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ABSTRACT

This paper presents an approach to the evaluation and validation of the diagnostic

potential of mass spectrometry data in an application on the construction of an ‘early 

warning’ diagnostic procedure. Our approach is based on a full implementation and 

application of double cross-validatory calibration and evaluation. It is a key feature 

of this methodology that we can jointly optimize the classifi ers for prediction while

simultaneously calculating validated error rates. The methodology leaves the size 

of the training data nearly intact. We present application to data from a designed 

experiment in a colon-cancer study. Subsequent to presentation of results from the

double cross-validatory analysis, we explore a post-hoc analysis of the calibrated

classifi ers to identify the markers that drive the classifi cation.
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INTRODUCTION

There is currently much interest in application of mass spectrometry for the con-

struction of new diagnostic proteomic approaches for the early detection of disease. 

This is particularly the case in oncology, where there is need for new and reliable

diagnostic tests. In this paper, we discuss the problem of ascertaining the presence of 

discriminatory information in mass spectra of serum samples in a case-control study 

for the detection of colorectal cancer. In other words, we describe -in essence -an 

early-stage feasibility study for subsequent construction of a diagnostic test based on

proteomic mass spectra. A crucial objective of such research is to provide informa-

tion which allows researchers to make informed decisions as to the continuation of 

the research effort (which may involve experiments of much greater cost and com-

plexity in comparison to the fi rst-stage evaluation). Hence, it is essential to get a fully 

validated and unbiased assessment of predictive error rates that may be achieved,

based on the proteomic data. At the same time, in a high-dimensional setting such as 

mass spectrometry, it is desirable that construction of the diagnostic classifi er would 

involve calibration of the predictive potential of the allocation rule itself. 

Mass spectrometry proteomics, sample size and clinical science

In problems such as these and related settings (e.g.: microarray diagnostics, ch-

emometric discriminant studies), a key diffi culty is often the collection of a suf-

fi cient number of samples. In oncology applications this may tend to happen, due

to logistical and ethical reasons. Our example is a typical one, as our study is a

fi rst-stage evaluation within the context of an academic center, which has a typical 

patient population with more advanced disease. This limits the number of patients

available for research. On the other hand, clinicians and biomedical researchers

who wish to explore application of proteomic mass spectrometry for the construc-

tion of new diagnostic procedures, will be interested fi rst to get an indication of 

whether there is information in the spectra to allow groups to be separated and what

the likely error rates of misclassifi cation will be. This is particularly the case since 

ethical review boards (or funding authorities) are not inclined to give permission

for large-scale collaborative trials between hospitals, which would ease the patient

recruitment problem, without preliminary evidence from smaller within-center trials.

Both these reasons may conspire to cause proteomic studies to be of small sample 

size initially.

Classical statistics will often use a separate validation set to optimize a chosen

diagnostic classifi er for prediction fi rst. Assessment of the rule is then carried out

on yet another test set, which must often be set-aside from the available data [1].

Unfortunately, when the amount of experimental data is small to begin with, the
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training set left over may be too small to allow researchers to apply this paradigm 

fully. In this paper, we present a double cross-validatory approach which allows for 

simultaneous predictive calibration and assessment of the allocation rule, without 

(substantial) reduction of the size of the calibration data. 

Mass spectrometry data

The experiment and data discussed and analysed in this paper are derived from 

a MALDI-TOF (Matrix Assisted Laser Desorption Ionisation Time-Of-Flight) mass

spectrometer (Ultraflex TOF/TOF, Bruker Daltonics, equipped with a SCOUT ion 

source which was operated in linear mode). The spectrometer produces a sequence 

of intensity readings for each sample on an ordered set of contiguous bins in the

m/z range from 960 to 11,160 Dalton. Bin sizes (length) of the unprocessed spectra 

gradually increase with increasing m/z values, ranging from 0.07 Dalton at the lower

end of the mass/charge scale up to 0.24 Dalton at the upper end of the scale. This 

gives intensity readings on a fi xed grid of 4483 bins within the mass-charge range 

across all samples. We refer to an earlier paper by our group for detailed information

on experimental setup and measurement protocols.[2]

We will discuss the essential aspects of the study design fi rst, followed by a de-

scription of the discriminant method and the double cross-validatory approach to

joint predictive estimation (calibration) and validation of the allocation rule, which

allows for validated error rate evaluation. Subsequent to description of the meth-

odological approach, we consider application to the colon cancer data and present 

a post hoc exploratory data analysis to interpretation of the results. While we will

focus on our example to structure the discussion, the issues apply quite generally to 

similar problems in proteomics and many other related problems in bioinformatics,

chemometrics, statistical prediction and beyond. We will assume that the reader has 

some knowledge of standard leave-one-out cross-validation.

