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An introduction to renal cell injury and regeneration

Acute renal failure (ARF) is a rapid loss of renal function due to damage to the kidneys 
resulting from drug or toxicant exposure or renal ischemia/reperfusion. The regenera-
tive capacity of the kidney is well documented and acute renal failure may be reversible 
with complete recovery of renal function. However, half of the patients do not respond 
to current therapies 1,2 and develop chronic renal failure and/or end-stage renal disease, a 
prognosis that has not changed over the past years 3. These patients will require a lifelong 
dialysis or a kidney transplant in order to survive. To prevent the onset of ARF or improve 
the regenerative capacitiy of the kidney we need to understand on the one hand which 
events or factors cause renal cell injury and death, and on the other hand which mecha-
nisms lead to renal cell repair and regeneration. 

The observation that patients suffering from ARF have increased numbers of viable 
renal tubular cells in their urine indicates the importance of renal cell adhesion in the 
maintenance of tubular integrity and the involvement of cell adhesion in the onset of 
renal injury 4. In addition, surviving renal cells that do not lose their cell adhesion are 
thought to contribute to the regeneration of renal function via proliferation and migra-
tion, suggesting an important role for cell adhesion in the regeneration of the kidney. This 
chapter will describe renal physiology and morphology in relation to renal injury and the 
changes that occur during renal injury and regeneration in cell adhesion structures of 
renal epithelial cells. 

Renal morphology and physiology 
Kidneys are responsible for preserving the body’s internal environment. They maintain 
the total body salt, water, potassium and acid-base balance, while excreting toxins and 
other waste products. There are three mechanisms by which the kidneys accomplish the 
homeostasis in the internal environment, namely glomerular filtration, tubular reabsorp-
tion, and tubular excretion. The kidney can be divided into three segments: cortex, outer 
medulla and inner medulla (Fig. 1). Each human kidney consists of about a million neph-
rons, which stretch through these different parts of the kidney. In turn, one single neph-
ron consists of several subunits, among which, the glomerulus, proximal tubule, distal 
tubule and the collecting duct, which all have their own specific transport property (Fig. 
1). The renal tubule and collecting duct are composed of a single layer of cells surround-
ing a tubular lumen. The cell structure and function varies considerably from one seg-
ment to another, but each of them contributes to the transport function of the kidney. As 
a result of this transport function, cells within the different segments of the nephron may 
be extensively exposed to various toxins. The epithelial cells lining the proximal tubule 
are considered to be the major target for cellular injury, because of the reabsorption of 
large fluid volumes (including toxicants) and the high activity of several enzymes within 
these cells.

Renal cell injury is caused by ischemia and reperfusion (IR), exposure to neph-
rotoxic drugs, such as cisplatin, gentamicin and cyclosporine or exposure to toxicants, 
such as cysteine S-conjugates resulting in many cases in ARF. Renal proximal tubular 
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epithelial (RPTE) cell injury is characterized by adenosine triphosphate (ATP) depletion, 
mitochondrial dysfunction, impaired solute and ion transport, loss of brush border mor-
phology, loss of cell polarity and cytoskeletal disruption 5,6. Proximal tubular cells may 
loose their interaction to the basement membrane, leaving a denuded proximal tubule 
and causing cast formation in the tubular lumen (Fig. 2). Denudation of the basement 
membrane causes an increased back-leak of glomerular filtrate 7,8. Together with tubular 
obstruction caused by detached cells, this will lead to impaired renal function. The find-
ing that up to 100% of exfoliated tubular cells found in the urine of ARF patients were vi-
able shows that exfoliation does not necessarily results in cell death 4.  However, when in-
jury is too severe, irreversible cell injury occurs, which results in cell death. Two different 
types of cell death have been distinguished in ARF: necrosis and apoptosis 9,10. Necrosis is 
characterized by swelling of the cell and organelles, with little changes in the nucleus and 
occurs in response to very harmful conditions. Apoptosis is a form of programmed cell 
death, which is characterized by cell shrinkage and condensation of nuclear chromatin 
resulting in formation of apoptotic bodies. These are rapidly removed via phagocytosis 
making it difficult to evaluate the importance of apoptosis in renal injury. Nevertheless, 
more and more evidence is obtained indicating that pathways generally associated with 
apoptosis, are important in renal tubular injury 11. It is likely that the cascades that lead 
to apoptotic or necrotic cell death are activated almost simultaneously. However, during 
toxicant exposure the initiation of apoptosis may occur at exposure levels that are less 
severe than that needed to induce necrosis. RPTE cells that do not die or detach from 
the basement membrane are thought to contribute to renal regeneration 12. These surviv-
ing cells migrate to the denuded areas, proliferate, re-polarize and/or dedifferentiate, and 
restore nephron structure and function 12,13.  Given the importance of cell adhesion in the 
process of renal injury (Fig. 2) this chapter will focus on the cell adhesion structures of 
renal proximal tubular epithelial cells in the context of molecular mechanisms of renal 
tissue injury.

Figure 1. Schematic repre-
sentation of the kidney and 
nephron. The kidney con-
sists of a papilla, inner- 
and outer medulla and the 
cortex (A). Each kidney 
consists of about a mil-
lion nephrons (B), which 
contain, the glomerulus, 
proximal tubule, descend-
ing and ascending thin 
limb, distal tubule and the 
collecting duct.
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Adhesion molecules and the actin cytoskeleton in renal cell function
Tubular cell adhesion is established through cell attachment to the basement membrane 
via cell-extra-cellular matrix (ECM) interaction and to neighboring cells via cell-cell ad-
hesion complexes (Fig. 2). These two adhesions are important in the maintenance of cell 
polarity 14. Both the cell-ECM and cell-cell adhesion complexes are linked to the F-actin 
cytoskeleton through cytoskeletal/signalling adapter proteins (Fig. 3). In addition, the cell 
surface that contacts the fluid in the tubular lumen (apical cell membrane) has numerous 
F-actin rich microvilli, which collectively are called the brush border. These microvilli 
greatly increase the membrane surface area, thereby facilitating transfer of compounds 
between cells and the tubular fluid. 

