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ABSTRACT

Purpose

Serum protein profi ling is a promising approach for classifi cation of cancer versus 

non-cancer samples. The objective of our study was to assess the feasibility of mass

spectrometry based protein profi ling for the discrimination of colorectal cancer pa-

tients from healthy individuals.

Experimental design

In a randomised block design pre-operative serum samples obtained from 66 col-

orectal cancer patients and 50 controls, were used to generate MALDI-TOF protein

profi les. After pre-processing of the spectra, linear discriminant analysis with double 

cross-validation was used to classify the protein profi les.

Results

A total recognition rate of 92.6%, a sensitivity of 95.2% and a specifi city of 90.0% 

for the detection of CRC were shown. The area under the curve of the classifi er was

97.3%, which demonstrates the high, signifi cant separation power of the classifi er. 

Conclusions

Double cross-validation shows that classifi cation can be attributed to information in 

the protein profi le. Although preliminary, the high sensitivity and specifi city indicate 

the potential usefulness of serum protein profi les for the detection of colorectal

cancer. 
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INTRODUCTION

Colorectal cancer (CRC) is among the most common malignancies and remains a

leading cause of cancer-related morbidity and mortality. It is well recognised that 

CRC arises from a multistep sequence of genetic alterations that result in the trans-

formation of normal mucosa to a precursor adenoma and ultimately to carcinoma.

Given the natural history of CRC, early diagnosis appears to be the most appropriate 

tool to reduce disease-related mortality.[1;2] Currently, there is no early diagnostic

test with high sensitivity, specifi city and positive predictive value, which can be used

as a routine screening tool. Therefore, there is a need for new biomarkers for col-

orectal cancer that can improve early diagnosis, monitoring of disease progression 

and therapeutic response and detect disease recurrence. Furthermore, these markers 

may give indications for targets for novel therapeutic strategies.

Proteomic expression profi les generated with mass spectrometry have been sug-

gested as potential tools for the early diagnosis of cancer and other diseases. Differ-

ent protein profi les may be associated with varying responses to therapeutics. It has 

been postulated that on the basis of the presence/absence of multiple low-molecular-

weight serum proteins using time-of-fl ight (TOF) mass spectrometry technologies,

such as SELDI-TOF and MALDI-TOF, biomarkers can be identifi ed.[3-6] Although 

the data from these studies are encouraging, critical notes have been made on both 

study design and experimental procedures for proteomic profi ling.[7-9] In addition,

the importance of avoiding confounding biological variables, as well as technologi-

cal factors that may bias the results, have previously been stressed by several au-

thors.[10;11] Another recurrent topic for debate is the use of independent validation 

sets for the classifi cation of diseased versus healthy individuals. A specifi c problem

in the discovery-based research fi eld of clinical proteomics is overfi tting. Overfi tting

may occur in the analysis of large datasets when multivariate models show apparent

discrimination that is actually caused by data over-interpretation, and hence give rise 

to results that are not reproducible.[9;12;13] The chance of overfi tting, however, can 

be reduced by appropriate application of validatory estimation and assessment, such

as through application of double cross-validation, when properly implemented.

The objective of this study was to assess the feasibility of mass spectrometry based 

protein profi ling for the discrimination of colorectal cancer patients from healthy in-

dividuals. In addition to standardizing technical factors and biological variations, we

performed blinded tests and employed a randomised block design experimentation

to minimize impact of potential confounding factors and to avoid bias. To minimize

danger of overfi tting, among other reasons, we used a fairly infl exible classifi cation

method based on fi rst-and-second order statistics only. Specifi cally, Fisher linear 

discriminant analysis was employed with double cross-validatory integrated estima-
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tion and validation of error rate on the entire dataset to calculate an unbiased error

rate assessment. 

MATERIAL AND METHODS

Subjects

Serum samples were obtained from a total of 66 colorectal cancer patients one day 

before surgery. All patients with stage IV disease had synchronous metastatic disease 

confi ned to the liver. Colorectal cancer was histological confi rmed on surgical speci-

mens and preoperatively assessed with abdominal CT scan and carcinoembryonic 

antigen (CEA) levels. The extent of tumour spread was assessed by TNM classifi cation

based on histological examination of the resected specimen. All stages of colorectal

cancer were represented in the patient group. The median age of the patient group 

was 62.8 years (range 32.6-90.3) and the male to female ratio was 31/35. Patients

were included from October 2002 till December 2004 in our Center. The control

group consisted of 50 healthy volunteers. The median age of the healthy symptom-

free control group was 49.7 years (range 25.9-76.6) and the male to female ratio was 

21/29. The controls were included from October till December 2004 (Table 1). 

