300–1200nM). Data analysis was performed by global fitting of time traces using the software Pro–K. Reoxidation of completely reduced wt–SLAC or T1D SLAC was found to be irreversible under single turnover conditions as the y–axis intercept in Figure S4 is virtually zero ($k_{off} \approx 0$, see caption to Figure S4). Second order rate constants (k_{on}) similar to those presented in Table I were obtained.

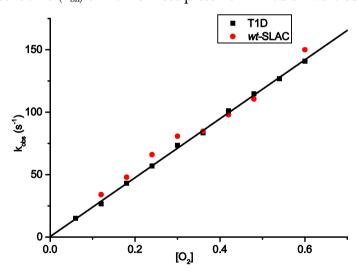


Figure S4: Rate of reoxidation of completely reduced wt-SLAC (red circles) or T1D (black squares) plotted against the respective O_2 concentration. The measurements were made following the fluorescence of tryptophan at 338 nm (excitation at 280nm) using the FRET principle as reported earlier. The linear fit $(k_{obs} = k_{on}[O_2] + k_{off})$ yields a second order rate constant (k_{on}) of 2.3×10^5 M⁻¹s⁻¹ and a dissociation rate constant (k_{off}) of <1s⁻¹.

Relationship to Ceruloplasmin: Figure S5 represents the structural alignment of SLAC (3CG8) with human ceruloplasmin (2J5W). Cp is rendered in yellow, while the three domains of SLAC are represented in red, blue and green. The leftmost panel is a view perpendicular to the threefold symmetry axis of SLAC, the middle panel represents a view along this axis. The rightmost picture shows a close-up of the T1 site (dark blue for hCp and SLAC) and the TNC (light blue for hCp **and** SLAC). The hCp structure is shown again in yellow, while for SLAC the blue domain has been depicted. Moreover Tyr108 (SLAC) has been depicted in green and Tyr107 (hCp) in yellow. For completeness a conserved Trp has been depicted as well for SLAC (W284, blue) and hCp (W1019, yellow). The possible relevance of this residue for the function of the enzyme is under investigation. The alignment was performed using the Protein structure service Fold at the European Bioinformatics comparison (http://www.ebi.ac.uk/msd-srv/ssm). The structural alignment of the quaternary structures of both proteins shows conserved domains and secondary structures including the highly conserved residues around the active site. It should be noted that hCp is a monomer and the TNC is located between the N and C terminus of the protein. SLAC is a trimer and the TNC are located at the N and C terminus of adjacent subunits.

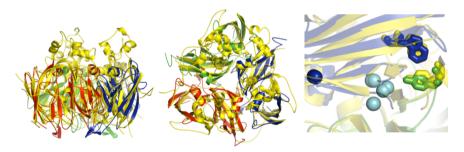


Figure S5: Overlay of human Ceruloplasmin (yellow) with SLAC (three chains shown in red, green and blue). Left: view perpendicular to the threefold symmetry axis of SLAC; middle: view along the same axis; right: close–up of the T1 site (dark blue for hCp and SLAC) and the TNC (light blue for hCp and SLAC) with hCp shown in yellow and the SLAC domain in blue. Tyr108 (SLAC) has been depicted in green and Tyr107 (hCp) in yellow. A conserved Trp (W284 (SLAC), blue; W1019 (hCp), yellow) has been depicted also.

Multiple sequence alignment of SLAC with all known 2-domain type-B MCOs:

Sequence alignment of SLAC with the homologous type–B Multicopper proteins (following Nakamura's terminology¹⁵) is shown in Chart S1. The accession numbers are shown in the beginning and all of them are derived from various members of *Streptomycetes* genus. SLAC (gi 21225006) is highlighted on top. The residues coordinating to the Cu centers are highlighted in grey. The conserved tyrosines (corresponding to Y108 in SLAC) have been underlined. A conserved tryptophan which is shown in Figure S3 is also underlined. The sequence alignments were obtained using the NCBI BLAST tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Chart S1: Multiple sequence alignment of SLAC with other putative Multicopper proteins. Some of these have been recombinantly expressed and purified like EpoA (gi 15425710) from *Streptomyces griseus*. (see text above for further details)

21225006	DRRGFNRRVLLGGAAAA 1	18
294816028	RSFGRRVLAGSAVAAG-GAA	42
291435857	DRRGFNRRVLLGGAAVA 1	18
254393501	MDRRSFGRRVLAGSAVAAG-GAA	22
111559381	DRRGFNRRVLLGGAAVA 1	18
302557153	DRRGFNRRVLLGGAAVA 1	18
302555481	DRRSFNRRVLLGGAAVA 1	18
297203782	DRRGFNRRVLLGGAAVA 2	21
290955899	DRRGFNRRVLLGGAAAA 2	21
239992058	MLVGGAAVAATG 1	12
318060531	DEGSGGRRIGRRYLLGGAAAA 2	25
302522913	DEGSGGRRIGRRYLLGGAAAA 2	25
326775330	DRRTFSRRMLVGGAAAAATG 2	21
182434812	DRRTFSRRMLVGGAAAAATG 2	21
15425710	DRRTFSRRMLVGGAAAAATG 2	21
291455313	MAGGAVLATGG 1	11
302540243	RGFSRRLLAGGAAAAAIGG- 2	22
295835579		
320007304	DRRTFNRRMLVGGGVAAATG 2	21
297190627	GEFDMDRRSFNRRLLAGGAAAAATGVT	31
345011266	BDAPGIT-SRRGLSRRLFTGGAAAAAVG 2	28
345003352	DRRTFNRRMLVGGGVAAATG 2	21
334337260	RVAGDAAKGGVSRRSVLTGTLAGLVAPA	32
354612709	NASDDPPGRGLSRRSMLVGTAAGVVTPV	32
354577634	QARL-PQSQKVSRRSMLVGAAAGVVAPV	31
257056126	YARTGAFGKKVSRRSMLVGAAAGMAAPV	32
257056125	MLAGAAAGMATPV 1	13
21225		2.6
21225006	T	
294816028		
291435857	T	
254393501	LSLSPAAAAQAGGGALAGG-AALAANPP	
111559381	T	
302557153	T	
302555481	T	
297203782	T	
290955899 239992058	TPEAVSAAARAR	
	-VTASSAE 2	77

```
--A------SGTAQAAVTAL----- 47
318060531
           --A------GLGVVGAS----AT-----SGTAQAAVTAP----- 47
302522913
326775330
           -VT------ASSAE----- 36
182434812
           -VT------ASSAE------ 36
15425710
           -LT------------SMS-------------------2SSAAAD-------- 23
291455313
302540243
           -----SATSATSASSASSAEG 53
295835579
           -----GGTAAAAVTAP----- 18
          -VT-----ATSAE----- 36
320007304
           ------PAPAKGAP----- 50
297190627
345011266
           ------KAPSGA----- 47
345003352
          -VT------AAPAQAAVA----- 40
          -----AAPGAPG------ 47
334337260
354612709
          -----AATADPGNGR---- 50
          -----SAAAO---GR---- 46
354577634
257056126
          -----TATAAPN----- 47
          -----PALAAPL----- 28
257056125
         -----ITARTAPA--GGEVR--HLKMYAEKLADGQMGYGFEKGKASVPGPLIEVNE 83
294816028
          ----R----TAP--AGGRVR--HMRLCAERLPDGRMGYGPEKGKATVPGPPIELTE 113
291435857
           ----TAPA--GGEVK--RIKLYAERLGGGQMGYGLEKGKATIPGPLIELNE 78
254393501
           ----R----TAP--AGGRVR--HMRLCAERLPDGRMGYGPEKGKATVPGPPIELTE 93
111559381
          -----VTARTAPA--GGEVR--HIKMYAEKLPDGQMGYGLEKGKASVPGPLIELNE 83
302557153
          -----TAPA--GGEVR--RVKMYAERLDGGRMGYGFEKGKASVPGPLIELNE 78