Cell-ECM adhesion complexes
Like other cell types RPTE cells require adhesion to the basement membrane for nor-
mal function. This adhesion is mediated by cellular integrins, which are heterodimeric 
transmembrane proteins consisting of an a and b subunit (Fig. 4A). Upon binding to 
the ECM, integrins cluster. Upon clustering, the cytoplasmic domain of integrins will 
become part of a large complex of signalling- and cytoskeletal-related proteins, together 
forming a specialized structure commonly referred to as focal adhesions (FAs) or focal 
contacts. These FAs mediate cell attachment to the ECM and serve as anchor points for 
actin filament tethering and remodeling. The FA complex consists of several cytosolic 
proteins, including talin, vinculin, paxillin and the non-receptor tyrosine kinase, focal 
adhesion kinase (FAK). The composition of the FAs and the cellular signalling in these 
complexes is mainly regulated via protein phosphorylation .

Upon binding of FAK to the integrins it is autophosphorylated on Tyr397, thereby 
creating a binding site for the SH2 domain of Src kinase 15 (Fig. 4A). This interaction 
results in activation of Src kinase by phosphorylation of Tyr416. Activated Src kinase 
will then phosphorylate FAK at multiple Tyr residues, among which are Tyr576, thereby 
enhancing FAK catalytic activity, and Tyr861, thereby creating additional interaction sites 
for SH2-containing proteins 16,17.  The FAK-Src complex is able to mediate phosphoryla-
tion of downstream targets such as the signalling adapter protein paxillin 18. Moreover, 
stimulation of RPTE cells with growth factors, such as hepatocyte growth factor (HGF) 
or epidermal growth factor (EGF) enhance phosphorylation of FAK, thereby stimulating 
signalling through focal adhesions 19. In contrast, loss of integrin-based cell-ECM inter-
action results in dephosphorylation of FAK 20, which plays a role in renal cell injury.

Cell-cell adhesion complexes
In addition to cell-ECM interactions, renal epithelial cells form multiple cell-cell adhe-
sions. These cell-cell interactions consist of adherens junctions (AJ) and tight junctions 
(TJ) of which the AJ are better understood (Fig. 4B). The AJs are primarily composed of 
a family of transmembrane proteins called cadherins (e.g. epithelial E-cadherin, neural 
N-cadherin, placental P-cadherin and kidney K-cadherin) 21,22. Cadherins have a single 
transmembrane-spanning region, an extracellular domain and an intracellular domain. 
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The extracellular part of a cadherin protein binds to the extracellular domain of a cad-
herin protein from an adjacent cell, thereby linking two cells in a zipper-like way 23. At the 
intracellular surface, cadherins interact with the actin cytoskeleton via catenins (e.g. a-
catenin, b-catenin, plakoglobin and p120 catenin). Within this complex, b-catenin binds 
directly to the F-actin cytoskeleton, which is required for formation of cell-cell junctions 
24. b-catenin forms a link between cadherin molecules and a-catenin. The stability of AJs 
is, amongst others, regulated via tyrosine phosphorylation of cadherin and catenin pro-
teins. For example, expression of an inducible Src kinase in madin darby canine kidney 
(MDCK) cells results in phosphorylation of b-catenin and E-cadherin, which is associ-
ated with disassembly of the AJs 25. Loss of cell-cell junctions via disruption of the cad-
herin/catenin complex results in loss of adhesiveness, which leads to RPTE cell detach-
ment and in the end loss of renal tubular function 7,8. 

F-actin cytoskeleton in cell adhesion
The F-actin cytoskeletal network plays an important role in many cellular processes and 
functions, such as cell motility, contraction, changes in cell shape and rigidity, cell divi-
sion and signal transduction. Most processes that are regulated by the F-actin network 
depend on precise polarization and actin assembly and disassembly cycles 26. The actin 
network is able to actively remodel to respond to external stimuli, such as growth factors, 
and to participate in regional events within a cell. For example, in cell movement the ini-
tial event is the formation of cell protrusions, such as filopodia or lamellipodia 27. These 
structures are rich in F-actin and actin-binding proteins. The formation of lamellipodia 
is regulated by dissolution of the existing actin filament network and generation of a new 
actin cytoskeleton. In collaboration with actin-binding proteins, such as gelsolin, arp 2/3 
complex and cofilin, actin filaments mediate the actin-dependent cellular processes. 

Actin filaments are arranged into “higher order” forms, including the cortical actin 
network (actin gel), stress fibers (loose nonparallel bundles), and tight parallel bundles 
like those observed in the microvilli of renal epithelial cells 28. Filamentous (F)-actin is 
build using G-actin monomers as building blocks (Fig. 5). During polymerization G-
actin binds to ATP and is added to the barbed end of an existing filament where ATP 
is rapidly hydrolyzed. The polymerization of actin is catalyzed by the Arp 2/3 complex, 
which acts together with cortactin, downstream of a variety of receptors and signalling 
cascades. Disassembly of actin filaments (depolymerization) occurs primarily by disso-
ciation at the pointed end, releasing G-actin bound to adenosine diphosphate (GDP) 28,29. 
Together the actin filaments form a tightly regulated F-actin network, which controls 
proper RPTE cell function.  