Study design

Having identifi ed plate-to-plate and day-today variation as important potential batch

effects, we used a randomised blocked design.[14;15] All the available 116 samples

from both groups (controls and colorectal cancer) were randomly distributed across

3 plates in roughly equal proportions (Table 2). For colon cancer, the distribution of 

stadia across plates was again in random fashion and in approximately equal propor-

tions (Table 3). The position on the plates of samples allocated to each plate was

randomised as well. Each plate was then assigned to a distinct day, which completes

the design. Analysis was carried out on 3 consecutive days, Tuesday to Thursday,

Table 1. Patient characteristics.

CRC patients Controls

inclusion results

n = 66 63 50

Age (mean) 62.6 62.2 49.7

Age (range) (32.6-90.3) (32.6-90.3) (25.9-76.6)

Male/female ratio 34/32 31/32 21/29
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processing a single plate each day. A duplicate of this randomised blocked study was 

performed in the following week.

Serum samples

Informed consent was obtained from all patients and the Medical Ethical Committee

approved the study. All blood samples were drawn while the patients or healthy 

controls were seated and non-fasting. The samples were collected in a 10 cc Serum

Separator Vacutainer Tube and centrifuged 30 min later at 3000 rpm for 10 minutes.

The serum samples were distributed into 1 ml aliquots and stored at -70 ºC until the

experiment.[16]

Table 2. Distribution and randomisation of serum samples of colorectal cancer patients with diff erent TNM stage before and after the MALDI-

TOF experiment. The distribution of stadia across plates was performed randomly and in approximately equal proportions.

Plate 1 Plate 2 Plate 3 Total

Colorectal cancer 22 22 19 63

Controls 17 17 16 50

Total 39 39 35 113

Table 3. Distribution and randomisation of serum samples of diff erent groups over the three MS target plates.

TNM stage Plate 1 Plate 2 Plate 3

Inclusion I 4 4 3

II 10 10 8

III 4 4 4

IV 4 4 4

0 4 3 3

Total 26 25 22

Exclusion I 0 0 1

II 0 0 1

III 0 0 1

IV 0 0 0

0 4 3 3

Total 4 3 6
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Isolation of peptides 

The isolation of peptides from serum was performed using the magnetic beads,

based hydrophobic interaction chromatography (MB-HIC) kit from Bruker, mainly 

according to the manufacturers instructions, adapted for automation on an 8-channel

Hamilton STAR® pipetting robot (Hamilton, Martinsried, Germany). Magnetic beads 

with C8- functionality (MB-HIC8) were divided in 5-μl aliquots in a 96-well microtiter 

plate, which was placed on the magnetic beads separation device (MPC®-auto96,

Dynal, Oslo, Norway), with the magnet down. Ten μl MB-HIC binding solution and 

5-μl serum sample were added to the beads and carefully mixed using the mixing

feature of the robot. The sample was incubated for 30 sec and the magnet was lifted, 

followed by a 30 sec waiting interval to settle the magnetic beads. The supernatant 

was removed and the magnet was lowered again. The magnetic beads were washed

three times with MB-HIC washing solution (also provided with the kit) lifting and 

lowering the magnet as needed. The peptides were eluted from the beads using 

10-μl 50% acetonitrile and 2-μl of this eluate was transferred to a fresh 384-well 

microtiter plate (Greiner). Most of the remaining eluate (6-μl) was transferred to an 

auto sampler vial containing 54-μl water and stored for later use. 15-μl α-cyano-4-

hydroxycinnamic acid (0.3 mg/l in ethanol: acetone 2:1) was added to the 1-μl eluate

in the 384-well microtiter plate and mixed carefully. 1-μl of this mixture was spotted

in quadruplicate on a MALDI AnchorChip™ (Bruker Daltonics, Bremen, Germany).