           ----TAP--AGGEVK--RIKLYAEKLPDGQMGYGLEKGKASIPGPLIELNE 78
302555481
           -----AAP---GGEVR--RIKLYAERLADGQMGYGLEKGRATIPGPLIELNE 80
297203782
290955899
          -----TAP--AGGEVK--HVKLYAEKLADGOMGYGLEKGKASIPGPLIELNE 87
239992058
          -----KPPRTAPA--GGVTR--RLKMYAEKLPNGELGYGFEKGKASIPGPLIELNE 74
          -----TAPA--GGEVR--RITMYAERLANGOMGYGLEKGKASIPGPLIELNE 90
318060531
302522913
          -----TAPA--GGEVR--RITMYAERLANGOMGYGLEKGKASIPGPLIELNE 90
326775330
          ----NPPRTAPA--GGVVR--RLRMYAEKLPNGELGYGFEKGKASIPGPLIELNE 83
182434812
          -----NPPRTAPA--GGVVR--RLKMYAEKLPNGELGYGFEKGKASIPGPLIELNE 83
15425710
           -----NPPRTAPA--GGVVR--RLKMYAEKLPNGELGYGFEKGKASIPGPLIELNE 83
291455313
          ----TPPKTAPA--GGEVK--HLTMYCEKMADGMTGYGLEKGKPSIPGPLIELNE 70
302540243
          AKRRVA----TAA-AGGAVR-RIKMYAEKLPDGQMGYGLEKGKASIPGPLIELTE 102
295835579
          -----TAPA--GGEVR--RITMYAERLTNGQMGYGLEKGKASIPGPLIELNE 61
320007304
           -----NPAKTAPA--GGAVR--HLKLYAEKLADGOLGYGFEKGKASVPGPLIEITE 83
297190627
          ----R----TAQ--AGGQVR--HLKMYAEKRADGSMGYGLEKGKATVPGPLIELVE 94
345011266
          ----VR-----TAT--AGGAVR--HLKLYAEKLPDGQMGYGLEKGKATIPGPLIELTE 92
345003352
          ----DPPKTAPA--GGVVR--HLTMYAEKLPDGSLGYGLEKGKASVPGPLIEINE 87
334337260
          -----APG---ASGRTR--RITMYAESLPGGQYGYGLAPGEATIPGPVLEMWE 90
          -----APGNAGRGDGRLR--RITMYAEKLPDGMIGYGLEPGGATVPGPVLEIWE 97
354612709
354577634
          ----GKGRPG-RTGETH--RVTVYAEELPGGLYGYGLEPGKATVPGPVFEIWE 92
          -----RAGDSQGEIR--RITMYAEELPGGMIGYGLEPGKATVPGPVLEMWE 91
257056126
          -----EANGFRGRPRPRRITLFAEELPGDMVGYGLAPGEATVPGPVLEMWE 74
257056125
         GDTLHIEFTNTMDVRASLHVHGLD<mark>Y</mark>EISSDGTAMNKSDVEPGGTRTYTWRTHKPGRRDDG 143
294816028
           GDTLHIAFENTMDVPVSLHVHGVDYDIANDGTRLTRSHVEPGETRTYTWRTHLPARRPDG 173
291435857
           GDTLHIEFENTMDVPVSLHVHGLDYEISSDGTKQSRSDVEPGGTRTYTWRTHVPGRRADG 138
           GDTLHIAFENTMDVPVSLHVHGVDYDIANDGTRLTRSHVEPGETRTYTWRTHLPARRPDG 153
254393501
           GDTLHIEFTNTMDVRASLHVHGLDYEISSDGTAMNKSDVEPGGTRTYTWRTHKPGRRADG 143
111559381
302557153
           GDTLHIELENTMDVPASLHVHGLDYEISSDGTKONNSHVEPGATRTYTWRTHKPGRRSDG 138
302555481
           GDTLHVEFENTMDVAVSLHVHGLDYEITSDGTKLNRSHVEPGGTRTYTWRTHAPGRRKDG 138
297203782
           GDTLHIEFENTMDVRASLHVHGLDYEVSSDGTTLNKSDVEPGGTRTYTWRTHAPGRRSDG 140
290955899
           GDTLHIEFENTMDVTASLHVHGLDYETSSDGTKLNRSEVEPGGTRTYTWRTHAPGTRPDG 147
239992058
           GDSVHIEFENLTDVDVSLHVHGVDYDIANDGTRMNKSHVEPGGTRTYTWRTHAPGRRKDG 134
318060531
           GDTLHIDFENTMDVDASLHVHGLDYEITSDGTRMSGSHVPPGGHRTYTWRTHKPGKRADG 150
302522913
           GDTLHIDFENAMDVDASLHVHGLDYEITSDGTRMSGSHVPPGGHRTYTWRTHKPGKRADG 150
           GDTVHIEFENLTDVDASLHVHGVDYDIANDGTRMNKSHVEPGGTRTYTWRTHAPGRRKDG 143
326775330
182434812
           GDTVHIEFENLTDVDASLHVHGVDYDIANDGTRMNKSHVEPGGTRTYTWRTHAPGRRKDG 143
           GDTVHIEFKNLTDVDASLHVHGVDYDIANDGTRMNKSHVEPGGTRTYTWRTHAPGRRKDG 143
15425710
          GDTLHIEFHNLLDVDASLHAHGVDYEISSDGTROSNSHVEPGGSRTYTWRTHAPGRRKDG 130
291455313
          GDTLHIEFENTMDVTASLHVHGLDVDTASDGTQLNRSAVEPGETRTYTWRTHAPGTRADG 162
