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introduction
it is well known in land snails and other organisms, including humans, that themore extreme conditions at higher altitudes as compared to the lowlands mayinduce an ecological and evolutionary response (see for example: Buria & stahel,1983; Berner et al., 2004; Beall, 2006; dillon et al., 2006). the temperatures are lower,the atmospheric pressure is lower, negatively influencing the oxygen percentage inthe air, and the season available for growth and reproduction is shorter. usuallythere is also a difference between north- versus south-facing slopes. the adaptationto such a relatively hostile environment may be both ecophenotypic and genetical-ly induced (Berven, 1982; Baur & Rabout, 1988; Cuauhtémoc et al., 2006).high-altitude populations in land snails have been studied by several authors.Clinal variation has been observed in life history traits (Baur & Baur, 1998), bodysize and shell shape (hausdorf, 2003; gittenberger, 1991; gittenberger et al., 2003),as well as species diversity (tattersfield et al., 2001). some species are exclusivelyadapted to high-altitudes, like for example the eastern Pyrenean helicid snail

Arianta canigonensis (Boubée, 1833), which is not known from below 2200 m altitude(a.J. de winter, personal observation), or the helicid alpine snail Cylindrus obtusus(draparnaud, 1805), which is usually found (far) above 1500 m altitude in austria(Klemm, 1973). other species or species groups occur along a large altitudinalrange, sometimes reaching from sea level to mountain summits. a species from thatcategory is Abida secale (draparnaud, 1801).
Abida secale occurs throughout europe, from england in the west, Belgium andsouthern germany in the north, and slovakia in the east. the southern part of itsdistribution includes northern italy, France and northeastern spain (gittenberger,1973; Kerney, 1963; Kerney et al., 1983). the morphological differentiation is smallover the largest part of its range. an exception to this uniformity is found in thesouthwestern part of the species’ range. in a small part of se. France and ne. spainthe species shows an extreme morphological differentiation. this has led to thedescription of three subspecies from the French part of the Pyrenees, one fromandorra, and an astonishing eleven from the province of Catalunya, spain(Kokshoorn & gittenberger [chapter 8, p. 123]). the geographical distribution of Abida secale and its morphologically definedsubspecies is rather well known, but sofar hardly any attention has been paid tovariation in shell morphology along altitudinal gradients. a striking case where alti-tudinal variation has been documented concerns the Comabona Mtn in the sierradel Cadí, south of andorra. here we find in the valleys two clearly distinguishablesubspecies of A. secale, viz. A. s. brongersmai at the northern side and A. s. brauniop-

sis in the south. From high altitudes here, i.e. the Collado de tancalaporta at 2000 m,two additional subspecies have been described, viz. A. s. cadica (westerlund, 1902)and A. s. cadiensis gittenberger, 1973. these two taxa are readily distinguishable andtheir alleged sympatric occurrence led gittenberger (1973) to locate the ends of an‘Abida secale ringspecies’ at high altitudes in the sierra del Cadí. this hypothesis was 
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based on the observation that the subspecies in the valleys around the mountainrange are interconnected by intermediates. From the Collado de tancalaporta twoforms without intermediates are represented in collections, thus suggesting a caseof intraspecific isolation in conformity with the ringspecies model. this hypothesiscould neither be confirmed nor convincingly falsified by Kokshoorn & gittenberger[chapter 6]. during fieldwork near the Collado de tancalaporta, neither a truly sym-patric and syntopic occurrence, nor intermediate forms have been observed. on the
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one hand, populations of both forms come as close as hundreds of meters, but anoverlap was not observed. on the other hand, our molecular data suggest that thereis, or recently has been, gene flow between A. s. cadica and A. s. cadiensis and not a rel-atively large genetic distance, supposed to have accumulated over a series of ring-likeinterconnected populations. Fieldwork has also made clear that high-altitude forms of
Abida secale occur in several other mountain ranges in the area. these forms are simi-lar to A. s. cadiensis and A. s. cadica (Kokshoorn & gittenberger [chapter 8]). we investigated the morphological variation along altitudinal transects. usingsix morphometric parameters, the relation of these characters to altitude and geog-raphy (north- versus south-side and geographical distribution) was analysed.