Protein profi ling

Matrix Assisted Laser Desorption Ionisation Time-Of-Flight (MALDI-TOF) mass spec-

trometry measurements were performed using an Ultrafl ex TOF/TOF instrument 

(Bruker Daltonics, Bremen, Germany) equipped with a SCOUT ion source, operating 

in linear mode. Ions formed with a N2 pulse laser beam (337 nm) were accelerated 

to 25 kV. With this specifi c serum preparation peptide/protein peaks in the m/z

range of 960 to 11,169 Dalton were measured. An independent mass spectrometer 

operator performed the experiments at 3 consecutive days after cleaning of the 

instrument. One week later the experiment was duplicated in exactly same order.

Hereafter the entire process of capturing and concentrating serum proteins using C8

magnetic beads including the generation of readouts of the MALDI-TOF spectra will

be designated as the protein profi ling procedure.

Data processing

All unprocessed spectra were exported from the Ultrafl ex in standard 8-bit binary 

ASCII format. They consisted of approximately 45,000 mass-to-charge ratio (m/z) 

values, covering a domain of 1160-11,600 Dalton. To increase robustness, the aver-

age of four spots was used to represent one serum sample. Subsequently, we lightly 
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smoothed the spectra using the Whittaker[17] smoother. Due to the quadratic nature 

of the TOF-equation, the high-resolution spectra were binned using a linear scaling 

at the time scale, resulting in bin widths of approximately 1 Dalton at the beginning 

of the spectrum and 3 Dalton at the end at the mass/charge scale. The resulting spec-

tra generally showed strong baseline effects. These were removed using an asym-

metric least squares algorithm. To normalize the spectra, we calculated the median 

intensity of every spectrum and subtracted it from the original spectrum. Each of the 

thus normalised spectra was then also divided by the interquartile range of intensity 

within that spectrum. We consider this more robust than normalization of the spectra

on the average, as it is less sensitive to the most extreme intensities. Finally, prior 

to classifi cation and evaluation of error rate, the logarithm was taken of all intensity 

measurements (predominantly to ensure numerical stability of computations).

Statistical data-analysis 

Fully validated classifi cation error rates were estimated based on a classical Fisher 

linear discriminant analysis through complete double cross-validatory joint estima-

tion and assessment of class predictions, as is further explained in appendix 1.[18-20] 

Instead of ordinary leave-one-out cross-validatory choice of k, we employ double

cross-validation. This is an extension of leave-one-out cross-validation which com-

bines validatory ‘choice of model’ (the parameter k in this case) with ‘predictivek

assessment’ (of the same model, through use of error rate or other suitable summary 

statistic). The reason for this additional “technical complication” is that we do not 

wish to incur the bias inherent in the assessment, which would normally result 

from a model choice based on ordinary leave-one-out validation only. In a double

cross-validatory evaluation, we remove each individual in turn from the data (just 

as in ordinary leave-one-out cross-validation), after which the discriminant rule is

fully recalibrated and optimised for prediction on the leftover data (now of size n-1,

where n is the total initial sample size) and using the same procedure in each case. 

The choice of the calibration rule (i.e. choice of k in this case) to classify the left-k

out observation is then again based on a leave-one-out cross-validatory estimation

(hence the name ‘double-cross’) within the leftover set of size n-1. The resulting

classifi cation rule is then applied to the left-out datum to obtain an unbiased alloca-

tion for this sample. This procedure is then repeated across all individuals and for 

each person separately, after which we can calculate a truly unbiased estimate of the 

misclassifi cation rates on the basis of the thus validated (and calibrated) classifi ca-

tions. In other words, ‘double-cross’ is actually ‘leave-one-out cross-validation within

leave-one-out cross-validation’ and it is precisely because of this that we can avoid

bias in error rate estimation that an ordinary application of standard leave-one-out 

choice would imply.
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RESULTS

In the fi rst week three different randomised target plates were successfully mea-

sured on three consecutive days in the middle of the week. A duplicate experiment 

Figure 1a

Figure 1b

Figure 1. MALDI-TOF spectrum of a colorectal cancer patient (1a) and a healthy subject (1b) after peptide isolation with C8 magnetic beads. On

the Y-axis the relative intensity is shown. The mass to charge ration (m/z) is demonstrated on the X-axis in Dalton.
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was performed in the second week on the same days. Figure 1 shows a raw data 

spectrum, directly obtained from the MALDI-TOF mass spectrometer. Before pre-

processing and further analysis a mean spectrum of each sample was calculated over 

all four spots that were measured for each sample. In case all four spots from one 

sample showed spectra of poor quality due to a technical problem, the sample was

left out of the analysis. This was the case for 3 CRC patients’ samples. The above-

described pre-processing steps resulted in a sequence of 4483 normalised m/z values 

ranging from 1160 to 11,600 Dalton, for each individual.