Several protein (complexes) are known to regulate the F-actin network, including 
the family of Rho GTPases 30. Rac, Cdc42 and Rho are Rho-GTPases that regulate the 
formation of stress fibers, lamellipodia, and filopodia. Furthermore Rho GTPases have 
an important role in the regulation of cell adhesion, motility, polarity and intercellular 
adhesion 31.  Activated Rho-GTPases exist in a GTP-bound state, whereas inactive Rho-
GTPases are bound to GDP 32 (Fig. 3). Rho-kinase, the downstream effector of Rho sig-
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nalling is involved in the activation/phosphorylation of myosin light chain (MLC) and 
inactivation/phosphorylation of cofilin, which subsequently modulate stress fiber forma-
tion and assembly 33. The formation of renal tubules is regulated by Rho-kinase, but oc-
curs independent of MLC kinase activity 34,35. In addition, ischemia/reperfusion-induced 
cytoskeletal reorganization is associated with up-regulation of both Rac and RhoA ex-
pression 36. The precise role of Rho-GTPases in renal cell injury remains elusive. 

Figure 2. Diagram of morphological changes occurring in the proximal tubulus during injury and 
regeneration. Proximal tubular cells exposed to ischemia/reperfusion or nephro-toxicants undergo 
disruption of the F-actin cytoskeletal network, resulting in loss of brush border morphology, cell-
ECM and cell-cell adhesion. Irreversible cell injury results in the onset of cell death via necrosis or 
apoptosis. During the regeneration phase, cells migrate, spread and proliferate to fill the denuded 
areas and regain normal kidney function. When severely damaged, the kidney will not be able to 
regenerate and chronic renal injury is obtained.
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Induction of renal cell injury
Renal cell injury is mostly due to ischemia or exposure to toxicants that directly affect 
the kidney. These so-called nephrotoxicants include therapeutic agents such as antibiot-
ics (e.g. gentamycin, cyclosporine), radiocontrast agents (e.g. iodothalmates and diatri-
zoates) and chemotherapeutics (e.g. cisplatin), or chemicals, such as halogenated cysteine 
S-conjugates. Damage to the proximal tubule resulting from ischemia reperfusion is se-
lective to the S3-segment in the outer medulla region, whereas the site of proximal tu-
bular injury caused by nephrotoxicants is dependent on the physico-chemical properties 
of the toxicant and the specific transport system needed for its uptake in the cells. In this 
thesis we have used two models to study the mechanism underlying the reorganization 
of renal cell adhesion and the F-actin cytoskeleton during renal cell injury. These include 
ATP-depletion due to ischemia-reperfusion and exposure to the model nephrotoxicant 
S-(1,2-dichlorovinyl)-L-cysteine (DCVC).  

Ischemia-reperfusion-induced renal injury
IR-induced renal cell injury develops following a sudden drop in total or regional blood 
flow to the kidney 37 followed by a restoration of the blood flow during the reperfusion 
period.  In organ transplantation IR results in damage that may affect cell viability and 
lead to organ failure. IR involves a complex cascade of events, including loss of ATP, de-
rangement of the ionic homeostasis, production of reactive oxygen species (ROS), and 
cell death. Mitochondria play an important role in this process, since they generate the 
cellular energy in the form of ATP 38. The absence of O

2
 as a result of ischemia, leads to 

a break down of ATP.  Reperfusion is characterized by an increase in the formation of 
ROS, a decrease in ATP production and cell death. Since the establishment and main-
tenance of the cell cytoskeletal and protein network is a dynamic and ATP dependent 
process, IR-induced ATP depletion rapidly results in changes in the actin cytoskeleton, 
loss of junctional complexes, and re-localization of cell adhesion proteins. IR injury and 
regeneration can be studied in vivo by clamping the renal artery of rats or mice for 30-45 
minutes followed by different reperfusion periods or in vitro by depleting cellular ATP 
using chemicals (e.g. antimycin A or cyanide combined or not with deoxyglucose) 5,39.

Chemical-induced renal cell injury
The transport function of the kidney enables it to excrete waist products from our body. 
But when our body is exposed to drugs or toxic compounds, the high blood flow to the 
kidney and its ability to concentrate solutes cause exposure of the kidney to high concen-
trations of these toxic compounds resulting in injury. As mentioned above, several classes 
of nephro-toxicants have been described. In this thesis we have used the non-enzymatic 
product of trichloroethylene, S-(1,2-dichlorovinyl)-L-cysteine (DCVC), which requires 
bio-activation in order for toxicity to occur 40,41. Thus, DCVC and other nephrotoxic cys-
teine S-conjugates kill cells after they are metabolized to reactive intermediates by a re-
nal cysteine S-conjugate b-lyase, which is present at high concentration in the proximal 
tubular cells 42. DCVC can therefore be used to selectively target RPTE cells and is often 
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used as a model compound to study the mechanisms underlying toxicant-induced renal 
cell injury both in vivo as well as in vitro. The reactive intermediates that are formed bind 
to cellular macromolecules (e.g. proteins and lipids), resulting in cellular toxicity. DCVC 
induces apoptosis in the renal proximal tubule cell line LLC-PK1 43 and in primary cul-
tured rat 44 or human proximal tubular cells 45 by a mitochondrial-dependent pathway. 
In addition, DCVC induces changes in the F-actin cytoskeletal network. In vivo DCVC 
induces loss of F-actin in the proximal tubulus, which is associated with loss of the brush 
border and loss of cells from the basement membrane 46. In vitro DCVC causes detach-
ment RPTE cells, which is associated with F-actin damage and changes in FAs  and pre-
cedes the onset of apoptosis 20,47.