material and methods
study sites

snails were collected along four altitudinal transects on both the northern andthe southern side of the Comabona (CMB) and the Pedro dels Quattre Battles  (PQB)in the sierra del Cadí and the sierra Moixero. Material from high altitudes at fivemountains elsewhere was examined for comparison, i.e. from the alt de la Capa inandorra, the Pedraforca and the torre del Cadí in the sierra del Cadí, the tossaPelada in the sierra del Comte, southwest of the sierra del Cadí, and the tournon inthe French alps (fig. 1). the sample from the tournon was kindly provided by Mr.o. gargominy, Paris, France. samples and collection numbers are given in table 1.the altitudinal transects were dived in categories (altitude zones or altzone).altzone 1 (the foot of the mountain) ranges from 900 – 1,500 m, altzone 2 from1,501 – 1,700 m, altzone 3 from 1,701 – 2,200 m and altzone 4 from 2,201 – 2,500 malt. the summit (altzone 5) was defined as >2,501 m alt.
MoRPhologiCal MeasuReMents

to characterize the general morphology of the shells, six parameters were select-ed that are commonly used to distinguish subspecies in Abida secale, viz. shell height(sh), width of the body whorl (sw), apertural height (ah) and width (aw), ‘pro-trusion’ of the aperture (P) and the number of whorls (w). the ‘protrusion’ wasmeasured at a 90º angle to the shell’s axis, from the body whorl to the frontal edgeof the aperture. the number of whorls was counted as illustrated in Kerney &Cameron (1979: 13). shells were measured using a ‘wild M5©’ stereo microscopeand an ocular with a scale. all measurements were converted to millimeters. onlyundamaged shells were measured, so that for all shells all six characters are avail-able. statistiCal analyses

the inter-correlation between the six morphological characters was tested with 
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table 1. samples used in this study.

mtn transect data altZone 1 altZone 2 altZone 3 altZone 4 summit
CMB north n 18 13 37 41

shellheight (sh)
shellwidth (sw)
apertureheight (ah)
aperturewidth (aw)
Protrusion (P)
whorls (w)
Factor

8.82±0.14
2.71±0.03
2.65±0.03
2.04±0.03
2.64±0.03
9.31±0.09

-0.87±0.08

8.94±0.16
2.88±0.04
2.61±0.04
1.91±0.05
3.23±0.06
9.77±0.12

-1.26±0.11

7.76±0.09
2.62±0.03
2.47±0.03
1.93±0.02
2.54±0.02
8.48±0.10

-0.26±0.06

6.55±0.07
2.46±0.02
1.99±0.02
1.71±0.02
2.37±0.02
7.93±0.06
0.65±0.05

south n 6 11 14 10 20
shellheight (sh)
shellwidth (sw)
apertureheight (ah)
aperturewidth (aw)
Protrusion (P)
whorls (w)
Factor

9.62±0.29
2.63±0.04
2.77±0.08
2.03±0.03
2.92±0.06

10.17±0.23
-1.26±0.11

10.23±0.38
2.73±0.03
2.74±0.05
2.05±0.04
3.2±0.08

10.47±0.19
-1.61±0.16

8.77±0.29
2.67±0.04
2.54±0.08
2.03±0.05
3.05±0.05
9.59±0.17

-1.02±0.19

6.66±0.12
2.38±0.02
1.91±0.03
1.66±0.02
2.31±0.03
8.75±0.13
0.67±0.05

6.1±0.09
2.29±0.02
1.85±0.03
1.62±0.02
2.18±0.03
8.12±0.10
1.06±0.07

PQB north n 13 16 18
shellheight (sh)
shellwidth (sw)
apertureheight (ah)
aperturewidth (aw)
Protrusion (P)
whorls (w)
Factor

11.14±0.18
3.13±0.04
3.23±0.04
2.42±0.04
2.97±0.03

10.11±0.09
-2.44±0.08

8.45±0.11
2.89±0.04
2.71±0.03
2.05±0.02
2.72±0.06
8.58±0.06
-0.9±0.09

6.59±0.08
2.53±0.02
2.06±0.03
1.74±0.03
2.33±0.03
8.02±0.07
0.54±0.08

south n 12 20 49 21
shellheight (sh)
shellwidth (sw)
apertureheight (ah)
aperturewidth (aw)
Protrusion (P)
whorls (w)
Factor