Detection of colorectal cancer

Double cross-validatory analysis and evaluation carried out on the protein spectra mea-

sured in week 1, correctly classifi ed 45 of the 50 controls as not cancer. Sixty of the 63

cancer samples were correctly classifi ed as malignant, including 9 of 10 TNM stage I pa-

tients (Table 4(( ). The remaining 2 misclassifi ed patients had stage II disease. All patients

with stage III and IV disease were correctly recognised as malignant within the double 

cross-validatory evaluation. These validated results thus yield a total recognition rate of 

92.6%, a sensitivity of 95.2% and a specifi city of 90.0% for the detection of CRC (Table 5).

To analyze the actual discriminative power of the classifi er, we produced an ROC-curve 

(again based on the double cross-validatory classifi cation probabilities), visualizing the 

performance of the two-class classifi er in fi gure 2. The AUC of the classifi er was 97.6%.

Table 4. Double cross-validatory classifi cation of serum samples. A positive test results assigns subjects to the CRC group and a negative to the

controls. In the horizontal plane the actual histologically confi rmed diagnosis is stated.

Test results for detection of CRC

Neg Pos Total

Controls 45 5 50

CRC patients 3 60 63

48 65 113

Table 5. Cross-validated classifi cation results for the detection of CRC. TRR is the total recognition rate; Sens and Spec are sensitivity and

specifi city respectively. AUC is the estimated area under the ROC curve.

Method First week Second week

TRR Sens Spec AUC TRR Sens Spec AUC

PCA selection 92.6 95.2 90.0 97.3 88.8 80.6 97.1 96.8
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We repeated the entire double cross-validatory evaluation executed with the week

1 data using the duplicate measured spectra from week 2. This procedure was identi-

cal to that carried out in week 1 and used the same calibration spectra. However, 

prior to classifying each left-out datum in the outer “shell” of the double cross-

validatory procedure, we substituted the week 1 data with the corresponding mea-

sured spectra from the same sample in week 2. In this manner, we could calculate a

double cross-validatory error rate, which takes the effect of replicate measurement of 

the spectrum (and thus also recalibration of the equipment) into account. The effect 

of classifying the remaining replicate data was that the recognition rate dropped to

88.8%. The sensitivity and specifi city for the detection of CRC for the second week 

data was 80.6% and 97.1% respectively (Table 4). The associated AUC of this repeat 

double cross-validatory estimation on week 2 was 96.8%.

It is of interest to evaluate bias of the double cross-validatory calculations. Hence, 

we performed a permutation exercise, which randomly permutes and reassigns 

the class labels across subjects and then repeats the entire double cross-validation 

procedure. Carrying out this procedure more than 600 times resulted in a median 

recognition rate of 50.0% (95% confi dence interval is [36.3, 72.7]). The median AUC

was 49.4% with confi dence interval of [24.8, 64.2]. As both median recognition rates 

Figure 2. ROC-curve for the double cross-validated two-group classifi er. The true positive recognition rate (sensitivity) is demonstrated on the

y-axis against the false negative recognition rate (1-specifi city) on the x-axis of the classifi er.
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and AUC’s equal 50%, there is thus no substantial evidence of bias remaining within

the cross-validatory calculation.

Having executed the above-described validatory evaluation, we can explore the 

nature of the classifi cation through a post hoc analysis. We found that the fi rst 

two principal components provide most of the between-group separation. Figure 3

shows a plot of the correlation coeffi cients, with the class indicator, which can be 

calculated from the linear discriminant weightings in the region between 1160 and

11,600 Dalton.[20;21] The remainder of the plot is not shown, as the coeffi cients are 

effectively zero in that range. As can be seen, the classifi cation is achieved primarily 

through a contrast in peak intensities between the fi rst and second principal compo-

nent. This can also be seen from the scatter plot shown in fi gure 4: low intensities at 

the fi rst peak for cases separates cases from controls. Likewise, a small contribution 

for controls at the second peak separates controls from patients. To illustrate these 

results further, we can simply calculate the contrast between the two peak intensities 

directly across all subjects and construct a simple one-dimensional summary of the

data, as shown in the histogram displayed in fi gure 5, which shows overlapping

histograms of this (ad hoc) contrast for each group separately. The separation is 

clearly visible. We may also quantify the signifi cance of this difference by performing

a two-sample Student t-test on this contrast, which is t=14.0 (p<0.0001). 

