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Dendritic cell and macrophage subsets in the handling
of dying cells
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Department of Nephrology, Leiden University Medical Center, Leiden, the 
Netherlands

Summary

Dendritic cells and macrophages are major components of the phagocyte system 
and are professional antigen presenting cells. In the current review, we discuss the 
differential contribution of dendritic cell and macrophage subsets in the clearance 
of dying cells and the consequence of the process of these cells. We hypothesize 
that under steady-state conditions, the clearance of apoptotic cells is mostly 
confined to a specialized subset of phagocytes with anti-inflammatory properties. 

------ Immunobiology. 2006; 211(6-8): 567-575------
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Introduction

Phagocytes constantly remove excessive dying cells during normal homeostasis 
and tissue turnover. Since 1990, significant progress has been made in 
understanding the immunological meaning of clearance of dying cells 1-4. The 
underlying accepted paradigm is that apoptotic cells provide "eat me signals" to 
phagocytes to promptly and efficiently engulf apoptotic cells during the early stage 
of cell death, thus preventing them to release noxious substances in the local 
environment. In contrast, late apoptotic cells or necrotic cells might provide danger 
signals to activate antigen presenting cells (APCs), potentially breaking self-
tolerance 2,3. One of the well-established examples, both in mice 5,6 and men 7 of a 
disorder in which apoptotic cell clearance is disturbed is systemic lupus 
erythematosus (SLE) 8.

There are several checkpoints conceivable which together determine the 
immunological response towards the safe clearance of dying cells (Figure 1).  I.) 
The different modes of cell death might determine the fate of clearance. There are 
at least three major types of cell death: apoptosis, necrosis and autophagy 9, which 
exhibit distinct biochemical and morphological changes 9-11. Depending on the 
respective stimuli of death induction, these dying cells might determine phagocyte 
activation and antigen processing 12. II.) Opsonization of apoptotic cells by 
components of the innate immune system, such as complement factors and 
pentraxin family members, facilitates and modulates the clearance of apoptotic 
cells 13. III.) Finally, since the mononuclear phagocyte system is largely 
heterogeneous 14, the nature of phagocytes that phagocytose apoptotic cells might 
provide a defined immunological response (Fig. 1). 

The concept of differences of dying cells and the differential contribution of 
opsonins has been extensively reviewed 12,13,15-18. In the present review, we will 
concentrate on the differential contribution of phagocyte subsets, particularly 
subsets of dendritic cells (DCs) and macrophages (MØ) in the clearance of dying 
cells, as both cell types are professional phagocytes and APCs. Phagocyte subsets 
might be cells with intrinsic pro-inflammatory or anti-inflammatory characteristics. 
We suggest that the clearance of apoptotic cells is mostly confined to a specialized 
subset of phagocytes with anti-inflammatory properties.

DC subsets in the clearance of dying cells

DC subsets

Among the different phagocyte subsets, DCs are the most potent professional 
APCs 19. Being an important component of the innate immune system, DCs have 
been demonstrated in almost all peripheral organs and in lymphoid tissues 20. The 
heterogenity of DCs has been extensively studied. In mice, at least six DC subsets 
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have been described in lymph nodes, derived from two distinct pathways, myeloid 
and lymphoid 21. They are distinguished by surface markers such as CD11b, 
�������	
����������������������������	����	�21. 
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Figure 1. Three checkpoints determine the immunological response during clearance of 
dying cells. I.) The various modes of cell death such as apoptosis, (secondary) necrosis or 
autophagy, might determine the fate of dead cells. II.) Opsonization of apoptotic cells by 
components of the innate immune system, such as complement factors and pentraxin family 
members, facilitates and modulates the clearance of apoptotic cells. III.) The type of phagocytes 
that take up apoptotic cells might provide a defined immunological response.

