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Surgeons must be very careful

When they take the knife

Underneath their fi ne incisions

Stirs the culprit–Life!

Emily Dickinson
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COLORECTAL CANCER

Colorectal adenocarcinoma is the third most common cancer and the fourth most fre-

quent cause of death due to cancer worldwide. Yearly almost one million new cases 

occur global, with 492000 related deaths.[1] In developed countries it is the second 

most common tumour, with a lifetime risk of 5%, but its incidence and mortality are 

currently decreasing.[2;3] Surgery is the cornerstone of therapy when the disease is 

confi ned to the bowel wall. This results in 70 to 80% of patients who can be resected 

with curative intent.[4] After curative surgery the fi ve-year survival rate for patients 

with localised disease is 90%, decreasing to 65% in case of metastised disease in the 

lymph nodes. Adjuvant radiation therapy, chemotherapy, or both are benefi cial in 

selected patients. For colorectal cancer the TNM staging system remains the gold 

standard for prognostication of the disease relying entirely on morphological and 

histopathological appearance of the tumour. Classifi cation of tumours into these 

TNM stages with distinct clinical courses enables clinicians to defi ne treatment. How-

ever, tumours with similar histopathological characteristics may have different clini-

cal outcome and responsiveness to therapy.[5] Therefore, a detailed diagnosis would 

allow a more individualised treatment that may avoid unnecessary morbidity and 

increase survival. Despite these optimised treatment strategies for colorectal cancer 

patients, early detection of colorectal cancer will increase survival most. Colorectal 

cancer is optimal to employ early detection, as precancerous and early cancerous 

lesions are well defi ned in a multistep sequence of genetic alterations that result in 

the transformation of normal mucosa to a precursor adenoma and ultimately to car-

cinoma. Thus, given the natural history of the malignancy, early diagnosis appears to 

be the most appropriate tool to reduce disease-related mortality.[6-8]

BIOMARKERS IN COLORECTAL CANCER

Biomarkers are molecules that indicate the presence of cancer in the body. Most 

biomarkers are based on abnormal presence, absence or alterations in genes, RNA, 

proteins and metabolites. Since the molecular changes that occur during tumour de-

velopment can take place over a number of years, some biomarkers may be used to 

detect colorectal cancer early. Furthermore, they might be used to predict prognosis, 

monitor disease progression and therapeutic response. Gion et al. classifi ed different 

circulating biomarkers according to their clinical application.[9] These candidate bio-

markers however, are frequently found in relatively low concentrations amid a sea 

of other biomolecules, so biomarker research and possible diagnostic tests depend 

critically on the ability to make high sensitive and accurate biochemical measure-
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ments. Ideally, biomarkers should be specifi c for the disease and easy accessible, 

such as serum, plasma or urine, to increase their clinical applicability.

Carcinoembryonic antigen (CEA) is the best-characterised serologic tumour marker 

for monitoring colorectal cancer. However, its use as a population based screening 

tool for early detection and diagnosis of the disease is hindered by its low sensitivity 

and specifi city. Fletcher showed that for screening purposes in a normal population, 

a cut-off concentration of 2.5 µg/L CEA would yield a sensitivity of 30-40%. Based 

on these data he calculated that there would be 250 false positive tests for every true 

positive test, i.e. a patient with cancer. Furthermore, 60% of the cancers would not 

be detected.[10-13]

Faecal occult-blood testing (FOBT) is another biomarker for which clinical trials 

have shown evidence of a decreased risk of death correlated with increased detec-

tion of the disease. This approach is a non-invasive option that limits the need 

for follow-up colonoscopy to patients with evidence of bleeding. Neoplasms bleed 

intermittently, however, allowing some to escape detection with faecal occult-blood 

testing. Annual retesting is therefore necessary but is still insuffi cient, detecting only 