Figure 3. Correlation coeffi  cients of two fi rst principal components with the class indicator. The correlation coeffi  cients were calculated from the

linear discriminant weightings. The negative correlation of the fi rst peak is an indicator for the control group and the positive correlation of the

second peak points out the cases.
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first component 

Figure 4. Scatter plot of the fi rst two principle components on basis of which the classifi cation patient-control group was made.

Figure 5. Histogram showing the diff erence between the normalized intensities of the two most discriminating “peaks” (bins). The X-axis shows

the diff erence between the normalized intensities of the peaks. On the Y-axis the number of subjects is displayed.
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DISCUSSION

Our study supports the hypothesis that serum protein profi les can discriminate a

normal from a malignant state of organs, in our case of the colon. Here we show 

that, based upon information in MALDI-TOF serum spectra, a classifi er could be 

constructed for the detection of CRC. This classifi er, calibrated and validated on

spectra of week one demonstrated a sensitivity and specifi city of 95.2% and 90.0% 

respectively. Thirty-four patients out of thirty-seven with early stage disease (stage 1

and 2) and all patients with stage 3 or 4 disease were correctly classifi ed as having

cancer. For the misclassifi ed control subjects it was not possible to retrieve the cur-

rent physical state as it concerned anonymous healthy controls.

Sensitivity and specifi city of 80.6% and 97.1% respectively was achieved when the 

entire double cross-validatory evaluation was repeated for the data of week 2. The

latter evaluation, through use of replicate measurements within the double cross-

validation, is likely to provide the more realistic assessment of true error rates and 

appears to better represent possible diagnostic potential as will be discussed further

in this paper.

Although previous studies have reported similar high classifi cation results for 

various solid tumours, we prefer evaluation through a thorough study design and 

double cross-validation of classifi cation as proposed in this study.[3-6;12;22;23] As 

a great variety of different discriminating peaks for the same malignancy have been

described,[3;4;24] caution with proteomic data has been stressed before.[7;8] The dis-

crepancies in discriminating protein profi les, found by different research groups, lead

to serious concerns regarding biological variations and technological reproducibility 

issues. Therefore, we used a standardised and well-documented sample collection

and a thorough study design, matching biological variables and pre-analytical condi-

tions.[16] Still, patient samples from all stages of CRC were equally distributed over 

the different target plates, as was the male/female ratio between the two groups,

excluding these factors as a discriminator in the detection classifi er. Unfortunately 

there was signifi cant difference in age; the control group being younger than the

CRC patients. Ideally, the control group should consist of age-matched symptom-free 

individuals undergoing a colonoscopy showing no aberrations. However, due to the

nature of the intervention, ethical legislation and the increasing disease burden with 

ageing this is diffi cult to realize in clinical practice. Notwithstanding, we performed 

an analysis to examine the differences in intensity of most discriminating peaks 

based on age, gender and sample age. In the present study there was no signifi cant 

contribution of one of these factors on the most discriminating peaks of our clas-

sifi cation model (data not shown).
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A source of bias may be the presence of batch effects, such as day-to-day varia-

tion or plate-to-plate variation. The presence of batch effects is unavoidable and 

– rather than to eliminate them from the design – a better approach is to account 

for and accommodate these effects, in such a way that they do not lead to errors

of artifi cially induced group separation. Consequently, we randomly distributed the 

available samples from each group across the batches such that proportions were

equal across batches within group. The so-called randomised block design ensured 

that the batch effect – if it materialised – would not induce an artifi cial between-

group effect.[14;15] 

A crucial point of discussion in the evolving fi eld of clinical proteomics is valida-

tion of classifi cation.[9;25] Given the sample size achievable within the experiment,

use of a separate (possibly set-aside) validation set was precluded. The other prob-

lem is ‘predictive optimisation’. However, as evaluation of predictive performance 

of the classifi er is our primary focus, it is crucial that calibration is not carried out

on the same data used for validation, which in turn would require an additional 

tuning set. Again, this would greatly increase the burden of collecting suffi cient 

samples. For these reasons, other studies often carry out predictive optimisation on

the full data in practice - which results in optimistically biased error rate evaluations, 

particularly with high-dimensional data such as in mass spectrometry proteomics.[26]