DESIGN AND SAMPLE REPLICATION

Design 

A characteristic problem of proteomic mass spectrometry design is the need to cope 

with the presence of what we may loosely refer to as so-called ‘batch effects’. Ex-

amples are plate-to-plate variability, day-to-day variation and so on, whose presence 

is in reality unavoidable. To accommodate these effects, we identify each plate 

by day combination as a block and employ standard randomised block design by 

randomly distributing the available samples from each group (colon cancer and con-

trols) across the blocks such that proportions are (as near as) equal within and across
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blocks for each group. For colon cancer, we randomised samples to plates in such a

manner that the distribution of disease stages is in approximately equal proportions

within and across plates. The position on the plates of samples allocated to each

plate was also randomised. Each plate was then assigned to a distinct day, which

completes the design. Table 1 summarizes the design as executed on the fi rst week,

which provides mass spectra on 63 colon cancer patients and 50 healthy controls.

Table 1. Design as executed on the fi rst week. A replicate of the entire experiment was run on the subsequent week using plate duplicates.

‘Stage’ refers to the distribution of cases across the four respective disease stages.

TNM stage Plate 1 Plate 2 Plate 3 Total

Cases I 4 4 3

63
II 10 10 8

III 4 4 4

IV 4 4 4

22 22 19

Controls
17 17 16 50

Total 39 39 35 113

In our case, it was decided to carry out the experiment in a single week using three 

plates only, each of which was assigned to a consecutive day in the middle of the

week - Tuesday to Thursday. We refer the reader to the statistical literature on design 

of experiments for further discussion and details of the issues involved, as well as 

many other examples of these basic design principles.[3-6]

Sample replication 

We can exploit design to augment cross-validatory analysis. This is because while 

sample sizes may be small (i.e. it is diffi cult to get new independent samples), the

amount of sample material available for each sample may be more abundant. This

allows the introduction of so-called replicate samples into the design. Since the

samples are pre-arranged on rectangular plates, a second ‘copy’ of any plate can 

be made provided suffi cient sample material is available from each sample. (In

our case, suffi cient sample material was available for a second copy only). Thus, 

we can duplicate the entire design from the fi rst week and remeasure the replicate

plates through the same design on the second subsequent week, using new sample 

material from each sample (but of course not new samples themselves). With this
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approach, we thus generally have available from each ith sample an observation

x1
i 
= (x1

i1
, ... , x1

ip 
)  of the associated recorded mass spectrum in the fi rst week, where

the vector elements refer to the measured mass/charge intensities on a predefi ned 

and ordered grid of mass/charges of dimensionality p. In addition, we have for each

sample a duplicate measurement x2
i 
= (x2

i1
, ... , x2

ip 
) obtained from the corresponding 

replicate on the corresponding plate measured on the same day one week later. We 

may denote the associated class label from each ith observation as c(i) which takes i

value in the set of group indicators {1,...,G}, whereG G is the number of groups. [Note

we will drop use of the suffi xes 1,2 when the context makes clear to which week

the data relates.] Unfortunately, due to a technical malfunction which occurred on

the last day of the second week the replicate measurements from the third plate are 

unavailable. As a consequence we only have available the 78 replicates from the fi rst

2 plates in week 2 for further analysis. 

INTEGRATED CALIBRATION AND VALIDATION FOR CLASSIFICATION BY

DOUBLE CROSS-VALIDATION

We restrict attention to double cross-validated linear discrimination for joint calibration 

and validation.[7] First we discuss shrinkage-based estimation and the need for it in 

linear discrimination. Then we explain the double cross-validatory implementation.

Linear classifi cation and shrinkage estimation methodology

We base classifi cation on Fisher linear discrimination. There is voluminous literature 

on the method, which is well established in the applied sciences, such as biology and 

medicine.[1;8-10] An article by Hastie et al. contains an up-to-date account of many 

new applications which demonstrate the continuing success of the approach.[1]

Fisher linear discriminant allocation may be defi ned as assigning a new observa-

tion with feature vector x to the group for which the distance measure

Dg(x)=(x − μ
g
)Σ−1(x − μ

g
)T

is minimal, where g denotes the group indicator with g є {1,...,G}, G μ
g

the popula-

tion means and Σ the population within-group dispersion matrix which is assumed

equal across groups. In practice, the population means and dispersion matrix will

be unknown and hence must be estimated from the data. In a high-dimensional

problem such as in mass spectrometry proteomics, this leaves us with a diffi culty 

in estimating the dispersion matrix as we will typically not be able to achieve a full

rank estimate. 
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At the risk of some oversimplifi cation of the discussion, there are basically two 

ways in which we may remedy the problem so that the above methodology may 

again be applied. The fi rst is through either selection or construction (or a combina-

tion of both) of a set of features which is reduced in dimensionality, while capturing 

most of the variability in the data. In essence, this is the approach which is currently 

applied in most of the mass spectrometry proteomics literature. Typical examples are 

found in papers by Baggerly, Yasui, Sauve and Morris, among others.[11-14] We do 

not consider this approach to be fundamentally flawed for mass spectrometry pro-

teomic data. On the contrary, it is self evident that mass spectra consist of mixtures of 

possibly overlaid intensity peaks corresponding to substances present in the analyte. 