25 to 50% of colorectal cancers and 10% of adenomas. The specifi city of FOBT is also 

limited by frequent false positive reactions to dietary compounds, medications, and 

gastrointestinal bleeding from causes other than colorectal cancer.[14-17] However, 

population screening for colorectal cancer based on FOBT is already implemented 

in several countries, including a trial in the Netherlands. The expectation is that 

even though the techniques still has its fl aws, a population screening for colorectal 

cancer will decrease mortality with 15-20%.[14] This can be attributed to the fact 

that colorectal cancer develops as a multistep sequence of precancerous and early 

cancerous lesions over a relatively long period of time. However, these early stages 

of the disease can only be detected by screening. Furthermore, scientifi c evidence 

clearly shows that, in the case of CRC, early detection and treatment leads to more 

benefi t than treatment that has started later. These reasons among other Wilson and 

Jungner’s criteria, that also apply for colorectal cancer, are explain that a population 

based screening trial has started in the Netherlands, although the technique still has 

some limitations.[18] 

BREAST CANCER

With over 1 million new cases in the world each year, breast cancer is the com-

monest malignancy in women and comprises 18% of all female cancers.[19] In 2005, 

breast cancer caused 502,000 deaths (7% of cancer deaths; almost 1% of all deaths) 

worldwide. The most recent data from the Surveillance, Epidemiology, and End 
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Results (SEER) program of the National Cancer Institute indicate that the lifetime 

probability of developing invasive breast cancer is one in nine.[20] Despite increas-

ing incidence rates, annual mortality rates from breast cancer have decreased over 

the last decade (2.3% per year from 1990 to 2002).[21] The effect of reduction due 

to early diagnosis of breast cancer has been outlined with patients’ data by the 

Surveillance, Epidemiology, and End Results program in a competing-risk analysis 

calculating probabilities of death from breast cancer and other causes according 

tot stage, race and age at diagnosis.[22] Reasons for the decline in mortality rates 

in western Europe, Australia and the Americas include widespread mammography 

screening, precise diagnosis, and increased number of women receiving tailor made 

treatment- including extensive use of tamoxifen and the use of chemotherapy.

[23] There are many risk factors for breast cancer, including age and gender, race, 

lifestyle and dietary factors, reproductive and hormonal factors, family history and 

genetic factors, exposure to ionizing radiation and environmental factors. Although 

many epidemiological risk factors have been identifi ed, the cause of any individual 

breast cancer is often unknown. In other words, epidemiological research informs 

the patterns of breast cancer incidence across certain populations, but often not in 

a given individual. 

Once the diagnosis of breast cancer is established, the choice of initial treatment 

depends upon the stage or extent of disease. Although initial treatment decisions 

are made on the size and appearance of the primary tumour and the presence 

of palpable axillary nodes, the surgical and pathological fi ndings are used to de-

termine the pathologic disease stage, which dictates the prognosis and need for 

adjuvant systemic therapy. The most important are the status of the draining axillary 

lymph nodes, tumour size, whether the tumour expresses hormone receptors and/

or the protein HER2, and a woman’s age or menopausal status. Up to one-third of 

women with non-palpable axillary lymph nodes will be found to harbour metastases, 

while one-third of those with palpable nodes will be pathologically free of nodal 

involvement. In women with breast cancer who are younger than 50 years of age, 

chemotherapy increases their 15-year survival rate by 10%; in older women the 

increase is 3%.[24] However, chemotherapy has a wide range of acute and long-term 

side effects that substantially affect the patient’s quality of life.[25] As it is not pos-

sible to accurately predict the risk of metastasis development in individual patients, 

nowadays more than 80% of them receive adjuvant chemotherapy, although only 

approximately 40% of the patients relapse and ultimately die of metastatic breast 

cancer. Therefore, many women who would be cured by local treatment alone, 

which includes surgery and radiotherapy, will be ‘over-treated’ and suffer the toxic 

side effects of chemotherapy needlessly.[26] 
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Women who have oestrogen sensitive (ER positive) tumours receive some form 

of hormonal therapy to block the cancer-promoting effect of oestrogen.[27] The use 

of tamoxifen was shown to signifi cantly reduce the risk of recurrence and increase 

ten year survival in women with ER positive and ER unknown status tumours and its 

gradual widespread use is one of the main factors associated with the dramatic fall 

in mortality during the late twentieth century.[28;29] Most postmenopausal women 

receive tamoxifen for fi ve years. Trials are ongoing to establish even more effective 

drugs and regimens for pre- and postmenopausal patients, taking into account side-

effects as well as survival times. The ATAC trial recently reported its early results 

comparing anastrazole alone, anastrazole plus tamoxifen, and tamoxifen alone for 

postmenopausal women and has shown the benefi ts of anastrozole over tamoxifen 

in disease-free survival in early breast cancer.[30] In premenopausal women oestro-

gen production may be stopped by surgery (removing the ovaries), radiotherapy or 

drugs that reversibly suppress the ovaries (LHRH analogues). 