7.67±0.12
2.34±0.04
2.19±0.03
1.75±0.02
2.13±0.05
9.13±0.09
0.36±0.07

8.2±0.12
2.4±0.02

2.28±0.03
1.79±0.02
2.25±0.02
9.58±0.10
0.03±0.08

6.35±0.07
2.46±0.02
2.02±0.02
1.70±0.01
2.27±0.02
7.91±0.07
0.73±0.05

6.02±0.07
2.40±0.02
1.91±0.02
1.63±0.01
2.18±0.02
7.53±0.08
1.05±0.05

table 2. the six measurements of A. secale shells collected from the Comabona (CMB) and Pedro dels
Quattre Battles (PQB) Mountains in northern spain, averaged per altzone and for the summits ± 1 se. 
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sh sw ah aw P w Factor
shell height (sh) 1.00 0.65 0.91 0.81 0.71 0.89 -0.95
shell width (sw) 1.00 0.77 0.79 0.85 0.39 -0.82
aperture height (ah) 1.00 0.90 0.75 0.71 -0.95
aperture width (aw) 1.00 0.77 0.60 -0.91
Protrusion (P) 1.00 0.51 -0.85
whorls (w) 1.00 -0.78
Factor 1.00

table 3. the correlation matrix with spearman rank R-values between the six measurements of A. secale
shells collected from CMB and PQB in northern spain. Because all correlations were significant at the p-
level of 0.001, a factor was calculated using Factor analyses. this factor explained 79.6% of all variance
and is included in the correlation matrix.
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effect ss degr. of
Freedom

F p
shell heightMountain Random 11.95 1.00 0.52 0.49transect Random 102.56 2.00 0.89 0.48altZone random 378.63 3.00 9.70 0.00mountain*transect*altZone random 103.57 9.00 37.14 0.00error 93.89 303.00shell widthMountain Random 0.05 1.00 0.05 0.82transect Random 4.62 2.00 2.70 0.14altzone Random 4.08 3.00 2.72 0.11mountain*transect*altZone random 3.98 9.00 29.18 0.00error 4.59 303.00aperture heightMountain Random 0.42 1.00 0.23 0.64transect Random 9.23 2.00 1.27 0.37altZone random 23.43 3.00 8.60 0.01mountain*transect*altZone random 7.22 9.00 36.20 0.00error 6.72 303.00aperture widthMountain Random 0.15 1.00 0.22 0.65transect Random 2.71 2.00 1.42 0.32altZone random 5.32 3.00 4.42 0.04mountain*transect*altZone random 3.20 9.00 28.26 0.00error 3.81 303.00ProtrusionMountain Random 4.68 1.00 2.72 0.13transect Random 4.39 2.00 0.84 0.48altzone Random 14.14 3.00 3.89 0.05mountain*transect*altZone random 9.62 9.00 50.66 0.00error 6.39 303.00whorlsMountain Random 8.76 1.00 1.09 0.33transect Random 41.61 2.00 1.00 0.44altZone random 138.84 3.00 11.07 0.00mountain*transect*altZone random 33.38 9.00 18.28 0.00error 61.48 303.00FactorMountain Random 8.75 1.00 0.66 0.44transect Random 57.34 2.00 1.15 0.39altZone random 153.98 3.00 6.83 0.01mountain*transect*altZone random 59.73 9.00 52.63 0.00error 38.21 303.00