Thus, to elucidate this structure (fi rst) is in principle of interest.

The alternative is not to select in the fi rst instance, but instead explicitly utilize the 

correlations which are induced between intensities on the mass-charge bins through

the associated discretisation of the continuous signal (peaks). The simplest approach

is through principal components decomposition [15], which has a long history of 

successful application in classical spectroscopy such as in near infrared spectroscopy 

for example Krzanowski et al. [16]

Within this approach, we leave the dimensionality of the data intact and instead

introduce a regularised estimation of the dispersion matrix to cope with the singular-

ity of the sample dispersion matrix, based on the component decomposition. We ex-

plore two distinct forms of regularization, both of which may be expressed in terms

of the spectral decomposition of the ‘observed’ (or sample) pooled dispersion matrix 

S = QΛQT where Q and Λ = diag (λ1, ..., λr) are the matrices of principal component r

weights (or loadings) and variances respectively, with λ1 > ...> λr > 0 respectively 

(r is the rank of the pooled covariance matrix). The within-group covariance matrix

is re-estimated by only retaining the fi rst 1≤k≤ r components only, which gives an 

estimate

S(k) =kk Q
(k)
Λ

(k)
QT 

(k)
,

where Λ
(k)

= diag (λ
1
, ..., λ

k
) and Q

(k)
denotes the corresponding reduced matrix of 

component loadings. The associated linear discriminant allocation rule hence assigns 

observations to the group for which the smallest sample-based distance estimates

g 
(x) = (x -

g
) S-1

(k) 
(x - 

g
)T 

are observed, with
g
the sample group means for g є {1, ... G}. In the two-group case,

this is also equivalent to least-squares regression analysis using the Moore-Penrose

inverse of the pooled covariance matrix when k=r (all components kept, also known 
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as shortest least squares regression), or else (k<r) is equivalent to so-called shrunkenr

least-squares regression.[8;17] Alternatively, we may employ ridge regularization

S(γ) = Q[(1 − γ)Λ + γI]QT ,

where 0<γ≤ 1 is the ridge regularization or ‘tuning’ parameter, in which case the 

sample distance measures are (x -
g
) S-1

(λ) (x - 
g
)T.

Double cross-validatory estimation and validation

Application of the above described classifi cation approaches still require choice of 

the tuning parameters k or γ involved. As we are specifi cally interested in an evalu-

ation of predictive performance of any diagnostic allocation rule, it becomes crucial

that any optimization -such as the choice of the tuning parameters - does not take 

place on the same data used for validation. On the other hand, predictive tuning is 

clearly highly desirable if diagnosis is of interest, so we would not wish to base the

choice of tuning parameters on the full calibration data itself (and thus effectively 

drop predictive tuning from the analysis), but use a truly validatory choice instead. 

This implies we either set aside a so-called separate ‘tuning set’ from the avail-

able calibration data prior to validation of predictive performance itself or appeal 

to some form of cross-validation. Good predictive optimization or tuning becomes 

particularly important in a high-dimensional setting, such as proteomics, as it pro-

vides an opportunity to safeguard model choice against over-fi tting (in other words:

over-interpreting the data). Meanwhile, even if we were able to effectively choose 

good tuning parameters, the predictive performance (in our case essentially the 

error rates) of any implied allocation rule should again be validated, which again 

introduces a need for yet another set-aside validation set or cross-validation.

We may solve both problems by carrying out a so-called double cross-validatory 

approach, which avoids the need to introduce separate test (tuning) and valida-

tion sets. The method has been fi rst proposed and investigated by Stone[7] and

integrates predictive optimization and unbiased validated error rate estimation in a

single validatory procedure. While the principle of the methodology is sound and 

well described, this procedure has until recently not been applied in practice due

to the considerable computational cost and (algebraic) complexity of the method.

[18] This paper describes a fi rst full implementation in the related setting of discrimi-

nant allocation on microarray data. Other papers by our group give further details

on computational background, application for leave-one-out in spectroscopy and 

further references.[19;20]

Similar to with ordinary leave-one-out cross-validation, double cross-validation 

removes each individual (sample) in turn from the data, after which the discriminant
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rule is fully recalibrated (and optimised for prediction) on the leftover data and using

the same procedure in each case. The resulting classifi cation rule is then applied to 

the left-out datum to obtain an unbiased allocation for this sample. This procedure

is then repeated across all individuals and for each person separately, after which

misclassifi cation rates are calculated on the basis of the thus validated classifi ca-

tions. The double-validatory aspect results from the fact that the discriminant rule

constructed to classify each left-out datum is optimised through a secondary cross-

validatory evaluation within the fi rst cross-validatory layer (i.e. full cross-validation 

again on each ‘leftover’ set after removal of an observation). In this manner, we are

able to combine predictive optimization and predictive unbiased validation in the 

same procedure, without loss of data -which is an important requirement to get

realistic estimates of error rate with high-dimensional data.