302540243
295835579
          GDTLHIDFENTMDVDASLHVHGLDYEISSDGTRMSGSHVPPGGHRTYTWRTHKPGKRADG 121
```

```
320007304
             GDTLHIEFENTTDVDASLHVHGVDYDIASDGTRMNRSHVEPGGTRTYTWRTHAPGRRKDG 143
297190627
             GDTLHIEFENLMDVPVSLHPHGVDVDISNDGTKMSRSHVEPGATRTYTWRTHAPGRRADG 154
345011266
             GDTLHIEFENTMDVTASLHVHGLDYDVASDGTQLNRSAVEPGGTRTYTWRTHAPGKRADG 152
             GDTLHIEFHNLTDADASLHVHGVDYDIASDGTRMNRSHVEPGGTRTYTWRTHAPGRRKDG 147
345003352
             GETLEIELVNTTDRRLSIHPHGVNYTVDSDGSPLNASYNEPGETRTYVWSTQTQYQAGSG 150
334337260
354612709
             GDTLEIELVNTTDKRLSIHPHGVDYSVDSDGAPLNGSFNEPGETRTYVWRTRAPSKGPGK 157
354577634
             GDTLEIELVNNTDRRLSIHPHGVNYDVASDGSPLNDSFNEPGETRTYVWSTSFOSEGPGG 152
257056126
             GDTLEIELVNNTDHRLSIHPHGVEYDTESDGSPLNDSFNNPGERRTYIWRSRAPYOAKDG 151
257056125
             GETLEIQLVNNTDHRLSIHPHGVEYDTESDGSPLNDSFNAPGECRTYVWRSRTPYRAEDG 134
21225006
             TWRPGSAGYWHYHDHVVGTEHGTGGIRNGLYGPVIVRRKGDVLPDATHTIVFNDMTINNR 203
294816028
             TWRPGSAGYWHYHDHVVGTDHGTQGIRNGLYGPVVVRRAGDILPDRQFTIVFNDMTINNL 233
291435857
             TWRAGSAGYWHYHDHVVGTEHGTGGIRNGLYGPVIVRRKGDVLPDRTHTIVFNDMTINNR 198
             TWRPGSAGYWHYHDHVVGTDHGTQGIRNGLYGPVVVRRAGDILPDRQFTIVFNDMTINNL 213
254393501
111559381
             TWRAGSAGYWHYHDHVVGTEHGTGGIRKGLYGPVIVRRKGDVLPDATHTIVFNDMLINNR 203
             TWRAGSAGYWHYHDHVVGTVHGTGGIRNGLYGPVVVRRKDDVLPDATHTIVFNDMSINNR 198
302557153
302555481
             TWRAGSAGYWHYHDHVVGTEHGTQGLQKGLYGPVIVRRKGDVLPDRTHTVVFNDMRINNR 198
             TWRAGSAGYWHYHDHVVGTEHGTGGIRKGLYGPVIVRRKGDVLPDATHTIVFNDMLINNR 200
297203782
290955899
             TWRPGSAGYWHYHDHAVGTAHGTGGIRKGLYGPVVVRRKGDVLPDKTVTIVFNDLRINNK 207
239992058
             TWEPGSAGYWHYHDHVVGTDHGTGGIRKGLYGPVVVRRKGDILPDQTCTVVFNDMMINNK 194
318060531
             TYRPGSAGYWHYHDHVVGTDHGTGGIRNGLYGGVVVRRKGDLLPDRTYTIVFNDMTINNL 210
302522913
             TYRPGSAGYWHYHDHVVGTDHGTGGIRNGLYGGVVVRRKGDLLPDRTYTIVFNDMTINNL 210
326775330
             TYEPGSAGYWHYHDHVVGTDHGTGGIRKGLYGPVVVRRKGDILPDQTCTVVFNDMMINNK 203
182434812
             TYEPGSAGYWHYHDHVVGTDHGTGGIRKGLYGPVVVRRKGDILPDQTCTVVFNDMMINNK 203
15425710
             TYEPGSAGYWHYHDHVVGTDHGTGGIRKGLYGPVVVRRKGDILPDQTCTVVFNDMMINNK 203
             TWRPGSAGYWNYHDHVVGTDHGTGGLRQGLYGGLIVRRKGDILPDKTFQIVFNDMTVNNK 190
291455313
302540243
             TWRPGSAGYWHYHDHAVGTPHGTGGLRKGLYGPVVVRRAGDVLPOKOFTIVFNDMTINNK 222
295835579
             TYRPGSAGYWHYHDHVVGTDHGTGGIRNGLYGGVVVRRKGDPLPDRTYTIVFNDMTINNL 181
320007304
             TWQAGSAGYWHYHDHVVGTDHGTGGIRKGLYGPLVVRRKGDVLPDKTITIVFNDMTINNK 203
             TWRPGSAGYWHYHDHVVGTDHGTGGIRKGLYGPMVVRRKDDILPDKOFTIVFNDMTINNR 214
297190627
345011266
             TWRPGSAGYWHYHDHAVGTPHGTGGLRKGLYGPVVVRRAGDILPDKOFTIVFNDMTINNK 212
345003352
             TWOAGSAGYWHYHDHVVGTDHGTGGIRKGLYGPLVVRRKGDILPDRTITIVFNDMNINNK 207
             LWMPGSAGYWHYHDHAMGTDHGTEGVRKGLYGALVVRRKGDVLPDRQFTVVFNDMTINNQ 210
334337260
             LWMPGSAGYWHYHDHAMGTPHGTEGLRKGLYGALVVRRKGDVLPDRQFTVVFNDMTINNR 217
354612709
354577634
             FWIPGSAGYWHYHDHALGSDHGTEGIAKGLYGALVVRREGDVVPDRQFTVVFNDMTINNK 212