Figure 3. Schematic representation of tubular cell adhesion. Tubular cell adhesion is mediated via 
cell-extra-cellular matrix (ECM) interaction and via cell-cell adhesion complexes. Both complexes 
are linked to the F-actin cytoskeletal network. The apical cell surface contains a dense F-actin net-
work and many signalling-related molecules.

Reorganization of adhesion molecules and the actin cytoskeleton in renal cell injury
Renal injury in associated with loss of cell-matrix and cell-cell interactions and reorgani-
zation of the F-actin cytoskeleton, resulting in RPTE cell detachment, formation of cellu-
lar aggregates in the tubular lumen, glomerular filtrate back-leak and loss of renal tubular 
function 7,8. Over the past few decades several studies have provided evidence for the 
reorganization of integrin- and cadherin-based adhesions and the cytoskeletal network 
in renal cell injury and regeneration. Below the most essential findings are discussed. 

Loss of cell-matrix adhesion
Loss of integrin-based cell-matrix interaction results in the onset and progression of renal 
cell injury. In 1993 Gailit et. al. demonstrated for the first time that renal oxidative stress 
disrupts the focal adhesions, which is associated with redistribution of the b3 integrin 
subunit from the basal to the apical side of cultured RPTE cells 7. Since this initial find-
ing, a number of studies have investigated the role of integrins in renal injury. Zuk et. 
al. demonstrated a role for b1 integrins in IR-induced injury 8. These integrins newly 
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appeared on lateral borders in epithelial cells, thereby decreasing their concentration at 
the basolateral side of the cells, possibly contributing to RPTE cell exfoliation. Moreover, 
integrin antagonism with a GRGD peptide following oxidant-induced renal cell injury 
inhibited regeneration in rat RPTE cells 48. Administration of HUTS-21 antibody, which 
recognizes an activation-dependent epitope of b1 integrins resulted in the preservation 
of renal functional in a rat IR model of renal injury 49. In addition to the IR-induced cell 
injury, integrins play a role in toxicant-induced injury. In RPTE cells, DCVC exposure 
was associated with a decrease in basal localization of integrin subunits and an appear-
ance of integrins on the apical membrane 50. Taken together these studies have provided 
evidence, both in vitro as well as in vivo, for a role of integrins in renal injury. However, 
most studies, especially the in vivo studies, determined expression and localization of the 
integrin receptors and did not describe an effect of cell-matrix disruption on downstream 
signalling pathway. 

As described above, integrin-mediated cell adhesion signalling through FA com-
plexes is mainly regulated by protein phosphorylation. In vitro it has been demonstrated 
that phosphorylation of focal adhesion proteins is altered as a result of renal cell injury. 
Hypoxia in freshly isolated rabbit proximal tubules results in loss of tyrosine phosphoryla-
tion of several focal adhesion proteins including, FAK and paxillin  51. During nephrotoxi-
cant exposure in primary cultured rat RPTE cells both FAK and paxillin phosphorylation 
is lost 20. So far, the effect of ATP depletion or nephrotoxic compounds on phosphoryla-
tion and activation of FAK and other FA proteins in vivo remains unclear.

Loss of cell-cell adhesion
Renal injury is associated with back-leak of glomerular filtrate. Postischemic injury can 
be classified as ‘recovering from ARF’ or ‘sustained ARF’ 52. In sustained ARF more than 
50% of the glomerular filtrate is lost due to back-leak, while no back-leak is observed in 
patients recovering from ARF. Kwon et. al. were the first to explore a structural basis for 
this sustaining back-leak 52. Staining of renal allografts for different TJ or AJ markers (e.g. 
the zonula occludens complex ZO-1 and adherens complex, a, b, and g catenins) revealed 
diminished intensity and redistribution of each protein from the cell-cell junctions. Thus, 
most likely impaired integrity of cell-cell adhesion in the proximal tubule provides a 
paracellular pathway through which filtrate leaks back in patients with sustained ARF. 

Since this finding other studies have investigated the role of cell-cell interacting pro-
teins and their phosphorylation status in renal injury. Exposure of the renal cell lines, 
LLC-PK1 and MDCK to the nephrotoxic compound cadmium results in reduced ATP 
levels followed by a decrease in trans-epithelial resistance (TER) and relocalization of 
cadherins and catenins 53. Mouse RPTE cells subjected to ATP depletion have a dimin-
ished staining of E-cadherin and an increased tyrosine phosphorylation of b catenin and 
plakoglobin 39,54. Cisplatin, which is an antitumour agent that may cause nephrotoxicity, 
causes the early loss of cell-cell adhesions. This is associated with altered localization of 
b-catenin in association with PKC-mediated phosphorylation of the actin-capping pro-
tein adducin 55.
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In vivo studies show that E-cadherin is lost from the AJs, which is associated with 
cleaveage of the protein to an 80 kDa fragment 56. In addition, cadmium-induced renal 
injury in rats is associated with a loss of N-cadherin, E-cadherin and b-catenin from the 
cell-cell junctions 57. This loss was specific for the proximal tubule and could not be ob-
served in other parts of the kidney. 

Although a number of studies show that a toxic insult disrupts the cell-cell contacts 
in renal cells in vitro, the in vivo relevance of these findings is still unclear. Some evidence 
suggests that the disruption of cell-cell adhesion is associated with renal failure in patients, 
but the understanding of the cause and effect is still limited due to the lack of in vivo data.  
Regardless, patients suffering from ARF have increased numbers of viable renal tubular 
cells in their urine indicating cell detachment, including cell-cell dissociation 4. 