table 4. Results from the general linear Models to test the effects of altitude on six measurements of a.
secale shells collected from two mountains in northern spain, with the factor that explained 79.6% of the
variation among these variables. type i hierarchical variance reduction was used with “Mountain”
entered first, followed by “transect”, “altzone” and the interaction effect between these categorical pre-
dictors.
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spearman Rank correlations. subsequently, factor analyses were used to combineinter-correlated variables into a single factor. this factor represents a certain amount ofthe variability of the data. to test for the effect of altitude on each of the morphologicalmeasurements and factor, general linear Models (glMs) with type i hierarchicalvariance reduction were used. the categorical predictor “Mountain” was tested first,followed by “transect” and “altzone”. in addition, the interaction effect between thesethree categorical predictors was included (“Mountain”*“transect”*“altzone”) to testwhether effects of altitude differed between transects and mountains. to quantify thewidth of morphological variation within altitudinal zones, the Coefficient of variation(Cov), i.e. the standard deviation divided by the mean, was calculated for each of thesix measurements. the relation between altitude and Cov was tested with one-wayanova’s. all analyses were carried out using statistica 6.0 (©statsoft).
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results
in total 372 shells were measured (table 2). the measured characters were signif-icantly correlated at the p<0.001 level (table 3). Because of this correlation betweenthe six measured characters it was decided to calculate a factor. this factor explains79.6% of all variation in the data and was negatively correlated to each of the 6measurements (table 3).except for shell width and protrusion of the aperture, all measurements weresignificantly correlated with altitude (table 4), with the largest values in the valleysand the smallest at the highest localities (i.e. fig. 2). however, for all measurementsthere was a significant interaction effect between the three categorical predictors(i.e. mountain, transect and altitude zone) in that the differences were largest between the two subspecies (A. secale margaridae and A. secale lilietensis) at the foot 
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of the Pedro dels Quattre Battles. Between 2,200 and 2,500 m altitude (altzone 4),and between the two summits, none of the measurements differed significantly.Moreover, there were no differences in measurements of the shells collected fromthe summits at the two mountains. the Coefficient of variation (Cov) did not differbetween the altitudinal zones (table 5), i.e. there is no difference in the variability ofthe measured characters between the altitudinal zones.samples taken from the summits of both the Pedro dels Quattre Battles and theComabona together differed significantly from the samples from the other 5 moun-tains (fig. 3). there we see that the samples from the alt de la Capa (andorra),Pedraforca (spain) and tournon (France) do not differ significantly (in the meas-ured characters), and neither do those from the Port del Comte and torre del Cadí(spain).
discussion

we observed a strong convergence between the measurements of the samplesfrom altzone 3 (i.e. between 1,701 – 2,200 m alt.) in transects 1 and 2 on the Pedro dels Quattre Battles (fig. 2). this might be explained by the presence of the Coll de Pal, just east of the summit. this mountain pass, situated at c. 2,100 m altitude, mayenable contact, i.e. gene flow, between the two series of populations from the northand the south flank of the mountain. this might explain the rapid morphologicalconvergence between both transects at such relatively low altitude as compared tothe Comabona mtn. the Cov, used to compare morphological variability across altitudinal zones,does not support a scenario with increasing altitude as an increasingly strong selec-tive force acting on shell morphology. it is evident that altitude influences shell mor-phology in these snails. shell height, aperture height and width and the number ofwhorls all decrease with increasing altitude. however, selection appears to berelaxed. the variation width (in the measured characters) does not decrease withincreasing altitude, as would be expected if increasing altitude would increase selec-tive pressure. this absence of strict selection might explain the absence of a signifi-cant correlation between altitude and shell height as was demonstrated by uribe et 
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F(4-11) p
shell height 1.02 0.44
shell width 2.29 0.12
aperture height 1.27 0.34
aperture width 1.95 0.17
Protrusion 2.28 0.13
whorls 0.71 0.60

table 5. anova results to test for the effects of altzone
on the value of the Coefficient of variation for each of the
six measurements of shells collected on the Comabona
and Pedro dels Quattre Battles  Mts in northern spain. 
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al. (2007). our data support a significant correlation between the measurements andthe altitudinal zones. our sampling points are rather far apart (altitudinally, notgeographically, table 1). in the study by uribe et al. the sampling points are muchcloser together. Because other factors than altitude, like differences in microhabitat and genetic determination as well as random variation, will strongly influence shellshape in local populations (i.e. Kokshoorn & gittenberger [Chapter 8, p. 123]), thiswill be of more influence on the statistical results when the samples are taken atclose proximity. we know from the fossil record that Abida secale secale was already present in cen-tral europe about 60,000 years bp (Moine et al, 2005). however, the presence of thespecies at high altitudes in the alps is most likely of holocene origin. we assume
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Figure 4. Maximum extent of glaciers (white) during the last glacial Maximum. 
Map data derived from ehlers & gibbard, 2004. the map has no projection.
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that if A. secale would have survived the extensive glaciations of the last glacialMaximum (lgM: c. 18,000 years ago) amidst the ice on nunataks in the alps, thisshould have left morphological traces. however, there is hardly any morphologicalvariation (beside size differences) between populations at the foot of the mountainsand those on the summits. the situation in the central Pyrenees is not comparableto that in the alps. in the Pyrenees, and especially in the pre-Pyrenees like the sierradel Cadí, the glacier extent was limited (ehlers & gibbard, 2004) (fig. 4). allthoughit is unlikely that a suitable habitat would continuously have been available at high altitudes in the Cadí/Moixero mountains during the lgM (hartevelt, 1970: 232),there could still have been a reasonable amount of altitudinal variation in habitat.Climatic conditions that now apply to the habitat of A. secale above 2,000 m altitude,would have been present at that time at much lower altitudes. even now climaticconditions are strongly influenced by the complex geology of the area. the shel-tered gresolet valley east of the Pedraforca for instance, harbours typical high-alti-tude species and forms (i.e. Pyrenaearia sp.) at a mere 1,600 m (pers. obs.). hence,there is no reason to accept that the high-altitude forms that we encounter at pres-ent in the centre of morphological diversity originated from lowland populationsonly after the lgM, as is most probably the case  in the alps. in the Pyrenees, thealtitudinal clines had more time to differentiate, as compared to the situation thealps. with more time being available, more conspicuous contrasts could develop.
what’s in a naMe? 