As we have already suggested, another option is to reduce the available calibration 

data prior to optimisation, so as to set aside data, both for a training and validation

set. However, this ‘solution’ is not as innocent as would appear at fi rst sight, since it

typically reduces the calibration set beyond the point of what is needed for reason-

able calibration. Once more, this is particularly the case in high-dimensional cases

such as clinical proteomics, where samples of malignancies are relatively diffi cult to

obtain. Both problems may be avoided by carrying out a double-cross-validatory ap-

proach, which avoids the need for separate test and validation sets to yield unbiased

error rate estimates. The double validatory aspect of the procedure results from the

fact that the discriminant rule constructed to classify the left-out data was optimised

through a secondary cross-validatory evaluation within the fi rst cross-validatory layer 

(i.e. full cross-validation again on each ‘leftover’ set after removal of an observa-

tion). In this manner, we are able to integrate predictive optimisation and predictive 

unbiased validation in the same procedure, without loss of data – which is a crucial 

requirement to get realistic estimates of error rate with high-dimensional data while 

reducing the risk of overfi tting.[27] Although the principle is sound and understood, 

this procedure has until recently not been applied in practice due to the considerable

computational cost and (algebraic) complexity of the method.

Our classifi er is based on Fisher linear discrimination, which has been derived and 

may be justifi ed based on a variety of principles of inference, such as maximization
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of the between-group separation relative to within-group error in the two-group case 

or the likelihood principle for normally distributed within-group populations. The

methodology has been amply studied and has been established as reliable and robust

form of classifi cation and discriminant analysis. Furthermore, Fisher discrimination

does not require an assumption of within-group normal dispersion.[21;28;29] Hastie

et al. contains an up-to-date account of many new applications that demonstrate 

the continuing success of the approach.[18;21;28-30] Much similar and confi rma-

tory experience has accumulated in related fi elds of application, which identifi es

this classifi cation method as most reliable in high-dimensional analysis.[19;31] For 

proteomic mass spectra, principal components are attractive as it provides a means

of non-parametrically smoothing and pooling information across peaks.

The controversy about the use of protein profi les as a pattern diagnostic without 

analysis of the diagnostic biomarkers remains to be solved for its clinical applica-

tion. Identifi cation and functional analysis of these discriminating proteins/peptides

might render new insights on tumour development and environmental responsive-

ness, which could eventually be translated in new diagnostic and prognostic insights

for the clinician. Unfortunately, little success has been booked so far in assigning 

reproducible discriminating biomarkers.[12;25] Though this study showed two most

discriminating mass values of MALDI-TOF based protein profi ling analysis to be low 

molecular weight fragments, we have not identifi ed these potential biomarkers yet. 

In the present study we used patterns of proteomic signatures from high dimen-

sional mass spectrometry data to generate a diagnostic classifi er for the detection 

of CRC. To our knowledge, this is the fi rst double cross-validatory study in a ran-

domised block design in this fi eld of research. Although independent validation

would strengthen the observations and follow up studies are now underway, we ob-

tained maximal reliability in classifi cation in this study while maintaining protection

against overfi tting. Due to the relatively small sample size we have chosen to use our 

entire dataset for a within-study validation to avoid optimistic biased (error) misclas-

sifi cation rates. To assess the performance of our classifi er a further independent

validation study will be necessary. In addition, in future studies the specifi city of dis-

criminating protein profi les for colorectal cancer have to be assessed in comparison

with other cancer types. Nevertheless, we are currently able to detect CRC accurately 

on the basis of differences in actual information in the serum protein profi les with

a rigorously standardised approach and exclusion of batch effects. Thus, although

introduction in a routine clinical setting may take longer than originally hoped for, 

this study is an initial proof for a successful evolution of the potentially great use of 

discriminating protein profi les in the detection of CRC.
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Appendix 1