257056126
             TWRPGSAGYWHYHDHAMGTDHGTGGVLRGLYGALVVRRPGDILPDRQYTIVFNGMTINNR 211
257056125
             AWMPGSAGYWHYHDHAMGTDHGTEGLTRGLYGALVVRRRGDILPDRQYTIVFNGTTINNR 194
             KPHTGPDFEATVGDRVEIVMITHGEYYHTFHMHGHRWADNRTGILTGPDDPSRVIDNKIT 263
294816028
             PGHSGPDFRATVGDRVEIISITHGEYYHTFHLHGHRWADNRTGLLEGPGDVSRIIDNKIC 293
291435857
             PAHTGPDFEATVGDRVEFVMITHGEYYHTFHLHGHRWADNRTGMLTGPDDPSQVIDNKIC 258
254393501
             PGHSGPDFRATVGDRVEIISITHGEYYHTFHLHGHRWADNRTGLLEGPGDVSRIIDNKIC 273
111559381
             APHTGPNFEATVGDRVEIVMITHGEYYHTFHMHGHRWADNRTGMLTGPDDPSQVIDNKIT 263
302557153
             PAHTGPDFEATVGDRVEIVMITHGEYYHTFHMHGHRWADNRTGMLTGPDDPSQVIDNKIC 258
             PPHSGPDFEATVGDRVEFVVITHGEFYHTFHMHGHRWADNRTGMLTGPDDPSQVIDNKIT 258
302555481
             PAHSGPNFEATVGDRVEFVMITHGEYYHTFHMHGHRWADNRTGMLTGPDDPSQVVDNKIV 260
297203782
290955899
             PAHTGPDFDATVGDRVEFVVITHGEYYHTFHMHGHRWADNRTGTLTGPDDPSQVIDNKIV 267
             TAHNSVNFEATVGDRLEFVMITHGEYYHTFHIHGHRWADNRTGLLTGPDDPSRVIDNKIC 254
239992058
             K--OGPDFEAVVGERVEIVMITHGEYYHTFHMHGHRWADNRTGLLTGPDDPSAVIDNKIV 268
318060531
302522913
             K--QGPDFEAVVGERVEIVMITHGEYYHTFHMHGHRWADNRTGLLTGPDDPSAVIDNKIV 268
326775330
             TAHNSVNFEATVGDRLEFVMITHGEYYHTFHIHGHRWADNRTGILTGPDDPSRVIDNKIC 263
182434812
             TAHNSVNFEATVGDRLEFVMITHGEFYHTFHIHGHRWADNRTGILTGPDDPSRVIDNKIC 263
15425710
             TAHNSVNFEATVGDRLEFVMITHGEFYHTFHIHGHRWADNRTGILTGPDDPSRVIGQQDL 263
291455313
             PGHESPNFEATVGDRIEVLSITHGEFYHTFHMHGHRWADNRTGLLTGPDDPSPVIDNKIT 250
302540243
             SGHDAPEFRATVGERVEIIMITHGEYYHTFHMHGHRWADNRTGILEGPDDPSRVIDNKIT 282
             K--QGPDFEAVVGERVEIVMITHGEYYHTFHMHGHRWADNRTGLLTGPEDPSAVIDNKIV 239
295835579
320007304
             AAHESPNFEVTVGDRVEVVMITHGEYYHTFHIHGHRWADNRTGLLTGPDDPSRVVDTKIC 263
297190627
             PAADPPNFLATVGDRVEIIMITHGEYYHTFHMHGHRWADNRTGLLSGPEDVSRVIDNKIT 274
345011266
             AGHEAPEFRATVGDRVEIIMITHGEYYHTFHMHGHRWADNRTGLLEGPDDVSRVIDNKIT 272
             PADASPNFEATVGDRVEVVMITHGEYYHTFHIHGHRWADNRTGLLTGPDDPSRVVDTKIC 267
345003352
334337260
             MAPNAPVLEANLGERVEFIAIGHGDMFHTFHLHAHRWADNRTGMLEGPNDSSQIIDNRDL 270
             VAPDVPVLEANLGERVEFIAIGHGNNFHTFHLHAHRWADNRTGYLEGPNDPSRVIDNRDL 277
354612709
354577634
             MAPDVPILEANLGERVEFIAIGHGNNFHTFHLHAHRWADNRTGYLQGPDDPSKVVDNRDL 272
257056126
             VAPDAPIFEARLGERVEFIAIGHGDHFHTFHLHAHRWADNRTGLLSGPDDPTPIIDNKDL 271
257056125
             VAPEAPIFEARLGERVEFIAISHGNSPHTFHLHGHRWADNRTGMLAGPDDPTPTIDNKDL 254
```

21225006	GPADSFGFQIIAGEGVGAGAWMYHCHVQSHSDM	MGMVGLFLVKKPDGTIP-GYEPHEHG	320
294816028	GPADSFGFQILAGENVGAGAWMYHCHVQSHSDM		
291435857	GPADSFGFQVIAGEGVGAGAWMYHCHVQSHSDM	MGMVGLFLVKKPDGTIP-GYDPHRHH	315
254393501	GPADSFGFQILAGENVGAGAWMYHCHVQSHSDN	MGMVGLLLVAKPDGTIP-GYDPHHPP	330
111559381	GPADSFGFQIIAGEGVGAGAWMYHCHVQSHSDM	MGMVGLFLVKKPDGTIP-GYDPHEH-	319
302557153	GPADSFGFQIIAGEGVGAGAWMYHCHVQSHSDN	MGMVGLFLVKKPDGTIP-GYDPHEHA	315
302555481	GPADSFGFQVIAGEGVGAGAWMYHCHVQSHSDM	MGMVGLFLVKKPDGTIP-GYDPHE	313