Figure 4. Cell-ECM and cell-cell adhesion complexes. At the cell-ECM interaction focal adhesions 
are formed consisting of integrins and adhesion molecules such as FAK, Src and paxillin (A). The 
cell-cell interaction contains cadherins, which link two cells in a zipper-like way, and catenins, 
which link the complex to the F-actin network (B).



20 Chapter 1

Cytoskeletal reorganization
Alterations in the actin cytoskeleton have been shown to affect physiological processes in 
the kidney during and following ischemic and toxic injury (reviewed in 58). Although IR-
induced changes in the F-actin network are mostly caused by severe reductions in renal 
blood flow, even very short ischemic-periods can provoke changes in the surface polarity 
and adhesion complexes mediated by the actin cytoskeleton. The proximal tubule apical 
microfilaments (epithelial brushborder) are particularly sensitive to an ischemic insult 59. 
Within the proximal tubule, ischemia results in very early loss of actin filaments in the 
epithelial brush border, with the majority of F-actin loss occurring within five minutes, 
while the glomerular or distal tubules remain unaffected. The recovery of the actin cy-
toskeleton after ATP repletion occurs early and may be necessary for reestablishment of 
polarity, which is essential for normal reabsorptive functions 60,61. RPTE cells may also 
undergo toxicant-induced disruption of the F-actin network. Treatment of rats with the 
model nephrotoxicant DCVC results in loss of F-actin in the S3 segment of the proximal 
tubule in association with loss of the brush border and loss of cells from the basement 
membrane 46. The high sensitivity of the microvillar F-actin is due to the rapid rate of 
ATP-dependent actin polymerization, thereby making it highly susceptible to ATP deple-
tion 62. The actin-binding protein cofilin seems to play an important role in ATP deple-
tion-induced F-actin reorganization 63,64. ATP depletion rapidly induces dephosphory-
lation/  activation and relocalization of cofilin. A constitutive inactive mutant protects 
LLC-PK1 cells against chemical anoxia-induced F-actin injury 63. 

Alterations in the cytoskeletal organization are often accompanied by a modification 
in the polarized distribution of some membrane (transport) proteins. Ezrin, a phospho-
protein that mediates the binding of microvillar F-actin to the membrane, is dephos-
phorylated during ischemia and dissociates from the actin filaments 65 66. Reoxygenation 
following an anoxia period causes recovery of the microvillar structure and reassociation 
of ezrin to the cytoskeleton and the brush border. Moreover, the actin-binding protein 
villin redistributes in parallel with F-actin from the apical to the basolateral plasma mem-
brane during IR 60,67. Repolarization of villin to the apical membrane begins within hours 
after reperfusion with enhanced apical localization over time during the period of regen-
eration, which is accompanied by the reestablishment of a normal actin distribution in 
the brush border.

Renal cell injury does not only involve changes in the apical F-actin, but also re-
sults in disruption of F-actin stress fibers and cortical F-actin. In vitro ATP depletion 
results in loss of stress fibers 68, while cisplatin-induced renal cell injury is associated 
with increased stress fiber formation 55. The Rho GTPase family is mainly involved in the 
regulation of F-actin stress fibers.  Expression of a constitutively active RhoV14 in LLC-
PK1 cells prevented disruption of stress fibers and cortical F-actin during ATP depletion 
and enhanced the rate of stress fiber reassembly during recovery. Conversely, the Rho 
inhibitor C3 or dominant negative RhoN19 prevented recovery of F-actin assembly upon 
ATP repletion 60,69. In addition, myosin II, an important effector in organizing basal actin 
structures, is rapidly inactivated during ATP depletion 60,68. This inactivation precedes 
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dissociation of myosin II from actin stress fibers during ATP depletion. Myosin II activa-
tion is associated with reorganization of F-actin stress fibers during recovery from ATP 
depletion. Furthermore, myosin activation and actin stress fiber formation are Rho-ki-
nase dependent 60,68. 

Although many studies have shown that renal cell injury and apoptosis is preceded 
by changes in the F-actin cytoskeletal network and redistribution of some actin-binding 
proteins, the precise mechanisms underlying this F-actin disruption are still not clear. 
Moreover, the F-actin network is linked to cell-matrix and cell-cell interactions. The link 
between F-actin reorganization and the disruption of cell-ECM and cell-cell interaction 
as a result of IR or toxicant-induced cell injury is yet unclear. Few studies have studied the 
effect of ATP depletion or toxicant exposure in live cells, so that the precise time course of 
cellular injury can be established. ATP-depletion of cultured renal epithelial cells express-
ing an enhanced green fluorescent protein (EGFP)-actin show that assembly of lamellar 
actin is inhibited rapidly as cellular ATP levels are reduced, whereas disruption of actin 
in stress fibers is more gradual and persistent 70. Actin that is associated with focal adhe-
sions is largely resistant to ATP depletion, while cell-cell interactions are sites of actin 
filament assembly even when ATP levels are maximally decreased. The role of signalling 
complexes and actin binding proteins in these processes remains thus far unclear.