In a recent meta-analysis, a mortality reduction of 38% (age <50 years) and 20% (age 

50-69 years) with chemotherapy is shown, followed by a further reduction of 31% 

from tamoxifen. When combined together, the fi nal mortality reductions would be 57% 

and 45%, respectively 57% reduction for women younger than 50 years of age and for 

those of age 50–69 years.[24] Moreover, breast cancer patients with the same stage of 

disease can have markedly different treatment responses and overall outcome. 

DIAGNOSIS AND BIOMARKERS IN BREAST CANCER

The procedures most commonly used in breast-cancer diagnosis is mammography, 

and to a lesser extent ultrasonography, MRI, and PET. In addition, physical examina-

tion remains important because a certain proportion (11%) of breast cancers is not 

seen on mammography.[31] Mammography remains the most important diagnostic 

tool in women with breast tissue that is not dense and is used in many coun-

tries as a population based screening in woman older than 50 years. The effect of 

breast screening in terms of breast cancer mortality reduction persists after long-term 

follow-up. A recent meta-analysis of seven randomised trials – concluded that there 

was a 15-20% reduction in risk of death from breast cancer in women attending 

mammography.[32] The effect of mammography screening is age-dependent and the 

highest effect is seen in women aged 55-69 years. This effect was not seen in woman 

under the age of 50, probably because of the higher density of the breast tissue.

[33] Thus, after menopause, mammography is generally the best method to discover 

tiny, non-palpable lesions. By contrast, ultrasonography is the most effective pro-

cedure to diagnose small tumours in women with dense breast and to differentiate 
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solid lesions from cystic lesions.[34] Although mammography can identify suspicious 

micro calcifi cations, it is not good at distinguishing between breast densities and 

has diffi culty in identifying certain lobular invasive carcinomas, Paget’s disease of 

the nipple, infl ammatory carcinoma, and particularly peripheral, small carcinomas.

[35] MRI is mainly used as a problem-solving method after conventional diagnostic 

procedures. The technique is highly sensitive and mainly used for the screening of 

high-risk, BRCA-positive patients. It is also useful for identifi cation of primary foci in 

non-palpable lesions and axillary metastases with no evidence of a primary focus, 

and for assessment of response to neoadjuvant chemotherapy.[36] Although MRI 

has good diagnostic accuracy, the rate of false-positive cases is still high and MRI 

fi ndings cannot be a sole indication for breast surgery.[37] PET is presently used to 

discover undetected metastatic foci in any distant organ and can assess the status of 

axillary nodes in the preoperative staging process.[38] 

Currently, mammography remains the most important diagnostic tool since serum 

tumour markers play no role of importance in the diagnosis of breast cancer due to 

a lack of sensitivity and specifi city. Consequently, a major focus of present research 

is the identifi cation of new biomarkers and drug targets to improve (early) detec-

tion and treatment; since early detection and more individualised treatment would 

benefi t the individual patient and avoid unnecessary morbidity.

A NEW DIAGNOSTIC PARADIGM: CLINICAL PROTEOMICS

Proteomics is the large-scale study of proteins, particularly their presence, structure 

and functions. The term ‘proteomics’ was coined to make an analogy with genomics, 

the study of the genes. Proteomics is often considered the next step in the study of 

biological systems, after genomics. It is more complicated than genomics, mostly 

because while an organism’s genome is rather constant, a proteome differs from cell 

to cell and constantly changes through its biochemical interactions with the genome 

and the environment. However, this functional state of a cell is very interesting for 

research goals and especially in oncogenesis. Clinical proteomics is referred to as 

mass spectrometry based proteomics using easy accessible body fl uids.