In contrast to well-studied mouse DCs, human DCs have been studied to a 
relatively lesser degree. Blood is the only readily available source and at least 
three subtypes of blood-driven DCs have been characterized: Langerhans DCs 
(LDCs), interstitial DCs (iDCs) and plasmacytoid DCs (pDCs) 21. Most of the 
insights into human DC subsets are derived from in vitro studies, following the 
identification of DC precursors, i.e., CD34+ cells from umbilical cord blood or bone 
marrow, blood monocytes, and plasmacytoid precursors from blood. Migration into 
non-lymphoid organs, for example the interstitium of peripheral organs, induces 
differentiation of DC precursors into resident tissue DCs 22. One of the 
characteristics of resident DCs is that they are able to capture self (such as cellular 
debris) and foreign (such as microbial pathogens) antigens by several mechanisms 
20. The maturation status of DCs after antigen-capture determines whether they 
prime T cells or induce immune tolerance 23. Taken together, in vitro and in vivo
studies clearly indicate that DCs play a pivotal role in both innate and adaptive 
immunity. 
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Clearance of dying cells by DCs

Although heterogeneous populations of DCs have been described in mice and 
humans (as discussed above), relatively few studies have addressed the question 
whether DC subsets contribute differentially to the uptake of dying cells. Most of 
the available studies have investigated dying cell clearance by DCs either using 
immature monocyte-derived DCs (iMoDCs) in humans 24-26 or splenic CD8+ DCs 
27,28 or BM CD11c+ DCs  29 in mice. These data show that DC subsets from 
different sources can phagocytose dying cells. However, it has been suggested 
that phagocytosis of dying cells by DCs is restricted to certain types of DCs. For 
example, although both CD8+ and CD8- DCs phagocytose latex particles in culture 
and both DC subsets present soluble ovalbumin captured in vivo, only CD8+ DC is 
specialized in the phagocytosis of dying cells 28. Another in vitro study compared 
the subsets of splenic CD8 DCs and found that splenic CD8�+ DC are superior to 
other DC subsets in internalizing dying cells 30.

Also human DC subsets exhibit differential capacities to phagocytose dying cells. A 
recent study compared side-by-side the phagocytic capacity among three human 
DC subsets: CD11c+ DCs, iMoDCs and pDCs, and found that iMoDCs are three 
times better in the phagocytosis of apoptotic cells than CD11c+ DCs, whereas 
pDCs were hardly able to take up apoptotic cells 31. This suggests that the uptake 
of dead material is probably confined to myeloid subsets of DCs. 

Consequence of uptake by DCs

Apoptotic cells are a rich source of autoantigens 32. Upon uptake, DCs acquire 
antigens from apoptotic cells and (cross-)present these antigens to class I- or class 
II-restricted T cells 25,33,34. It remains controversial whether apoptotic cells indeed 
induce maturation of DCs and whether they stimulate or tolerize T cells. It has been 
shown that necrotic cells or late apoptotic cells, but not (early) apoptotic cells 
trigger DC maturation 35,36. However, others showed that bystander or excessive 
apoptotic cells induce maturation of DCs, and present antigens in the absence of 
exogenous danger signals 24,34. It should be realized that these studies have made 
use of different sources of DCs, including PBMC 35,36 or D1 cell lines 24,34. Similarly, 
various apoptotic targets are used in different studies, such as Jurkat T cells 36, 293 
cell lines 35 and OVA-RMA cells 24,34. Thus different cells used in the studies might 
explain the substantial difference in the consequence of uptake of apoptotic cells 
by DCs.

Whether uptake of apoptotic cells leads to DC activation in the context of pro- or
anti-inflammatory conditions is also depending on how the death stimuli are applied 
12. Several studies have shown that apoptosis triggered via death receptors could 
release bio-active lipids such as sphingosine-1-phosphate (S1P) 37, or 
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lysophosphatidylcholine (LPC) 38. These agents signal through endothelial-derived 
G-protein-coupled (EDG) receptors and these receptors are known to signal 
through nuclear factor-�B (NF-�B), leading to a pro-inflammatory response 12.