Fisher linear discriminant analysis may be defined as assigning an observation to the group for which the 

smallest within-group distance 1( ) ( ) ( )TgD
�� � �g gx x x� �� is found for the corresponding observed 

feature vector ( ,..., )1 p= x xx  with respect to the gth group (g=1,2 here, for either cases or controls), where p 

is the dimensionality of the problem, g� denotes the population within-group sample mean for the gth group 

and �  is the (common) within-group dispersion matrix.  We may estimate the population means through the 

within-group sample means. When the dimensionality of the problem is greater than the sample size, as is the 

case in this problem, the observed within-group pooled covariance matrix S will typically not be of full rank 

and hence special measures are called for before we can apply the above paradigm in this context. This can be 

achieved through an initial principal components decomposition of the observed within-group pooled 

covariance matrix TS = Q Q� , where Q  and 1( ,..., )rdiag � ���  are the matrices of principal 

component weightings and variances respectively (r is the rank of the pooled covariance matrix). We then re-

estimate the within-group covariance matrix by only retaining the first k components only: 

T
(k) (k) (k) (k)S = Q Q� , which account for most of the variation in the spectra. The discriminant rule may now 

be expressed as assigning an observation to the group for which we observe the smallest sample estimate 

1
( )( ) ( ) ( )Tg g gkD �� � �x x x S x x . 

In the two-group case, this is also equivalent to least-squares regression analysis using the Moore-Penrose 

inverse of the pooled covariance matrix when k=r (all components kept, also known as shortest least squares 

regression), or else is equivalent to so-called shrunken least-squares regression.20,21 When choosing k<r, the 

choice may be made through appeal to a (cross-) validatory evaluation of the performance of the respective 

possible choices for the parameter k. The above methodology has been described and compared to other 

methods in the recent paper by Mertens18, which shows this method to be competitive in the closely related 

high-dimensional setting for classification with microarrays. Much similar and confirmatory experience has 

accumulated in related fields of application, which identifies this classification method as reliable and stable in 

high-dimensional analysis, as has been described by Stone and Jonathan, among others.19,31 

 



Detection of colorectal cancer using MALDI-TOF serum protein profi ling 71

REFERENCES

 1. Ruo,L., Gougoutas,C., Paty,P.B., Guillem,J.G., Cohen,A.M., and Wong,W.D. (2003) Elective 

bowel resection for incurable stage IV colorectal cancer: prognostic variables for asymptom-

atic patients. J.Am.Coll.Surg., 196, 722-728.

 2. Gill,S. and Sinicrope,F.A. (2005) Colorectal cancer prevention: is an ounce of prevention

worth a pound of cure? Semin.Oncol., 32, 24-34.

 3. Adam,B.L., Qu,Y., Davis,J.W., Ward,M.D., Clements,M.A., Cazares,L.H., Semmes,O.J.,

Schellhammer,P.F., Yasui,Y., Feng,Z., and Wright,G.L., Jr. (2002) Serum protein fi ngerprint-

ing coupled with a pattern-matching algorithm distinguishes prostate cancer from benign 

prostate hyperplasia and healthy men. Cancer Res., 62, 3609-3614.

 4. Petricoin,E.F., III, Ornstein,D.K., Paweletz,C.P., Ardekani,A., Hackett,P.S., Hitt,B.A., Velassco,A., 

Trucco,C., Wiegand,L., Wood,K., Simone,C.B., Levine,P.J., Linehan,W.M., Emmert-Buck,M.R.,

Steinberg,S.M., Kohn,E.C., and Liotta,L.A. (2002) Serum proteomic patterns for detection of 

prostate cancer. J.Natl.Cancer Inst., 94, 1576-1578.

 5. Rai,A.J., Zhang,Z., Rosenzweig,J., Shih,I., Pham,T., Fung,E.T., Sokoll,L.J., and Chan,D.W.

(2002) Proteomic approaches to tumor marker discovery. Arch.Pathol.Lab Med., 126, 1518-

1526.

 6. Yanagisawa,K., Shyr,Y., Xu,B.J., Massion,P.P., Larsen,P.H., White,B.C., Roberts,J.R., Edgerton,M., 

Gonzalez,A., Nadaf,S., Moore,J.H., Caprioli,R.M., and Carbone,D.P. (2003) Proteomic patterns 

of tumour subsets in non-small-cell lung cancer. Lancet, 362, 433-439.

 7. Hu,J., Coombes,K.R., Morris,J.S., and Baggerly,K.A. (2005) The importance of experimental

design in proteomic mass spectrometry experiments: some cautionary tales. Brief.Funct.Ge-

nomic.Proteomic., 3, 322-331.

 8. Coombes,K.R., Morris,J.S., Hu,J., Edmonson,S.R., and Baggerly,K.A. (2005) Serum proteomics

profi ling-a young technology begins to mature. Nat.Biotechnol., 23, 291-292.