APPLICATION AND EVALUATION

Preprocessing of mass spectra

Some pre-processing can be benefi cial when it removes variation from the data

which does not relate to the group separation and might obscure an existing group 

separation. We describe the pre-processing steps carried out prior to the double 

cross-validatory classifi cation analysis.

First, we calculated for each sample the average intensity within each bin across 

the four mass spectra from the associated spots on the target plate. Then, we aggre-

gated contiguous bins on the m/z scale, such that the new aggregated bin size spans

approximately one Dalton at the left side of the spectrum and gradually increases

to a width of approximately 3 Dalton at the right hand side. For each of these new 

aggregated bins, we calculated for each spectrum the associated aggregate intensity 

by summing the intensities across the bins being aggregated. Subsequently, spectral

baseline was removed from each of the thus aggregated spectra separately using an

asymmetric least squares algorithm.[21]

Suppose x
bi 

= (x
bi1

, ... , x
bip

) denotes the ordered sequence of baseline corrected 

m/z intensity values for the ith sample at this stage of preprocessing. We then correct 

the spectrum for the typical intensity and variability across the spectrum by calculat-

ing the standardised values

x
b

x =
x

bij
 - medain(

j
x

bi
)

ii

(q
x

sbij  
x

 0.75
(x

bi 
) - q

 0.25
(x

bi 
)) ,

where q
0.25 

(x
bi 
) and q

 0.75 
(x

bi 
)) denote the 25th and 75th percentiles of the baseline cor-

rected intensity values for the ith sample. These steps bear close resemblance to the
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preprocessing procedure proposed by Satten et al , although our cruder version does 

not employ local estimates.[22] The fi nal preprocessing step is a log-transformation

x
ij 
= log(x

sbij
x +

j
α)

of each spectrum, where α is a real constant. We chose α = 100. The main purpose

of the log-transform is to ensure numerical stability of calculations. The above pre-

processing steps were applied for each sample and within each week separately,

which thus gives us the observations x1
i
and x2

i
from the fi rst and second weeks. It

is important to stress that the preprocessing of the data of any ith sample does not

involve use of any information based on the remaining samples {k|k ≠ i}, nor of the

duplicate replicate measured spectrum of the same sample on another week. This 

is an important requirement to ensure the validity of the cross-validatory evaluation 

described subsequently. 

Double cross-validatory error rates

First, we restrict ourselves to the data from the fi rst week. Table 2 displays the esti-

mated recognition rates and performance measures from an analysis of the fi rst week

data (leftmost 3 columns). All of the estimates are based on double cross-validation.

We used the average of sensitivity (Se) and specifi city (Sp) as our estimate of the 

total recognition rate (T), which implies we assume prior class probabilities to equal 

0.5. A threshold of 0.5 was also used to assign observations on the basis of the a-

posteriori class probabilities within the cross-validatory calculations. B denotes the

Brier distance defi ned 

B =B 1 ∑
ii
[1 - p (c(i)|x

i 
)]2n

where p(c(i)|i x
i
) is the double cross-validated predicted a-posteriori class prob-

ability for the correct class c(i) for each ii th sample and n is the total sample size. 

Likewise, AUC is a double cross-validation estimate of the area under the empirical

ROC curve defi ned as

AUC =C 1   ∑
iεG1

∑
iεG2

[I( II p (1|x
i 
) > p (1|x

i 
)) + 0.5 * I ( p (1|x

i 
) = p (1|x

j 
x ))],n

1
n

2

where G1 and G2 refer to the sample index labels for samples from the fi rst and 

second group respectively. Use of the threshold at 0.5 is appropriate and suffi cient

for an evaluation of diagnostic potential only. Application in e.g. a screening type

application would require a more careful choice of prior probability, which is how-
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ever a subtly different and also subsequent research question and not the focus of 

this paper.

The rightmost three columns of the table refers to a repetition of this entire double 

cross-validatory exercise, which replaces each sample feature vector x1
i
 with the

i

corresponding replicate measurement x2
i
 immediately prior to classifi cation of that 

i
ith

sample (i.e. replacing the feature vectors with the data from week 2 in the outermost

layer (only!) of the double cross-validatory calculation). Crucially and importantly,

construction of the corresponding discriminant rule for the classifi cation of each such

ith sample in the internal ‘calibration’ layer of the double cross-validatory procedure 

does of course remain based on the data from week 1. Note that as the replicate data 

from the third plate are not available, these results are based on the double cross-

validated predictions for the remaining 78 replicate samples from week 2 only.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
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Figure 1. Mean spectra for each group separately, after preprocessing. We plot negative intensity value for the control group (bottom mean

spectrum).
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Table 2. Double cross-validated classifi cation results for the colon cancer data. T is the total recognition rate. Se and Sp are sensitivity and

specifi city, respectively. B is the Brier distance and AUC is the estimated area under the ROC curve.