To validate the immune regulatory role of apoptotic cells, also in vivo studies have 
been performed. Mouse CD8+ DC were shown to actively capture apoptotic cells 
and induce immune tolerance 27,28. These findings are supported by another in vivo 
study showing that a subset of rat DCs, CD4-/OX41- DCs, constitutively 
endocytoses and transports apoptotic cells to the T cell areas of mesenteric lymph 
nodes 39, suggesting that DCs carrying apoptotic material can silence T cells 
against self-antigens 40. 

If under normal conditions, apoptotic cell removal by DCs is an immunologically 
silent process, the question remains how apoptotic cell-loaded DCs break 
peripheral tolerance, as observed in SLE. One possibility is that when early 
apoptotic cells are not removed promptly, the remaining cells might become late 
apoptotic (or secondary necrotic), thus converting immune tolerance to 
autoimmunity. In lupus-prone mice, only DCs loaded with necrotic cells, but not 
apoptotic cells, induce lupus-like disease 29, suggesting that the intracellular 
contents released from necrotic cells provide additional danger signals and lead to 
activation of DCs. A second possibility is that the presentation of autoantigens 
derived from apoptotic cells by DCs to T cells could be triggered by the presence of 
ligands for TLRs. A very recent paper showed that only DCs captured apoptotic 
cells in the presence of TLR4 triggering by LPS could present antigens to CD4 T 
cells and induce IL-2 production 41. However, simultaneous phagocytosis of
apoptotic cells and microbial pathogens does result in DC maturation, but under 
these conditions only antigens from bacteria, but not the ones from apoptotic cells, 
were presented to CD4 T cells 41. Thus extra danger signals provided by TLR 
ligands could make a substantial contribution in the initiation of autoimmunity by 
apoptotic cell-loaded DCs.

Another possible explanation could be that one specialized DC subset contributes 
exclusively to initiate autoimmunity. Recently, much attention has focused on 
understanding of how DNAs and RNAs containing autoantigens, that are derived 
from dying cells, activate DCs in the setting of SLE. Although a previous study 
showed that in vitro pDCs do not take up apoptotic cells 31, they do take up immune 
complexes (ICs) containing DNAs 42. It was shown that ICs derived from patients 
with SLE , upon intracellular delivery via CD32, were able to activate pDCs through 
toll like receptor 9 (TLR9) 42. This observation was extended in another study 
showing that small nuclear RNAs within ribonucleoprotein particles activate pDCs 
through TLR7 43, suggesting a link between pDCs and autoimmmunity to both 
DNA- and RNA-containing autoantigens. These data have provided novel insights 
in the mechanisms of loss of peripheral tolerance to autoantigens in SLE. The 
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suggestion that SLE is a pDC-driven disease seems to be confirmed by the 
identification of IFN-� as an important pathogenic factor 44,45. 

MØ subsets in the clearance of dying cells

MØ subsets

It has been proposed that at least two types of MØ exist in vivo: resident (tissue) 
MØ and inflammatory elicited MØ 46. Most resident MØ are derived from circulating 
bone marrow-derived monocytes. Human and mouse studies have indicated that a 
large heterogeneity exists in MØ populations in lymphoid organs and non-lymphoid 
organs such as the lung (alveolar MØ), liver (Kupffer cells), spleen (white and red 
pulp MØ), peritoneum (peritoneal MØ) and nervous system (microglia) 46,47. These 
MØ subsets are phenotypically and functionally different, but all of them play broad 
roles in tissue remodeling and homeostasis 48. Depending on the cytokine 
environment, MØ can be activated classically (IFN-�) or alternatively (IL-4 and IL-
13), as reviewed elsewhere 49,50. Similarly, in mice these subsets have been 
defined as type 1- (i.e., classically activated) or type 2- (i.e., alternatively activated) 
activated MØ 51, which are characterized as pro-inflammatory and anti-
inflammatory cells, respectively. However, it is not yet fully defined whether 
resident MØ are anti-inflammatory.