Mass spectrometry is an analytical technique used to measure the mass-to-charge 

ratio of ions. It is most generally used to fi nd the composition of a physical sample 

by generating a mass spectrum representing the masses of sample components. The 

mass spectrum is measured by a mass spectrometer. Matrix-assisted laser desorption/

ionisation (MALDI) is a soft ionisation technique used in mass spectrometry, allowing 

the analysis of biomolecules which tend to be fragile and fragment when ionised by 

more conventional ionisation methods. The ionisation is triggered by a laser beam 
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(normally a nitrogen laser). A matrix is used to protect the biomolecule from being 

destroyed by direct laser beam and to facilitate vaporization and ionisation. The type 

of a mass spectrometer most widely used with MALDI is the TOF (time-of-fl ight mass 

spectrometer), mainly due to its large mass range. These mass spectrometers use an 

electric fi eld to accelerate the ions through the same potential, and then measures 

the time they take to reach the detector. If the particles all have the same charge, 

then their kinetic energies will be identical, and their velocities will depend only on 

their masses. Lighter ions will reach the detector fi rst, as shown in fi gure 1. The TOF 

measurement procedure is also ideally suited to the MALDI ionisation process since 

the pulsed laser takes individual ‘shots’ rather than working in continuous operation. 

MALDI-TOF instruments are typically equipped with an “ion mirror”, defl ecting ions 

with an electric fi eld, thereby doubling the ion fl ight path and increasing the resolu-

tion. First, a sample has to be introduced into the ionisation source of the instrument. 

Once inside the ionisation source, the sample molecules are ionised, because ions 

are easier to manipulate than neutral molecules. These ions are extracted into the 

analyzer region of the mass spectrometer where they are separated according to 

their mass-to-charge ratios (m/z). The separated ions are detected and this signal 

is sent to a data system where the m/z ratios are stored together with their relative 

abundance for presentation in the format of an m/z spectrum.

Proteomic pattern diagnostics is a recent and potentially revolutionary approach 

for early disease detection, prognostication, and monitoring in oncology. The use of 

proteomic technologies might benefi t biomarker discovery and treatment modalities: 

serum protein profi ling for early disease detection and molecular signal mapping to 

instigate pharmocoproteomic therapeutic interventions.[39] Thus, several authors hy-

pothesised that proteomic patterns generated with mass spectrometry are correlated 

to biological events occurring in the entire organism and are likely to change in the 
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Figure 1. Schematic version of MALDI-TOF mass spectrometry principle.  
Sample molecules are ionised with a laser source. Then an electric field is used to accelerate the ions 
in a flight tube. The detector measures their flight time. If the particles all have the same charge, then 
their kinetic energies will be identical, and their velocities will depend only on their masses. The 
smaller ones (red) will reach the detector earlier than the heavier ones (green). 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Schematic version of MALDI-TOF mass spectrometry principle. 
Sample molecules are ionised with a laser source. Then an electric � eld is used to accelerate the ions in a � ight tube. The detector measures their 
� ight time. If the particles all have the same charge, then their kinetic energies will be identical, and their velocities will depend only on their 
masses. The smaller ones (red) will reach the detector earlier than the heavier ones (green).
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presence of disease. New types of bioinformatic pattern recognition algorithms were 

used to identify patterns of protein changes in order to discriminate cancer patients 

from healthy individuals with promising results. 

Petricoin and his co-workers were the fi rst to state that fi nding a single disease-

related biomarker is like searching for a needle in a haystack; each entity has to be 

separated and identifi ed individually.[40;41] Moreover, they postulated that the blood 

proteome constantly changes as a consequence of the perfusion of the diseased 

organ adding, subtracting, or modifying the circulating proteome. These differences 

might be the result of proteins being abnormally produced or shed and added to 

the serum proteome, clipped or modifi ed as a consequence of the disease process, 

or subtracted from the proteome owing to disease-related proteolytic degradation 

pathways. Therefore, protein pattern diagnostics would provide an easy and reliable 

tool for detection of cancer. The advantages of the proteomic pattern approach were 

stressed in several papers. In addition to the high sensitivity and specifi city, cost-

effectiveness, easy accessibility of body fl uid and especially the high-throughput, 

ultimately allowing application in future screening studies, were mentioned.[42;43] 