Method First week Second week

T (Se, Sp) B AUC T (Se, Sp) B AUC

Moore-Penrose S(r)r 92.6 (95.2, 90.0) 0.0618 97.6 94.4 (91.7,97.1) 0.0600 97.4

PCA Selection S(κ) 92.6 (95.2, 90.0) 0.0606 97.3 88.8 (80.6,97.1) 0.0914 96.8

Moore-Penrose Euclidian S(r)r λ (r)r = I (r)r 89.4 (88.9,90.0) 0.0829 96.0 87.2 (86.1,88.2) 0.0770 97.0

PCA Selection Euclidian S(κ) λ(κ)  = I (κ) 88.7 (87.3, 90.0) 0.0865 96.0 90.0 (88.9,91.2) 0.0795 97.0

Ridge S(r)r 92.0 (95.2,88.0) 0.0602 98.4 95.8 (91.7,100.0) 0.0469 97.9

At fi rst sight, the Moore Penrose implementation (top line of the table, both weeks

one and two) would seem to be the best performing and most consistent method. 

In week 1, Moore-Penrose, PCA-selection (both using the Mahalanobis distance) 

and ridge estimation perform equally well, but there seems to be an increase in 

error rate for week 2 for both the PCA-selection and ridge implementation. The

Euclidean distance based implementations are worse in the evaluation on the fi rst 

week, but recognition rates are consistent across both weeks when compared to the 

other methods. These results should be interpreted with some caution and require

some explanation. First of all, the ‘plain’ Moore-Penrose is leave-one-out only as

it does not involve choice of shrinkage or data reduction parameter (k or λ). The

deterioration of the PCA-selection implementations is partly due to the uncertainty 

in estimating the shrinkage terms or choice which is introduced by the double-cross-

validatory estimation. For the ridge implementation, performance is comparable to 

that from Moore-Penrose in week 1, which is not surprising since the chosen ridge

shrinkage parameter λ< 0.0001 for most observations. The effects of uncertainty 

in the determination of the shrinkage term become particularly apparent for PCA-

selection using Mahalanobis distance (second line in the table) in week 2. The two

Euclidean distance based implementations on the other hand seem more consistent

across both weeks. The reason is that component selection is much more stringent

for these two implementations, which selects only the fi rst 2 components for nearly 

all observations (with exception of two observations out of 113 for which only the

fi rst principal component is retained). This explains the reduced performance but

also the greater consistency of the classifi cation results. It is precisely because of this

reason that these results (from the Euclidean based implementations) are more cred-

ible and may well turn out to be more repeatable if the classifi er were applied in the

future to data from a new repeat experiment. For comparison, component selection 

in the Mahalanobis distance based PCA implementation is much less stringent and

selects (k = 23 for 53 observations, k = 28 for 28 observations and the remainder of 



Mass Spectrometry Proteomic Diagnosis: Enacting the Double Cross-Validatory Paradigm 85

the samples uses even more components). There is thus some evidence of insuf-

fi cient shrinkage for this method, and similarly for the ridge implementation.

Investigating bias: a permutation exercise

We have proposed double cross-validatory integrated estimation and assessment of 

statistical diagnostic rules on the basis of the argument that it should protect against

optimistically biased evaluations. We may check this property by ‘removing’ the class

labels c(i) from the samplesi i є {1, ... ,n}, randomly permute and then reassign them

to the samples. We then carry out the double cross-validatory procedure again for 

any of our classifi cation methods. Repeating this procedure several times will give an

indication of the biases involved, as the typical recognition rate -for example -should

equal 50% across a large number of permutations for an unbiased method.

Table 3. Permutation-based evaluation of double cross-validatory calculations for linear discrimination using principal component selection.

DBCV refers to the actual double cross-validatory results (see table 2). q2:5 and q97:5 are the 2.5 and 97.5 percentiles. B is the Brier distance

and AUC is the estimated area under the ROC curve.

Permutation results

Measure DBCV median q 2.5 q 72.5

Misclassifi cation rate 7.4 50.0 36.3 72.7

AUC 97.3 49.4 24.8 64.2

B 0.0606 0.324 0.200 0.446

Table 3 shows results from such an exercise for the pca-selection based algorithm

across more than 600 such permutations. The results, both for misclassifi cation rate

as we fi nd median rates and areas of 50% exactly. Table 3 also includes 95% con-

fi dence intervals for the permutation-based performance measures. These give an 

indication of the variability which can be expected with purely random data and 

can be compared with the actually observed double-cross-validation results in our 

study (second column of the table). Clearly, the distance between the validated mea-

sures actually observed and even the extreme bounds of the random permutation

confi dence intervals is considerable, demonstrating the presence of discriminating

information in the mass spectra. 

Data reduction and post-hoc exploratory analysis

We wish to get an indication of which markers drive the classifi cation. To explore

these aspects, we can complement the double cross-validatory analysis with post-

hoc exploratory analyses. We consider two analyses, the fi rst of which is based on 

a very ad hoc algorithmic approach through pre-selection of a small set of adjacent
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bins which together account for most of the variation in the spectra. The second

explores the linear discriminant weights from a post-hoc fi t on the full data.