The growth and differentiation of MØ depends on lineage-determining cytokines 
such as granulocyte/macrophage colony-stimulating factors (GM-CSF) and M-CSF 
(also termed CSF-1) 50,52. Mice lacking M-CSF develop a general MØ deficiency 53, 
whereas GM-CSF-knockout mice have no major deficiency of MØ 54,55. Importantly, 
in humans, M-CSF, but not GM-CSF, is a ubiquitous cytokine circulating in the 
human body 56,57. Therefore, it is likely that M-CSF is the default cytokine to drive 
MØ differentiation under steady-state conditions.

Recently it has been shown that human MØ can be polarized in vitro into pro-
inflammatory (MØ1) and anti-inflammatory cells (MØ2) by GM-CSF and M-CSF, 
respectively 57-59. GM-CSF-driven MØ1 are characterized by high production of pro-
inflammatory cytokines such as IL-6, IL-12 and IL-23, whereas M-CSF-driven MØ2 
are characterized by high production of IL-10 in the absence of pro-inflammatory 
cytokines.  It should be noted that  M-CSF-driven MØ2 do not completely resemble
alternatively activated MØ or type 2-activated MØ with respect to their surface 
marker expression and cytokine production 50,60. For example, alternative activated 
MØ showed increased expression of mannose receptors (MR) 50, and type 2-
activated MØ secrete TNF-� upon stimulation 60. However, in the case of M-CSF-
driven MØ2, low MR expression was found and these cells fail to secrete TNF-�
59,61. Since MØ2 express the unique surface marker CD163 61, it is tempting to 
speculate that MØ2 reflect CD163+ highly phagocytic resident MØ in vivo 62. 
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Clearance of dying cells by MØ subsets 

The role of MØ in the uptake of apoptotic cells has been studied extensively. In 
mice, among various MØ subsets, bone marrow-derived MØ 63,64 and peritoneal 
MØ 65-68 have been widely used. Recently, also microglia 69 and liver macrophages 
70,71 have been investigated for their roles in the apoptotic cell removal, suggesting 
that tissue MØ are active in the removal of dying cells in various anatomical 
locations. Besides tissue MØ, murine MØ cell lines 72-74 are also able to actively 
phagocytose apoptotic cells. The data above clearly show that various MØ subsets 
actively recognize and ingest cells that underwent apoptosis. 

In human system, most studies were carried out in vitro by using peripheral blood 
monocyte-derived MØ, differentiated in the presence of GM-CSF 75, M-CSF 76, or in 
the absence of growth factors 77-80. These MØ can be activated by various factors. 
For example, activation of MØ by glucocorticoid augments phagocytosis of 
apoptotic cells 81,82.  Similarly, IL-10-activated MØ show an enhanced capacity for 
the uptake of apoptotic cells 83. These data indicate that the micro-environment 
influences the differentiation process of MØ and thereby modifies their functions as 
well. 

Recently, we compared the capacities for the uptake of apoptotic cells among three 
types of phagocytes iMoDCs, MØ1, and MØ2 generated from the same monocyte 
population, and found that MØ2 have the unique capacity to preferentially take up 
early apoptotic cells 59. We found that MØ2 have the capacity to take up early 
apoptotic cells more efficiently than late apoptotic or necrotic cells (four fold 
increase), and that this uptake was superior compared to that of MØ1 and iMoDCs. 
Thus we hypothesize that under steady-state conditions, scavenging of apoptotic 
cells is largely confined to a specialized subset of phagocytes with anti-
inflammatory properties. Other subsets of phagocytes might act as backups, or 
even be more involved in the resolution of inflammation and /or immune regulation. 
We propose that in the case of MØ, the anti-inflammatory MØ2 are the default 
phagocytes that take up early apoptotic cells in a silent manner, whereas excessive 
apoptotic cells progress to a late stage of cell death and might provide "eat me 
signals" to the non-resting phagocytes such as the pro-inflammatory MØ1. In the 
latter case, appropriate opsonization may determine the consequence of the 
uptake (Fig. 2). It is important to note that most opsonins, including C1q, MBL, 
PTX3 and SAP, preferentially bind to late apoptotic cells 13.