297203782	GPADSFGFQVIAGEGVGAGAWMYHCHVQSHSDM	MGMVGLFLVKKTDGTIP-GYEPHE	315
290955899	GPADSFGFQVIAGEGVGAGAWMYHCHVQSHSDN	MGMAGLFLVRKTDGTIP-GYEPHKPH	324
239992058	GPADSFGLQIIAGERVGAGAWMYHCHVQSHSDN	MGMAGLLLIKKPDGTIP-GYEPHHHT	311
318060531	GPADSFGFQVLAGEGVGAGAWMYHCHVQSHSDN	MGMAGMFLVAKEDGTVP-GHEGHTMK	325
302522913	GPADSFGFQVLAGEGVGAGAWMYHCHVQSHSDM	MGMAGMFLVAKEDGTVP-GHEGHTMK	325
326775330	GPADSFGLQIIAGERVGAGAWMYHCHVQSHSDM	MGMAGLLLIKKADGTIP-GYEPHH-A	319
182434812	GPADSFGLQIIAGERVGAGAWMYHCHVQSHSDM	MGMAGLLLIKKADGTIP-GYEPHH-A	319
15425710	RPRDSYGLQIIAGERVGAGAWMYHCHVQSHSDM	MGMAGLLLIKKADGTIP-GYEPHH-A	319
291455313	GPADSFGFQFIAGEGVGAGAWMYHCHVQSHSDM	MGMAGLFLIAKADGTIP-GYDPDAPHHT	309
302540243	GPADSFGFQVIAGENTGAGAWMYHCHVQSHSDM	MGMAGLFLVAKPDGTIP-GYDPHHLT	339
295835579	GPADSFGFQVVAGEGVGAGAWMYHCHVQSHSDM	MGMAGMFLVAKEDGTVP-GHEGHGMK	296
320007304	GPADSFGFQIIAGEHVGAGAWMYHCHVQSHSDM	MGMAGLLLVAKADGTVP-GYDPPHHA	320
297190627	GPADSFGFQVIAGEHVGPGAWMYHCHVQSHSDM		
345011266	GPADSFGFQVIAGENVGPGAWMYHCHVQSHSDM	MGMAGLFLVAKADGTIP-GHDPHQLS	329
345003352	GPADSFGFQIIAGEHVGAGAWMYHCHVQSHSDQ	QGMAGLLLVAKPDGTVP-GYDPPHHA	324
334337260	NPGESFGFQVIAGAGVGPGAWMYHCHVQFHSDA	AGMAGVFLVRNEDGSLPDGAQEALDRYR	330
354612709	NPGDSIGFQVLAGDGVGPGAWMYHCHVQFHSD	GGMAGVFLVRNADGSMPEGAREALDRYH	337
354577634	NPGDSFGFQVIAGDGVGPGAWMFHCHVQSHSET		
257056126	NPGSSFGFQVIAGEGVGPGAWMYHCHVQFHSDI	OGMAGIFLVRNEDGSLPPGAEEALERYR	331
257056125	NPGSSFGFQVIAGKGVGPGAWMYHCHMQVHSDI	OGMTGLFLVRNEDGSLPPGAEEALRRYH	314
01005006			0.46
21225006	GATAKSG-ESGEPTGGAA	AHEHEH	343
294816028	GH		
291435857	HGAASGKPEKAEKPAGSEKPAGS-		
254393501	GHGGGEPTADAP		
111559381	HGAAA		
302557153			
302555481	HGEQ		
297203782			
	HSGQ	RAEHHH	325
290955899	TAADPGTAGTADGTTAGTTDGAG	RAEHHH	325 355
239992058	TAADPGTAGTADGTTAGTTDGAGAGATEKKAGEKAGEKTGGKAEKKSAEKTAAK	RAEHHH	325 355 353
239992058 318060531	TAADPGTAGTADGTTAGTTDGAGAGATEKKAGEKAGEKTGGKAEKKSAEKTAAK KSGATGKGTASGKSA	RAEHHH	325 355 353 349
239992058 318060531 302522913	TAADPGTAGTADGTTAGTTDGAGAGATEKKAGEKAGEKTGGKAEKKSAEKTAAK KSGATGKGTASGKSA KSGATGKGTASGKSA	RAEHHH	325 355 353 349 349
239992058 318060531 302522913 326775330	TAADPGTAGTADGTTAGTTDGAGAGATEKKAGEKAGEKTGGKAEKKSAEKTAAKKSGATGKGTASGKSAKSGATGKGTASGKSAATGKGTASGKSAAGGAEKKAGAKGAGANADKDAKGAA		325 355 353 349 349 348
239992058 318060531 302522913 326775330 182434812	TAADPGTAGTADGTTAGTTDGAG		325 355 353 349 348 348
239992058 318060531 302522913 326775330 182434812 15425710	TAADPGTAGTADGTTAGTTDGAG		325 355 353 349 348 348 348
239992058 318060531 302522913 326775330 182434812 15425710 291455313	TAADPGTAGTADGTTAGTTDGAG	RAEHHH	325 355 349 349 348 348 348
239992058 318060531 302522913 326775330 182434812 15425710 291455313 302540243	TAADPGTAGTADGTTAGTTDGAG	RAEHHH	325 355 349 348 348 348 347 347
239992058 318060531 302522913 326775330 182434812 15425710 291455313 302540243 295835579	TAADPGTAGTADGTTAGTTDGAG		325 355 345 348 348 348 348 347 344 331
239992058 318060531 302522913 326775330 182434812 15425710 291455313 302540243 295835579 320007304	TAADPGTAGTADGTTAGTTDGAG		325 355 349 348 348 348 348 347 344 331