Figure 5. Actin polymeriza-
tion. Actin filaments are 
build from ATP-bound G-
actin monomers at the + end. 
Actin hydrolyzes its bound 
ATP to ADP + Pi. Cofilin 
promotes dissociation of G-
actin-ADP from the – end of 
the F-actin filament. Cofilin 
binding to G-actin-ADP in-
hibits ADP/ATP exchange, 
thereby inhibiting re-polym-
erization. Phosphorylation of 
cofilin by LIM kinase (LIMK) 
causes it to dissociate from 
G-actin, thereby stimulating 
ADP/ATP exchange and ac-
tin polymerization. LIMK is 
activated through GTP-RhoA 
and Rho kinase (ROCK). The 
Arp2/3 complex binds to the 
side of an existing actin fila-
ment and nucleates assem-
bly of a new F-actin fiber, 
thereby facilitating F-actin 
branching.
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Activation of stress signalling pathways 
Perturbation of normal epithelial cell function by IR or toxicant exposure results in the 
induction of diverse stress response pathways, including activation of the MAP kinase 
(MAPK) pathways  and phosphorylation/expression of multiple small heat shock pro-
teins 71,72. The MAPKs are localized at focal adhesions, thus the possibility exists that 
disruption of cell adhesions after renal cell injury is in part responsible for the activation 
the MAPK stress signalling pathways. 

The family of MAPKs consists of extracellular signal-regulated kinases (ERKs), 
which are activated downstream of tyrosine kinase receptors 73, and c-Jun amino-termi-
nal kinase (JNK), and p38, which are responsive to cellular stresses 72. Renal IR causes 
activation of JNK and p38 74-76, but also a variety of nephrotoxicants cause JNK and p38 
activation 77-79. Activation of JNK in renal cell injury is associated with the onset of apop-
tosis. Downregulation of JNK in human kidney cells using antisense oligonucleotides 
prevents JNK activation and inhibits IR-induced apoptosis 80. In addition, prevention of 
JNK phosphorylation results in reduced levels of apoptotic cells 76. Sub-lethal renal cell 
injury, which does not lead to apoptosis, but results in a preconditioning of cells and 
protection against a subsequent, more severe stress prevents activation of JNK and p38 
81,82. Activation of JNK and p38 may contribute to cellular apoptosis by phosphorylation 
of various transcription factors, thereby affecting gene expression and ultimately protein 
expression 83-86  or by phosphorylation of various cellular proteins, such as the anti-apop-
totic protein Bcl-2 87,88 or heat shock protein 27 (Hsp27) 89. 

The small heat shock protein Hsp27 has an important role in the regulation of RPTE 
cell survival after injury. Several studies have shown that overexpression of Hsp27 in cells 
renders them more resistant towards stress-induced injury 90,91. In the kidney, increased 
expression of Hsp27 is found during the recovery phase after injury 81. In addition, over-
expression of Hsp27 inhibits apoptotic cell death of LLC-PK1 cells caused by either oxi-
dative stress or ATP depletion 82. The protective function of Hsp27 seems to be dependent 
on the phosphorylation status of the protein. Overexpression of a non-phosphorylatable 
form of Hsp27 was much less effective in mediating protection and may even result in 
enhanced apoptosis 92-94. The protective effect of Hsp27 is, amongst others, dependent on 
regulation of the actin microfilament stability 93, which is influenced by p38-mediated 
phosphorylation of Hsp27 89. 

The epithelial mesenchymal transition in chronic renal injury
Toxicant- or IR-induced renal failure may ultimately result in chronic progressive fibrosis 
of the kidney, which can lead to scarring of the kidney and disruption of renal function. 
The major players in renal fibrosis have been considered the resident fibroblasts and the 
infiltrated mononuclear cells. However, there is increasing evidence that new fibroblasts 
may be derived from tubular epithelial cells. This occurs through a process termed the 
epithelial-mesenchymal transition (EMT) 95,96. EMT is characterized by disruption of 
epithelial junction complexes and loss of cell polarity, thereby transforming stationary 
epithelial cells into migratory mesenchymal cells. Normal epithelial cells interact with the 
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ECM through integrin-based complexes. The mesenchymal cells lose this domain-spe-
cific anchorage and acquire the ability to invade the ECM 97. In embryonic development, 
EMT permits anchored epithelial cells to reorient in a developing organism and allows 
migration of epithelial cells to distant sites where they can form tissues such as the neural 
crest 98. In mature tissue, EMT of resident epithelial cells is thought to occur during injury 
as an additional source of myofibroblasts/fibroblasts. 

In recent years more and more data point to the involvement of EMT in injured 
kidneys. Initial reports demonstrated that fibroblast specific protein (FSP1 or S1004A) 
can be detected in tubular cells of injured kidneys in both acute and chronic disease 
99.  S100A4 is a member of the S100 family of calcium binding proteins and is, amongst 
other cell types expressed in fibroblasts. Evidence for epithelial-derived fibroblasts in re-
nal fibrosis comes from studies using transgenic mice genetically engineered to express 
the LacZ marker specifically in renal tubular epithelia 100. This study demonstrated that 
more than one third of the renal fibroblasts are derived from renal tubular epithelium via 
a local EMT, suggesting that EMT of epithelial cells plays a crucial role in renal fibrosis. 
The importance of EMT in renal fibrosis is confirmed by studies using tissue-type plas-
minogen (tPA) null mice 27. Mice lacking tPA were largely protected from development 
of interstitial fibrosis after obstructive injury. Ablation of tPA selectively blocks tubular 
EMT, but did not affect myofibroblastic activation from interstitial fibroblasts.