Data reduction

Initialize I = {1,...,p} as the ordered set of bin indices and V = {v1,...,vp
} the associated

set of variances for all p bins in the preprocessed spectra and across all n samples,

such that v
j 

v = ∑
i
 [(x

i ij
 - 

j jj
)

jj
2]/(n - 1), where

jj
 =

j
∑x

ij 
/n is the sample mean and j is the

bin index number. Calculate the constant vref = q
0.95

(V ) as the 95% percentile of all 

p bin variances. Now initialize the bin selection set B as the set containing the bin

indicator j for which the maximum variance vj is observed in the set V . Initialize

the set of intensity readings X
s 
= {x

[j[ ]jj
|j є B} corresponding to the set B, where x

[j[ ]jj
=

(x
1i 

, ... , x
nj 

)T. We write m = (m
1
,...,m

n
)T as the set of means m

1
= mean({x

ij
|

j
j є B}),

i :1, ... ,n. Defi ne cor(a, b) to be the coeffi cient of correlation between two vectors

a and b. 

Now run the following algorithm. 

The algorithm identifi es a set of ‘clusters’ of bins. There is no assumption on either 

shape of the signal or of monotonicity involved (a single cluster may span mixture of 

underlying peaks). Running this algorithm on the data from the fi rst week fi nds the

set of indices B that corresponds to the bins which account for most of the variation 
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in the data. Applying this to our data results in a subset of 330 bins (in 32 bin clus-

ters -but note it is possible that we visit the same contiguous region of bins several 

times). Repeating the entire double cross-validatory procedure using the principal

component selection shrinkage procedure on this reduced set yields recognition

rates as described in table 4, which are not inconsistent with those from the full 

double cross-validatory evaluation shown in table 2. (Note however, ”double-cross”

error rates from this algorithmic approach will be biased as they are based on feature 

selection from the full data.)

Table 4. Results from re-running double cross-validatory calculations after bin-selection for the colon cancer data (week 1 data only). T is the total

recognition rate. Se and Sp are sensitivity and speci¯city respectively. B is the Brier distance and AUC is the estimated area under the ROC curve.

Method T (Se,Sp) B AUC

PCA-selection S(κ) 90.0 (92.1, 88.0) 0.0807 96.5

PCA-selection Euclidisch S(κ) λ(κ)  = I (κ) 89.0 (92.1, 86.0) 0.0824 95.4

Post-hoc data exploration

The second aspect which is of interest is a post-hoc exploration of the (linear)

discriminant coeffi cients β (β
1
, β

2
, ... , β

p
β )T =T S-1

(k) ( 1
-

2
)T [see (Seber 1984) or (HandT

1997)], where
1

and
2

are the two sample group means (for cases and controls).

[9;17] An appropriate and convenient way to summarize the information contained 

in these coeffi cients is via the associated correlations of the measured intensities for 

each jthjj  bin with the class indicator, which are easily calculated as ρ
j

ρ = s
j xj

β
j 

β / s
g
, for 

j = 1, ... , j p where s
xj
 = 

j
√v

j
v  is the standard deviation at the 

j
jthjj  bin and s

g
the standard

deviation of class indicators. We will base this investigation on the linear discrimi-

nant fi t using the Euclidean distance on the fi rst two principal components (use S
(k)

,

with k = 2 and Λ
(k)

 = I
(k)

), as the double validatory assessment of this classifi er clearly 

identifi es the fi rst 2 components as containing the discriminatory information.

At this point, we can carry out the analysis starting from a linear discriminant fi t 

based on the full data. Alternatively, we may equally well base the evaluation on a

recomputation of the linear discriminant fi t on the reduced data described in previ-

ous subsection (in both cases we use the data from the fi rst week). Figure 2 (middle

section) shows a plot of the correlation coeffi cients, subsequent to data reduction

(previously described selection of 330 bins, but of course now using all 113 samples

from the fi rst week). We only show results within the m/z region between 1200 and 

2200 Dalton, as the correlations are effectively zero in the remainder of the m/z 

range. Evidently, this immediately implies that the separating information is to be 

found within the 1200 to 2200 m/z range. 
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Figure 2. Discriminant correlation coeffi  cients ρjρ = sxj βj β /sg of observed intensity values with the class indicators in the m/z range from 1200 up

to 2200 Dalton. We have plotted the fi rst two principal components above these correlations for visual comparison and interpretation. Below the 

correlations, we plot mean spectra per group (i.e., the vectors x1 and x2, as in fi gure 1). The y-axis is only relevant to the correlation coeffi  cient,

while we have vertically off set and rescaled both components and mean spectra to aid visual comparison across the m/z range.
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We note that the picture shown is virtually indistinguishable by eye from that 

which results from an analysis of the full data (not shown to save space). The

reason for this is that the data reduction restricts attention to the dominant sources

of variation, which is not very different from what is achieved through principal 

component reduction. Immediately above the correlation coeffi cients graph, fi gure

2 displays the fi rst two principal components (vertically offset and rescaled to aid

visual interpretation) and again based on the reduced data. In this case, the distinct

bin subsets selected by the previous data reduction step are clearly visible in the

two components, and display the characteristic ‘peaks’ we would expect to identify. 