239992058 318060531 302522913 326775330 182434812 15425710 291455313 302540243 295835579 320007304 297190627	TAADPGTAGTADGTTAGTTDGAG		325 355 345 346 346 346 347 344 331 329
239992058 318060531 302522913 326775330 182434812 15425710 291455313 302540243 295835579 320007304 297190627 345011266	TAADPGTAGTADGTTAGTTDGAG		325 355 345 348 348 348 347 344 331 329 338 338
239992058 318060531 302522913 326775330 182434812 15425710 291455313 302540243 295835579 320007304 297190627 345011266 345003352	TAADPGTAGTADGTTAGTTDGAG		325 355 349 348 348 348 348 348 348 348 348 348 348
239992058 318060531 302522913 326775330 182434812 15425710 291455313 302540243 295835579 320007304 297190627 345011266 345003352 334337260	TAADPGTAGTADGTTAGTTDGAG		325 355 349 348 348 347 344 331 329 338 334 333 349
239992058 318060531 302522913 326775330 182434812 15425710 291455313 302540243 295835579 320007304 297190627 345011266 345003352 334337260 354612709	TAADPGTAGTADGTTAGTTDGAG		325 355 345 348 348 348 348 348 331 333 340 342
239992058 318060531 302522913 326775330 182434812 15425710 291455313 302540243 295835579 320007304 297190627 345011266 345003352 334337260 354612709 354577634	TAADPGTAGTADGTTAGTTDGAG		325 355 349 348 348 348 348 348 348 348 348 348 348
239992058 318060531 302522913 326775330 182434812 15425710 291455313 302540243 295835579 320007304 297190627 345011266 345003352 334337260 354612709	TAADPGTAGTADGTTAGTTDGAG		325 355 345 348 348 347 344 331 329 334 334 335 334 335 334 335 334 335 336 336 336 336 336 336 336 336 336

2.4 References

- [1] Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. *Chem. Rev.* **1996**, *96*, 2563.
- [2] Wherland, S.; Farver, O.; Pecht, I. J. Biol. Inorg. Chem. 2014.
- [3] Aasa, R.; Brändén, R.; Deinum, J.; Malmström, B. G.; Reinhammar, B.; Vänngård, T. FEBS Lett. 1976, 61, 115.
- [4] Solomon, E. I.; Augustine, A. J.; Yoon, J. Dalton Trans. 2008, 3921.
- [5] Andréasson, L. E.; Brändén, R.; Malsmtröm, B. G.; Vänngård, T. FEBS Lett. 1973, 32, 187.
- [6] Augustine, A. J.; Quintanar, L.; Stoj, C. S.; Kosman, D. J.; Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 13118.
- [7] Solomon, E. I.; Ginsbach, J. W.; Heppner, D. E.; Kieber-Emmons, M. T.; Kjaergaard, C. H.; Smeets, P. J.; Tian, L.; Woertink, J. S. Faraday Discuss. 2011, 148, 11.
- [8] Kosman, D. J. J. Biol. Inorg. Chem. 2010, 15, 15.
- [9] Farver, O.; Pecht, I. Coord. Chem. Rev. 2011, 255, 757.
- [10] Machczynski, M. C.; Vijgenboom, E.; Samyn, B.; Canters, G. W. *Protein Sci.* **2004**, *13*, 2388.
- [11] Messerschmidt, A.; Ladenstein, R.; Huber, R.; Bolognesi, M.; Avigliano, L.; Petruzzelli, R.; Rossi, A.; Finazzi-Agro, A. *J. Mol. Biol.* **1992**, *224*, 179.
- [12] Taylor, A. B.; Stoj, C. S.; Ziegler, L.; Kosman, D. J.; Hart, P. J. *Proc. Natl. Acad. Sci. U. S. A.* **2005**, *102*, 15459.
- [13] Roberts, S. A.; Weichsel, A.; Grass, G.; Thakali, K.; Hazzard, J. T.; Tollin, G.; Rensing, C.; Montfort, W. R. *Proc. Natl. Acad. Sci. U. S. A.* **2002**, *99*, 2766.
- [14] Hakulinen, N.; Kiiskinen, L. L.; Kruus, K.; Saloheimo, M.; Paananen, A.; Koivula, A.; Rouvinen, J. *Nat. Struct. Biol.* **2002**, *9*, 601.