How EMT is activated in kidneys subjected to injury remains to be elucidated. How-
ever, in vitro studies have provided insight into the mechanisms involved in renal cellular 
EMT. Since in vivo the tubular cells will be exposed to a cocktail of many different factors, 
the in vitro studies may not always resemble the in vivo situation, but they will provide 
links to mechanisms involved in EMT. The main inducers of EMT can be categorized into 
growth factors (e.g. TGF-b, EGF and FGF), and enzymes (e.g. matrix metalloproteinases), 
which facilitate disruption of the basement membrane integrity 14. In general, the main 
inducer of EMT is TGF-b. Mimicking the renal in vivo condition by using a Boyden 
chamber system with renal basement membranes shows that stimulation of RPTE cells 
with TGF-b increases migration of the cells across the membrane 20. This is associated 
with increased production of matrix metalloproteinase (MMP) 2 and 9, which degrade 
the basal membrane. 

In addition EMT processes are believed to be involved in renal regeneration process-
es. The EMT process is, at least in an early stage, reversible. Therefore it is hypothesized 
that EMT-derived fibroblasts could facilitate immediate repair of the injured kidney and 
potentially serve as a pool of vital cells with the capacity to repopulate the injured epi-
thelium. Transformed cells may undergo re-differentiation to generate renewed epithelial 
cells if they are exposed to an appropriate trigger. For example HGF, a potent regenerative 
growth factor, may induce a mesenchymal to epithelial transition (MET) 13, which is con-
sistent with the role of HGF in kidney development 6. In addition, the growth factor bone 
morphogenic protein-7 (BMP-7), which plays an important role regulation of nephro-
genesis associated with MET, can reverse renal injury 101. Administration of BMP-7 in 
mice reverses transforming growth factor (TGF)-b-induced EMT and thereby reverses 



24 Chapter 1

chronic renal injury  101.  
Both TGF-b and BMP-7 belong to the TGF-b superfamily. They signal through 

heteromeric complexes of transmembrane type I and type II serine/threonine receptors 
(reviewed in 12). Within this complex type II tyrosine kinase activates the type I tyro-
sine kinase receptor, which subsequently phosphorylates different Smad proteins. TGF-b 
phosphorylates Smad 2 and 3, while the BMPs phosphorylate Smad 1, 5 and 8. The phos-
phorylated Smads form a complex with Smad 4, which than shuttles to the nucleus and 
regulates transcription. In addition to the Smad proteins, TGF-b is capable of activation 
a number of other proteins/signalling cascades among which, p38 MAPK, Akt/PKB, ILK 
and RhoA, thereby facilitating renal fibrosis. The role of TGF-b and BMP activated pro-
teins in IR- or nephrotoxicant-induced renal injury remains to be elucidated.

Mechanisms of renal proximal tubular cell regeneration 
Whether the kidney is capable of complete regeneration after renal injury depends main-
ly on the degree of injury (e.g. mild renal injury in the medulla or more severe injury 
that extends all the way to the renal cortex region). The four crucial processes for kidney 
regeneration after injury are migration, proliferation, differentation and repair of physi-
ological functions (reviewed in 102). These processes are influenced by various factors, 
including growth factors and cytokines. Depending on the combination of the expression 
and activity of these factors within the kidney, the regeneration phase will lead to com-
plete recovery or progression towards an end-stage renal disease. 

It is generally believed that renal regeneration starts with a migratory response of 
cells into the denuded areas. This is followed by a proliferative signal to replace lost cells, 
which will then differentiate and restore normal kidney function. Although migration 
has been described as a first step in repopulating the denuded tubuli, direct in vivo evi-
dence is missing. The model used to study migration is a mechanical scrape technique, 
thereby simulating RPTE cell loss in 2 dimensional cultures. These studies demonstrated 
that migration of RPTE cells is influenced by various growth factors like EGF and TGF-b. 
EGF stimulates migration, whereas TGF-b inhibits cell migration 103. Moreover, nephro-
toxicants such as mercuric chloride and DCVC inhibited migration in such an assay. The 
proliferation and differentiation of RPTE cells is also under control of exogenous growth 
factors. These factors are released from injured cells, from cells present in the interstitium 
or from inflammatory cells. Although the growth factors EGF, IGF, FGF, HGF and TGF-b 
all contribute to the renal regeneration process, we will focus on the latter two since they 
are believed to be the most important growth factors in the control of renal regenera-
tion.

Hepatocyte growth factor 
HGF is present in the kidney in an inactive state and is proteolytically activated and re-
leased in response to certain stimuli, among which renal tissue injury 104. HGF binds 
and activates the tyrosine kinase receptor c-Met, which results in phosphorylation and 
activation of several downstream pathways (reviewed in 105). Administration of HGF to 
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mice protects against IR- 106 or cisplatin-induced renal injury 107 and stimulates renal re-
generation. In addition, HGF prevents renal fibrosis and end-stage renal disease by inhib-
iting the injury-induced increase in synthesis and deposition of ECM components 108,109. 
Moreover, treatment with anti-HGF antibodies in a mouse model for renal fibrosis results 
in markedly increased matrix deposits in the kidney 110.The level of HGF has been sug-
gested to be a reliable indicator of kidney rejection. In a rat renal transplantation model, 
HGF levels rapidly increased during acute rejection, while recombinant HGF effectively 
protected the kidney from acute rejection 111. These results suggest that HGF may be in-
duced as a counter-response to renal injury and that HGF levels may be used as a reliable 
indicator for the diagnosis of acute rejection.