Next to these hopeful voices, soon critical notes were made on analytical reproduc-

ibility and the use of the so-called black box approach, lacking identifi cation of 

discriminating proteins.[44]

CLINICAL PROTEOMICS IN ONCOLOGY

Cancer is known to be the consequence of genetic alterations. A gene, however, 

is only potential information that must be put into a functional form. The DNA is 

transcribed into RNA before translation into protein, the functional manifestation 

of the genetic code. During the transformation of a healthy cell into a neoplastic 

cell, including alterations in expression, activity, localization and differential protein 

modifi cation, changes also occur in the protein level. Identifying and understanding 

these changes is the underlying theme in cancer proteomics.[45]

In 2002 several studies discriminated patients with various cancers from healthy 

subjects on the basis of presence/absence of multiple low-molecular-weight serum 

proteins using SELDI-TOF mass spectrometry technologies.[42;46-48] The authors 

hypothesised that proteomic patterns are correlated with biological events occurring 

in the entire organism and are likely to change in the presence of disease. New 

types of bioinformatic pattern recognition algorithms were used to identify patterns 

of protein changes in order to discriminate cancer patients from healthy individuals 

with promising results. Several studies have shown that biomarkers can be identi-

fi ed on the basis of the presence/absence of multiple low-molecular-weight serum 
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proteins.[41;42;46-49] Furthermore, different profi les may be associated with varying 

responses to therapeutics and other clinically relevant parameters and may also serve 

as prediction for treatment outcome. 

Although serum protein patterns showed high sensitivity and specifi city as an 

early diagnostic tool in several studies, critical notes have been made on biological 

variation, pre-analytical conditions and analytical reproducibility of serum protein 

profi les that would make it diffi cult to differentiate a normal from a pathological 

and/or malignant status.[50] In addition, the reproducibility of serum protein profi les 

has been questioned, which however relates more to the bioinformatical analysis of 

the measured protein profi les than the capturing and measuring techniques itself.

[51-53] Thus, if proteomics spectra are ultimately to be applied in a routine clinical 

setting, collection and processing of the data will need to be subject to stringent 

quality control procedures.[54] 

OUTLINE OF THIS THESIS

Given the natural history of colorectal and breast cancer, early diagnosis appears to 

be the most appropriate tool to reduce disease-related mortality.[6;7] Currently, there 

is no early diagnostic test with high sensitivity, specifi city and positive predictive 

value, which can be used as a routine screening tool. Therefore, there is a need for 

new biomarkers for both types of cancer that can improve early diagnosis, monitor-

ing of disease progression and therapeutic response and detect disease recurrence. 

Proteomic expression profi les generated with mass spectrometry have been suggest-

ed as potential tools for the early diagnosis of cancer and other diseases. Because it 

is still in its infancy, many problems have to be overcome before clinical proteomics 

can be transferred form bench to bedside. Chapter 2 gives an insight in the differ-

ent fi elds of translational research in colorectal cancer by our group. In chapter 3

reliability of human serum protein profi ling using MALDI-TOF mass spectrometry 

is analysed. We present a pipeline for pre-processing, statistical data analysis and 

presentation of MALDI-TOF spectra. This novel analysis method was used to assess 

the effect of variable pre-analytical conditions on human serum protein profi les, and 

their effect on reproducibility. In line with the logistic conditions in a routine clinical 

setting, the effects of sample handling and storage, and also circadian rhythm factors 

on the serum protein profi les were analysed. In chapter 4 and 5 the feasibility of 

mass spectrometry based protein profi ling for the discrimination of colorectal cancer 

patients from healthy individuals was assessed. In addition to standardizing technical 

factors and biological variations, we performed blinded tests and employed a ran-

domised block design experimentation to minimize impact of potential confounding 
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factors and to avoid bias. Especially, validation of our classifi er, as a possible pitfall, 

was given much attention. Therefore, we performed a linear discriminant analy-

sis with double cross-validation to separate cancer patients from healthy subjects. 