- [15] Nakamura, K.; Go, N. Cell. Mol. Life Sci. 2005, 62, 2050.
- [16] Skalova, T.; Dohnalek, J.; Ostergaard, L. H.; Ostergaard, P. R.; Kolenko, P.; Duskova, J.; Stepankova, A.; Hasek, J. *J. Mol. Biol.* **2009**, 385, 1165.
- [17] Skalova, T.; Duskova, J.; Hasek, J.; Stepankova, A.; Koval, T.; Ostergaard, L. H.; Dohnalek, J. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 2011, 67, 27.
- [18] Komori, H.; Miyazaki, K.; Higuchi, Y. FEBS Lett. 2009, 583, 1189.
- [19] Lawton, T. J.; Sayavedra-Soto, L. A.; Arp, D. J.; Rosenzweig, A. C. *J. Biol. Chem.* **2009**, *284*, 10174.
- [20] Rodriguez Couto, S.; Toca Herrera, J. L. Biotechnol. Adv. 2006, 24, 500.
- [21] Wheeldon, I. R.; Gallaway, J. W.; Barton, S. C.; Banta, S. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 15275.
- [22] Bibb, M. J. Curr. Opin. Microbiol. 2005, 8, 208.
- [23] Horinouchi, S. Biosci. Biotechnol. Biochem. 2007, 71, 283.
- [24] Tepper, A. W. J. W.; Milikisyants, S.; Sottini, S.; Vijgenboom, E.; Groenen, E. J. J.; Canters, G. W. *J. Am. Chem. Soc.* **2009**, *131*, 11680.
- [25] Stubbe, J. A.; van der Donk, W. A. Chem. Rev. 1998, 98, 2661.
- [26] See Supporting Information.
- [27] Northrop, D. B. J. Chem. Educ. 1998, 75, 1153.
- [28] Cole, J. L.; Ballou, D. P.; Solomon, E. I. J. Am. Chem. Soc. 1991, 113, 8544.
- [29] Lee, S. K.; George, S. D.; Antholine, W. E.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. *J. Am. Chem. Soc.* 2002, *124*, 6180.
- [30] Gupta, A.; Nederlof, I.; Sottini, S.; Tepper, A. W.; Groenen, E. J.; Thomassen, E. A.; Canters, G. W. J. Am. Chem. Soc. 2012, 134, 18213.

- [31] Shin, W.; Sundaram, U. M.; Cole, J. L.; Zhang, H. H.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. *J. Am. Chem. Soc.* **1996**, *118*, 3202.
- [32] Palmer, A. E.; Quintanar, L.; Severance, S.; Wang, T. P.; Kosman, D. J.; Solomon, E. I. *Biochemistry* **2002**, *41*, 6438.
- [33] In recent studies presented in Chapters 3, we have obtained further evidence that T2 Cu is likely not involved in the peroxide binding a the TNC as shown in Scheme 1. Also, in Chapter 4, we fail to observe a long-lived on-state which suggests that fully reduced form of SLAC may not be part of the enzyme mechanism under turnover conditions. Thus, Scheme 1, as proposed earlier, may require further revisions in light of the new experiments.
- [34] Bento, I.; Peixoto, C.; Zaitsev, V. N.; Lindley, P. F. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2007, 63, 240.
- [35] Manabe, T.; Manabe, N.; Hiromi, K.; Hatano, H. *FEBS Lett.* **1972**, *23*, 268.
- [36] Manabe, T.; Hatano; Hiromi, K. J. Biochem. 1973, 73, 1169.
- [37] Bielli, P.; Bellenchi, G. C.; Calabrese, L. J. Biol. Chem. 2001, 276, 2678.
- [38] Augustine, A. J.; Kjaergaard, C.; Qayyum, M.; Ziegler, L.; Kosman, D. J.; Hodgson, K. O.; Hedman, B.; Solomon, E. I. *J. Am. Chem. Soc.* **2010**, 132, 6057.
- [39] Murphy, M. E. P.; Lindley, P. F.; Adman, E. T. *Protein Sci.* **1997**, *6*, 761.
- [40] Dwulet, F. E.; Putnam, F. W. Proc. Natl. Acad. Sci. U. S. A. 1981, 78, 2805.
- [41] Poyton, R. O. Respir Physiol 1999, 115, 119.
- [42] Tepper, A. W. J. W.; Aartsma, T. J.; Canters, G. W. Faraday Discuss. **2011**, *148*, 161.
- [43] Quintanar, L.; Stoj, C.; Taylor, A. B.; Hart, P. J.; Kosman, D. J.; Solomon, E. I. Acc. Chem. Res. 2007, 40, 445.

- [44] Dietrich, L. E.; Teal, T. K.; Price-Whelan, A.; Newman, D. K. *Science* **2008**, *321*, 1203.
- [45] Le Roes-Hill, M.; Goodwin, C.; Burton, S. Trends Biotechnol. 2009, 27, 248.