Disjoint neighbouring bin sets are connected with straight lines. The thus calculated

components are a close approximation to those which would result from an analysis

of the full data, as we should expect (results not shown). As for the correlation coef-

fi cients, any conclusions are therefore identical whether we use the reduced data or 

not, although the data reduction step perhaps makes the component plot easier to 

‘read’. At the bottom of the graph we give the mean spectrum again for each group

separately and from the original data within the m/z range of interest, as shown in

fi gure 1 also, along the complete m/z range.

From this graphical analysis, it is clear how the linear discriminant correlation coef-

fi cients identify two major discriminating contributions, the fi rst of which is centered

at 1467.7 Dalton and the second at 1867.7 Dalton. Furthermore, the correlations 

have opposite signs at these locations, which would indicate that the discriminating

information can be summarised through a contrast effect between corresponding

measured intensities in the spectra. An investigation of the principal components

plots above learns that the contribution at 1467.7 Dalton is primarily accounted for 

by the fi rst component, which also already contains the contrast with intensities

recorded at 1867.7 Dalton. This contrast is then further amplifi ed by the second 

component which identifi es a second orthogonal source of variation relative to the 

fi rst component, centered predominately at the already identifi ed peak at 1867.7 Dal-

ton. Note how each component identifi es several other smaller contributions, which

could also be of interest for further investigation. Comparing these graphs with the

within-group mean spectra, the resemblance with the principal components plots at

the top of the fi gure are striking and would suggest that the fi rst component may 

be primarily explained through variation within the control group at 1467.7 Dalton. 

Likewise, the second component accounts for a substantial intensity peak at 1867.7

Dalton within the colon cancer group.

To investigate this further, fi gure 3 provides scatter plots of cases and controls 

versus the fi rst 2 components (left plot) and between intensities at 1467.7 and 1867.7

Dalton respectively (right plot). The resemblance between both graphs is striking as

the right plot can be obtained (virtually) after clockwise rotation of the left plot. As 
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Figure 3. Scatter plots distinguishing cases (o) from controls (+). On the left we plot the second versus the fi rst principal component. The right

plot shows intensity values at 1867.2 m/z versus those at 1467.7 m/z.
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we can see, an increase in intensity at 1467.7 Dalton separates controls from cases. 

Similarly, an increase in intensity at 1867.7 Dalton separates cases from controls. The 

same interpretation applies to the principal components scatter plot, which confi rms 

our interpretation of the data in fi gure 2. Figure 4 provides a concise summary 

graphical illustration of the results. We calculate the contrast (difference) for all 113

individuals participating in the study between the measured intensities at 1467.7 and 

1867.7 Dalton and display the differences in a dot plot using distinct plotting sym-

bols for cases and controls respectively, which demonstrates the separation between

both groups. 

For further discussion of the clinical background, study rationale, setup, execution 

and interpretation of results from a substantive clinical perspective, we refer to (Noo

2006) and subsequent papers from these authors.

DISCUSSION

Double validatory analysis

Use of a separate validation or test set is often precluded in high dimensional prob-

lems, due to sample size restrictions. In our case, this arises because the experiment 

was carried out in an academic medical center, which implies (colon cancer) cases 

are restricted to a maximum of about 50 patients yearly and with more advanced 

disease. Selection of appropriate control samples may be more diffi cult still, even if 

we use surrogate serum samples -as in this experiment. Larger numbers of cases may 

be recruited by setting up multi-center trials and using longer recruitment periods.

However, researchers may need some justifi cation in the form of a small feasibility 

study before setting up such complex trials. It is in such situations that double cross-

validatory analysis can be most useful to help researchers make the maximum use 

of the scarce data available. The other option of reducing the available calibration

data prior to optimization of any discriminant rule by setting aside data (perhaps for 

both a ‘predictive tuning’ as well as ‘validation’ set) is not as innocent as appears

at fi rst sight. This is because it will often reduce the calibration set beyond what is

−1 −0.5 0 0.5 1 1.5
contrast between intensities at m/z 1467.7 and m/z 1867.7

4. Plot of the diferences between intensities at 1467.7 m/z and 1867.7 m/z across all observations, using distinct plotting symbols for

each group: cases (o) and controls (+).



Ch
ap

te
r 5

92

needed for reasonable calibration. Moreover, reducing the size of the calibration data

changes the condition of the estimation itself. To put this simply: we are not only 

reducing the data by setting-aside data from the calibration set, but also changing the 

discriminant problem itself. This is again particularly the case in high-dimensional

cases such as in proteomics where the problem will typically be ill-conditioned.