Transforming growth factor beta
Members of the TGF-b family of growth factors have been shown to be produced in 
kidney during its development. In renal injury and regeneration, levels of TGF-b mRNA 
are elevated in the outer medulla in tubules that appear incompletely regenerated 112 . In 
addition, a number of TGF-b responsive genes are transiently enhanced following induc-
tion of ischemic ARF in the rat 113. These studies suggest that endogenous TGF-b serves 
to promote tissue regeneration following renal injury. However, sustained elevation of 
TGF-b is related to a perturbed regeneration process, eventually resulting in renal fibrosis 
114 and progression of renal disease. Both in cell culture as well as in perfused rat kidney 
TGF-b stimulates excretion of various ECM proteins and tissue inhibitors of metallopro-
teinases (TIMP), while it decreases expression of matrix metalloproteinases (MMP). In 
this way, TGF-b provides an optimal environment for progressive ECM accumulation, 
which contributes to renal fibrosis 115. The onset of renal fibrosis could be blocked by us-
ing anti-TGF-b antibodies. Neutralization of TGF-b attenuates renal failure progression 
in uremic animals 116. In rats with chronic progressive anti-thymocyte serum nephritis 
the TGF-b/Smad signalling is up-regulated. TGF-b blockade by aT immunoglobulin 
suppresses the progression of renal scarring, at least in part, via inhibition of activated 
TGF-b/Smad signalling 117. 

Reciprocal functions of TGF-beta  and HGF  
In renal disease progression and regeneration, TGF-b and HGF exert opposite effects. 
HGF promotes renal regeneration, while TGF-b antagonizes proper regeneration 110. A 
balance in the activity of both signalling pathways is important during renal regeneration. 
When this balance shifts towards activation of TGF-b signalling, the increased produc-
tion of matrix proteins may lead to renal fibrosis.  HGF decreases the expression of tissue 
inhibitors of metalloproteinases (TIMP) and increases the expression of MMP-9 118, while 
TGF-b regulates expression of these proteins the other way around 112. TGF-b and HGF 
do not only control renal regeneration at the level of ECM composition, but also counter-
act each others effects at the level of cell scattering and tubulogenesis. For example, HGF 
stimulates branching morphogenesis in a tubulogenesis assay, while TGF-b counteracts 
the effects of HGF 119. 
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In conclusion, proper renal regeneration after an IR- or toxic insult is under control 
of a balanced HGF- or TGF-b-induced activation of signal transduction pathways. In-
creasing our understanding of signal transduction pathways that are activated by these 
growth factors is essential to understand how we can stimulate the renal repair process 
after renal injury.  

Concluding remarks
It is clear that the disruption of cell adhesion complexes in association with reorganization 
of the actin cytoskeleton plays an important role in renal cell injury. Progress has been 
made in the identification and understanding of specific proteins and complexes that me-
diate cell adhesion and actin organization in the kidney. In addition to their potential role 
in cell detachment and the onset of apoptosis after injury, it is likely that these proteins 
are important in the restitution of the tubular epithelium resulting in renal regeneration. 
Many studies on the role of cell adhesions structures and the actin cytoskeleton in renal 
cell injury are performed in vitro. It is presently unclear whether these findings will corre-
late with in vivo renal dysfunction following injury. The in vivo investigation is necessary 
to fully understand the role of cell adhesion and the actin cytoskeleton in renal injury 
and regeneration. In addition, although the role of some adhesion proteins in renal cell 
injury has been established, many of these proteins remain unknown. Identification of 
these proteins and addressing their role in the renal injury and regeneration process will 
contribute to a further understanding of renal pathology. 
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Aim and outline of this thesis

The general aim of the research presented in this thesis is to evaluate the changes in pro-
tein expression and phosphorylation that occur in association with changes in cell adhe-
sion and cytoskeletal organization prior to or during renal cell injury and regeneration. 
To analyze the changes in protein expression and phosphorylation we have used 2D-
Difference In Gel Electrophoresis (DIGE) (chapter 4) and 2D-phosphotyrosine blotting 
(chapter 5 and 6) respectively. Proteins were identified using mass spectrometric analy-
sis. As a model for renal cell injury we have used an in vivo unilateral renal ischemia/re-
perfusion rat model (chapter 3) and renal proximal tubular cells treated with the model 
nephrotoxicant S-(1,2-dichlorovinyl)-L-cysteine (DCVC) (chapter 4 and 5). 

	 The activity and function of many cellular proteins depends on their phos-
phorylation status. Identification of differentially phosphorylated proteins by means of 
phospho-proteomic analysis provides insight into the activation of signal transduction 
pathways, such as those involved in renal cell adhesion and actin organization. Chapter 
2 provides an overview of different phospho-proteomic techniques that are used to iden-
tify phosphorylated proteins. Chapter 3 describes the differential protein tyrosine phos-
phorylation and F-actin reorganization that occurs during ischemia/reperfusion-induced 
renal injury and regeneration under in vivo conditions. This study focuses on the phos-
phorylation of the cell-matrix protein focal adhesion kinase (FAK) and its downstream 
partners. With the 2D-DIGE technique described in chapter 4 proteins were identified 
that are differentially expressed prior to DCVC-induced renal cell death. Furthermore, 
chapter 4 delineates the role of heat shock protein 27 (Hsp27) phosphorylation in cell 
adhesion and F-actin reorganization and renal apoptotic cell death. Chapter 5 describes 
the identification of proteins that are differentially tyrosine phosphorylated, such as the 
major differentially phosphorylated protein actin regulatory protein Arp2. These proteins 
were identified using 2D-phosphotyrosine proteomics. Both progression and regenera-
tion from renal injury may involve cell migration and the so-called epithelial to mesen-
chymal transition (EMT). In chapter 6 several phosphotyrosine-proteins involved in the 
onset of EMT were identified using phospho-proteomics. Moreover, the role of the F-ac-
tin binding protein annexin A2 in actin organization and 3D branching morphogenesis 
is described.  Chapter 7 discusses the results of these studies and their implications for 
future research. 
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