Chapter 6 reports on results from an identical designed protein profi ling study for 

the detection of breast cancer. In chapter 7 a fi rst validated study on the detection 

of breast cancer based on mass spectrometry generated protein profi les is described. 

In this study the same randomised blocked design and double cross validation is 

used, however the classifi er was validated in an independent set of new patients 

and controls. Finally, the results and conclusions of all above mentioned studies 

and especially the current status of clinical proteomics in cancer are discussed in 

chapter 8. 

A Dutch summary of this thesis is written in chapter 9. 
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ABSTRACT

There is a widening gap between basic research and clinical practice, particularly 

for colorectal cancer. In recent years, many have expressed concerns regarding the 

disconnection between the promises of basic science and the delivery of better 

individual health. In this paper we describe some of our research in serum proteom-

ics, microarrays and minimal residual disease dedicated to this fi eld and discuss 

some of the roadblocks ahead in translational research. We conclude that transla-

tional medicine should be a collective effort for the medical community as a whole 

with adequate fi nancial support and sound, measurable outcome. Since extensive 

validation of the above mentioned research fi elds is necessary, adequate funding is 

required. This may require some adjustments in the current funding policy because 

it involves non-innovative studies. Furthermore, the pool of researchers/clinicians 

capable of performing translational research must be increased. Additionally, there 

should be an enhanced participation of patients in clinical trials and an optimiza-

tion of the effi ciency of these trials using validated surrogate markers. Only when 

these conditions are fulfi lled will the ‘post-genomic’ era of biomedical research have 

unprecedented opportunities to innovate and improve therapy for cancer.
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INTRODUCTION

There is a widening gap between basic research and clinical practice particularly for 

colorectal cancer. Over the last decades our molecular knowledge on the genesis 

of colorectal cancer has increased dramatically. Despite this increase our treatment 

of patients remains largely the same: ‘en-bloc’ removal of the primary tumour and 

draining lymph nodes when possible, staging according to standard Dukes’ or TNM 

classifi cation systems and adjuvant treatment with cytotoxic drugs and/or radiation 

therapy. Despite mounting evidence of abundant heterogeneity of both clinical 

course of disease and responsiveness to therapy, ‘tailor-made’ medicine is an item in 

review papers and editorials instead of every-day-practice.

The paradigm for the translation of new information has been conceptualised 

by some as a highway. A ‘translational highway’ running from basic biomedical 

research to individualised patient care with improved health as a result (Figure 1). 

In recent years many have expressed concerns regarding the disconnection between 

the promise of basic science and the delivery of better health.[1] In a special com-

munication for the JAMA, Donald Berwick addresses the problem of disseminating 
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Figure 1. Current biomedical research places high priority on defining molecular mechanisms of disease with 

the ultimate aim of improving health of the individual patient (hypothesis driven). However, part of the failure 

to translate hypotheses derived from complex experimental models into improved patient care can be 

explained by the fact that many of these hypotheses do not translate to human pathology. It is therefore pivotal 

for successful translational medicine to promote research based on clinical observations and corresponding 

molecular biological explanations (clinically driven). 
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Figure 1. Current biomedical research places high priority on de� ning molecular mechanisms of disease with the ultimate aim of improving 
health of the individual patient (hypothesis driven). However, part of the failure to translate hypotheses derived from complex experimental 
models into improved patient care can be explained by the fact that many of these hypotheses do not translate to human pathology. It is 
therefore pivotal for successful translational medicine to promote research based on clinical observations and corresponding molecular 
biological explanations (clinically driven).
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innovations in health care as postulated by Rogers.[2] One of the obstacles he men-

tions, is that apart from lack of knowledge about the expected consequences of 

innovations or the perceived benefi t, these innovations must resonate with currently 

felt needs and beliefs. Other factors associated with perceptions of an innovation 

are the complexity the proposed innovation, trial ability (testing the change on a 

small scale) and observability (watching others trying the change fi rst), as shown 

in table 1. For colorectal cancer the ‘needs and beliefs’ are evident. First, the prog-

nostic information from our standard classifi cation system needs refi nement. This is 

exemplifi ed by the fact that despite of lack of evidence of residual disease in Dukes’ 

B colorectal cancer patients, 30% die of recurrent disease within fi ve years. Second, 

there is a need for tools that allows us to predict or monitor therapy response to 

avoid unnecessary morbidity. And third there is a need for new molecular targets 

that allows the development of cancer specifi c drugs that lack the side effects of 

current cytotoxic chemotherapeutics.