the value of infraspecific taxonomic ranks has been a point of discussion for along time. Many infraspecific ranks have been used, i.e. forma, natio, variety, race,etc. the more general use of the subspecies category came with the introduction ofMayr’s biological species concept (Mayr, 1942). its acceptance by the internationalCommission on zoological nomenclature (iCzn) in 1960 was instrumental in pro-liferating its use, despite strong opposition (i.e. wilson & Brown, 1957). Mayr (1942)defined subspecies as genetically distinct, geographically separate populations,belonging to the same species and, therefore, interbreeding freely in contact-zones(wilson & Brown, 1953). 
the original description of A. s. cadiensis was based on few samples.nevertheless, there was already material available from two different mountainranges. in the type series (gittenberger, 1973: 112) there are 4 shells from “Port deComte südlich vom tossa Pelada, 2100 m … (RMnh 54960)”. these are apparentlyfrom the sierra de Port del Comte, situated southwest of the sierra del Cadí, wherethe tossa Pelada is a peak of 2,373 m high, and not from the sierra del Cadí itself (aswas stated by gittenberger, 1973). so the original type series suggests a disjunct dis-tribution for A. s. cadiensis. the fact that the shells from the two mountain ranges dif-fer in size (fig. 3) and somewhat in general shell shape, was either overlooked orneglected. however, it does illustrate that these shells are very similar.
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with much more material from high altitudes available for study now, we could demonstrate that despite a more general similarity, there may be differences in themeasured characters between specimens from summits in different mountainranges (fig. 3). apart from that, shells from high altitudes in different mountainchains, even when not differing in size, differ from each other in other characters,like sculpture and/or general shape, apertural dentition and/or shape, which are notused in this study (Kokshoorn & gittenberger, [chapter 8, pp. 123-140]). this fact isillustrated, for instance, by the absence of significant differences in the measuredcharacters between the subspecies at the foot of the Comabona mtn. although A. s.
brongersmai (northern flank) and A. s. brauniopsis (southern flank) are clearly differ-ent in their morphology (i.e. Kokshoorn & gittenberger, [chapter 8, pp. 131-133, pls.4-5]), the measured characters do not show significant differences (fig. 2 and 3). these additional characters, which may be overlooked at first sight, stronglysuggest that the forms occurring at high altitudes in different mountain chains, havedifferent sister-group taxa in the valleys. this view is strongly supported by theintermediate populations that are known for several of the taxa that are here dis-cussed.there is clearly a geographical component in the distributional pattern of thehigh-altitude taxa. these taxa have different sister-groups and, as a consequence,their own unique evolutionary histories. therefore, classifying all of them as a sin-gle taxon cannot be an option, because that would result in an unnatural entity.uniting the high-altitude forms with their associated closest relatives in the valleyswould imply that extremely variable taxa are created, distributed from the valleysto the summits. the descriptions of these taxa would have to be broadened to suchan extent that they can hardly be differentiated anymore. More serious than thispractical problem, is the fact that doing so would imply that these geographicallyrestricted, genetically determined forms are neglected in zoological nomenclature,while they form a key aspect of the enigmatic centre of diversity in A. secale. a com-parable diversity in forms from high altitudes is found nowhere else in the largerange of A. secale. we therefore see no satisfying solution other than to introducefour new subspecific taxa in A. secale (see chapter 8, pp. 134-140). this will bring thetotal number of subspecies in this species to 17, all but one restricted the extremesouth of the species’ distribution.
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