The approach we have described in this paper avoids these diffi culties through 

application of double cross-validation to combine the two aspects of predictive op-

timization and validation. Subsequent to this basic evaluation of the discrimina-

tory potential of the spectral data, a more exploratory analysis can be carried out, 

provided we are carefully to interpret results cautiously without contradicting the

primary validated evaluation. We discuss a number of issues related to application 

of (double) cross-validation.

Full validation

One potential cause for concern is whether double cross-validation precludes the 

need for a completely separate validation set entirely. Is ‘double-cross’ also ‘full’ vali-

dation? The simple answer to this question is that it can not be, as any form of cross-

validation must typically always remain ‘within-study’ validation and there can be 

factors beyond our knowledge which have influenced the study results. Good scien-

tifi c practice requires that we replicate results in a separate repeat study. This caution 

applies particularly to the defi nition of the case and control group, as the impact of 

systematic effects due to measurement can be minimised through use of randomised 

block design. Repeat studies may help to detect such problems. Note however, that

these criticisms would also have applied to the standard practice of using within-

study set-aside test and validation sets. Meanwhile, double cross-validation should 

give reasonable protection against overfi tting and unbiased estimates of error rate at 

the time of study. Double-cross represents the maximum usage we can make of the

data for joint predictive optimization and validation within a single experiment. Even

when separate test and validation sets are available however, researchers may still 

be interested to compare the thus validated re-search fi ndings with those from a fully 

double cross-validated analysis on the combined data in order to evaluate whether 

the greater sample size would have allowed for better calibrations -possibly because

of improved detection of the smaller signal sources in the spectra.[23] More gener-

ally, we could speculate where the validation process should stop. Typically, the 

performance of any decision rule or classifi er has a tendency to ‘decay’ over time. To 

assess this, subsequent experiments are needed to verify the estimated error rates.



Mass Spectrometry Proteomic Diagnosis: Enacting the Double Cross-Validatory Paradigm 93

What classifi er are we evaluating? 

Two related questions to the previous discussion are ‘What classifi er does double 

cross-validation evaluate?’ and ‘How to assign a new observation?’. Indeed, each

observation has its own classifi er in the double cross-validatory evaluation. This

seems to run counter to the intuition that we calibrate a discriminant rule fi rst and 

only then evaluate. In that case, the estimated error rate is taken as a reflection of the

diagnostic abilities of that particular classifi er and the allocation of a new sample is 

immediate. There is however no logical inconsistency here. Double cross-validation 

estimates the error rate we would get ‘if we were to apply leave-one-out’ on the 

whole data. Once we know what the error rate is, we may choose the specifi c 

classifi er (choice of k or λ in our case) for allocation of future samples (if required) 

through application of ordinary leave-one-out on the whole data (this is in line with

the discussion presented by Mervin Stone.[7] With double cross-validation, there are 

however other options to allow allocation of new samples which have not yet been

discussed in the literature. In our case for example, we may use the mode of the 

number of components selected (k) across all samples and then re-estimate the dis-kk

criminant model with this choice from the full data. More adventurous still, we could 

retain each of the n classifi cation rules which are calibrated within the double-cross 

procedure and use this ensemble (of classifi ers) for allocation of any future new 

observation x. This could be done by calculating the associated a-posteriori class

probabilities p
i 
(g(( |x), for each i є {1, ... ,n} and g є {1, ... ,G}, where pG

i
is obtained from

the discriminant model calibrated in the double-cross procedure when the ith datum

has been removed from the data (in the outer shell of the double-cross procedure). 

Classifi cation may then be based on the mean across these n a-posteriori class prob-

abilities for any gth class. We will not pursue these options further in this paper. 

Validation and the future of (statistical) proteomics

Rigorous emphasis on validation and proper design can help to establish long-term

credibility for proteomic research and more general bioinformatics applications. 

The double-cross approach with randomised block design described in this paper 

represents one contribution towards this goal. Many other steps may however be 

taken to enhance the quality of such research studies. One example is to promote 

use of ‘truly’ separate validation sets, as obtained from subsequent separate and ad-

ditional sampling from the population of interest and measurement through identical 

protocols as applied in the fi rst study. In practice, this will be particularly relevant

for those studies which indicate potential from the fi rst within-study verifi cation of 

diagnostic ability. Editors of scientifi c journals can also contribute much to inspire a

conservative attitude by careful scrutiny of the papers presented for publication. Per-

haps simple check lists could be developed to help reviewers establish the degree 
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to which validatory evaluation did (or should) contribute to the research fi ndings

presented. This may also prevent mistakes from slipping through the net. Although

this may cause considerable annoyance in some cases when we face the diffi cul-

ties of establishing results in the short term, but may enhance scientifi c credibility 

of (proteomic) research as a whole in the long run. Results from the present study 

show that, with good designed experimentation, these precautions need not form 

insurmountable obstacles.
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