Consequence of uptake by MØ

A substantial number of in vitro studies have shown that MØ that have ingested 
apoptotic cells are inhibited in their production of pro-inflammatory cytokines 
63,65,74,79, consistent with the prevailing believe that apoptotic cells are removed by 
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MØ in a silent manner. Since both pro-inflammatory and anti-inflammatory MØ 
exist, a relevant question is then: do they respond to apoptotic cells in different 
ways? Our studies showed that upon ingestion of apoptotic cells, pro-inflammatory 
MØ1 down-regulate the production of pro-inflammatory cytokines, whereas anti-
inflammatory MØ2 retain high level of IL-10 production in the absence of pro-
inflammatory cytokines 59.

MØ2

anti-inflammatory

Peripheral tolerance

early 
apoptoticviable

late 
apoptotic

Autoimmunity

+ opsonins

pro-inflammatory

MØ1

Figure 2. Apoptotic cell uptake by MØ subsets. We propose that concerning MØ, at least two 
subtypes exist, i.e., the pro-inflammatory MØ1 and the anti-inflammatory MØ2. MØ2 preferentially 
bind and ingest early apoptotic cells in a non-inflammatory fashion. Excessive apoptotic cells 
progress to a late stage of cell death and might provide "eat me signals" to the non-resting 
phagocytes such as pro-inflammatory MØ1. In this case, appropriate opsonization of apoptotic 
cells may determine the consequence of the uptake.

Similar to DCs, not only apoptotic cells, but also necrotic cells are taken up by MØ 
84,85. Like for apoptotic cells, several studies have addressed the question whether 
necrotic cells activate MØ to trigger immunity. It has been shown that phagocytosis 
of necrotic cells by MØ does not induce inflammation 84,85. However, these findings 
were challenged in a recent publication showing that exposure of  MØ to early and 
late apoptotic cells induces identical signal transduction in these cells in terms of 
inhibition of ERK 1/2 and induction of JNK and P38, whereas necrotic cells induced 
an opposite signal transduction 86. Taken together, these data provide an 
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ambiguous image on whether necrotic cells are much more dangerous than 
apoptotic cells. Further studies will be required to understand the interaction of MØ 
with the intracellular contents released from necrotic cells such as HSP 87, HMGB1 
88 and uric acid 89. 

Like DCs, MØ are also professional APCs 47. It would be of interest to investigate 
how these intracellular molecules modulate MØ function including the presentation 
of autoantigens. Indeed, most available studies have not investigated the role of 
dying cell-derived antigen presentation on MØ. It has been suggested that MØ fail
to cross-present antigenic material contained within the engulfed apoptotic cells 33. 
In contrast to DCs that can retain antigen for at least 2 days 90, MØ robustly 
degrade the ingested antigens, and therefore may fail to promote T cell priming 91. 
Thus it remains to be investigated how MØ process antigens derived from dying 
cells and subsequently present these to Class I- or II-restricted T cells.

Concluding remarks

As discussed so far, there are different professional phagocyte subsets that are 
actively involved in the clearance of dying cells. Presumably, also neighboring non-
professional phagocytes might actively participate in the removal of dying cells. 
Therefore, especially under steady-state conditions, the fate of dying cells will 
ultimately be determined by local conditions and the composition of the tissue. 
Excessive apoptosis leads to the release of intracellular signals and therefore alert 
the immune system in various aspects. Again, the local environment will determine 
1) the composition of attracted phagocytes; 2) the presence of innate molecules 
that help in opsonization and clearance; or 3) presence of TLR ligands that might 
activate immunity. The sole presence of high amounts of apoptotic cells as a 
consequence in deficiencies in clearance, as shown in CD14-/- mice 92 or C1q-/-
mice 5 on a non-autoimmune background, does not always lead to a break of 
immunological tolerance. In vivo dissection of phagocyte subsets with distinct 
functional properties will be of particular importance to understand how the 
clearance of apoptotic cells by phagocytes is regulated and how this may lead to
induction or loss of peripheral tolerance.
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