 9. Ransohoff,D.F. (2004) Rules of evidence for cancer molecular-marker discovery and valida-

tion. Nat.Rev.Cancer, 4, 309-314.

 10. Boguski,M.S. and McIntosh,M.W. (2003) Biomedical informatics for proteomics. Nature, 422,

233-237.

 11. Villanueva,J., Philip,J., Entenberg,D., Chaparro,C.A., Tanwar,M.K., Holland,E.C., and Tempst,P. 

(2004) Serum Peptide profi ling by magnetic particle-assisted, automated sample processing 

and maldi-tof mass spectrometry. Anal.Chem., 76, 1560-1570.

 12. Diamandis,E.P. (2004) Analysis of serum proteomic patterns for early cancer diagnosis: draw-

ing attention to potential problems. J.Natl.Cancer Inst., 96, 353-356.

 13. Baggerly,K.A., Morris,J.S., and Coombes,K.R. (2004) Reproducibility of SELDI-TOF protein 

patterns in serum: comparing datasets from different experiments. Bioinformatics., 20, 777-

785.

 14. Box,G.E.P., Hunter W.G., and Hunter J.S. (1978) Statistics for experimenters. John Wiley & 

Sons, Inc..

 15. Cox D.R. and Reid N. (2000) The theory of the design of experiments. Chapmann/Hall CRC.

 16. de Noo,M.E., Tollenaar,R.A.E.M., Ozalp,A., Kuppen,P.J.K., Bladergroen,M.R., and Deelder 

A.M. (2005) Reliability of human serum protein profi les generated with C8 magnetic beads 

assisted MALDI-TOF mass spectrometry. Anal.Chem., 77, 7232-7241.

 17. Whittaker,E.T. (2005) On a new method of graduation.

 18. Mertens,B.J.A. (2003) Microarrays, pattern recognition and exploratory data analysis. Statistics 

in Medicine, 22, 1879-1899.

 19. Mervyn Stone and Philip Jonathan (1994) Statistical thinking and technique for QSAR and 

related studies. Part II: Specifi c methods. Journal of Chemometrics, 8, 1-20.

 20. Ripley,B.D. (1996) Pattern recognition and neural networks. Cambridge University Press.



Ch
ap

te
r 4

72

 21. Seber,G.A.F. (2005) Multivariate Observations. John Wiley & Sons Inc.

 22. Yu,J.K., Chen,Y.D., and Zheng,S. (2004) An integrated approach to the detection of colorectal

cancer utilizing proteomics and bioinformatics. World J.Gastroenterol., 10, 3127-3131.

 23. Diamandis,E.P. (2003) Point: Proteomic patterns in biological fl uids: do they represent the

future of cancer diagnostics? Clin.Chem., 49, 1272-1275.

 24. Qu,Y., Adam,B.L., Yasui,Y., Ward,M.D., Cazares,L.H., Schellhammer,P.F., Feng,Z., Semmes,O.J., 

and Wright,G.L., Jr. (2002) Boosted decision tree analysis of surface-enhanced laser desorp-

tion/ionization mass spectral serum profi les discriminates prostate cancer from noncancer 

patients. Clin.Chem., 48, 1835-1843.

 25. Somorjai,R.L., Dolenko,B., and Baumgartner,R. (2003) Class prediction and discovery using

gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinfor-

matics., 19, 1484-1491.

 26. Baggerly,K.A., Morris,J.S., Wang,J., Gold,D., Xiao,L.C., and Coombes,K.R. (2003) A compre-

hensive approach to the analysis of matrix-assisted laser desorption/ionization-time of fl ight

proteomics spectra from serum samples. Proteomics., 3, 1667-1672.

 27. Stone,M. (1974) Cross-validatory choice and assessment of statistical predictions. Journal of 

the Royal Statistical Society, 36, 111-147.

 28. McLachlan (2004) Discriminant analysis and statistical pattern recognition. John Wiley &

Sons Inc.

 29. Hand,D.J. (1997) Construction and assessment of classifi cation rules. John Wiley and Sons; 

Inc.

 30. Hastie,T., ., Tibshirani,R., and and Friedman,J. (2001) The elements of statistical learning.

Springer-verlag.

 31. Stone M. and Jonathan P. (1993) Statistical Thinking and technique for QSAR and related

studies. Journal of Chemometrics, 7, 455-475.