In this paper we would like to describe some of our research dedicated to this fi eld 

and discuss some of the roadblocks ahead.

PROTEOMICS

Cancer is often described as a genetic disease. A gene alone, however, is only poten-

tial information that must be put into a functional form. The DNA is transcribed into 

RNA before translation into protein, the manifestation of the genetic code. During 

the transformation of a healthy cell into a neoplastic cell, including alterations in 

expression, activity and localization and differential protein modifi cation, changes 

occur in the protein level. Identifying and understanding these changes is the under-

lying theme in cancer proteomics.[3]

Table 1.  Factors associated with perceptions of an innovation

Perception of an innovation that in� uences the rate of spread

Perceived bene� t of the change

Compatibility with beliefs and needs of potential adopters

Complexity of the proposed innovation

Trialability (testing the change on a small scale)

Observability (watching others try the change � rst)

Adapted from: E.M. Rogers, Di� usion if innovations, 4th ed. New York, NY: Free Press 1995



Translational research in prognostic pro� ling in colorecTal cancer 27

Proteomic pattern diagnostics is a recent and potentially revolutionary approach 

for early disease detection, prognostication, and monitoring in oncology. The use of 

proteomic technologies might benefi t biomarker discovery and treatment modalities: 

serum protein profi ling for early disease detection and molecular signal mapping to 

instigate pharmocoproteomic therapeutic interventions.[4]

Several studies have shown that biomarkers can be identifi ed on the basis of 

the presence/absence of multiple low-molecular-weight serum proteins using mass 

spectrometry technologies such as SELDI-TOF and MALDI-TOF.[5-9] Patterns of these 

peptides can be correlated to biological events occurring in the entire organism 

and are likely to change in the presence of disease. In oncology new types of 

bioinformatic pattern recognition algorithms have been used to identify patterns of 

protein changes in order to discriminate cancer patients from healthy individuals.

[10] Furthermore, different profi les may be associated with varying responses to 

therapeutics and other clinically relevant parameters and may also serve as predic-

tion for treatment outcome. Although serum protein patterns showed high sensitivity 

and specifi city as an early diagnostic tool in several studies, critical notes have been 

made on biological variation, pre-analytical conditions and analytical reproducibility 

of serum protein profi les that would make it diffi cult to differentiate a normal from 

a pathological and/or malignant status.[11] In addition, the reproducibility of serum 

protein profi les has been questioned, which however relates more to the bioinfor-

matical analysis of the measured protein profi les than the capturing and measuring 

techniques itself.[12-14] Thus, if proteomics spectra are ultimately to be applied in a 

routine clinical setting, collection and processing of the data will need to be subject 

to stringent quality control procedures.[15] 

In a recently submitted study we assessed the reproducibility of our MALDI-TOF 

protein profi ling procedure after capture and elution of serum peptides with C8 

magnetic beads. Corresponding to the logistical conditions in a routine clinical set-

ting, the effects of sample handling and storage, and also individual factors on the 

serum protein profi les were analysed. The reproducibility of the used capturing 

technique with C8 magnetic beads and MALDI-TOF analysis is acceptable and satis-

factory for large discriminating studies. The time of blood collection and the number 

of freeze-and-thaw cycles had no infl uence on serum protein profi les. However, 

sample handling prior to serum centrifugation did have considerable effect on serum 

protein profi les. All together, we have shown in this study that effects of handling 

and storage procedures on serum protein profi les lie within acceptable limits. To 

prevent bias in classifi cation studies we stress the importance of a standardised 

collection of all blood samples, from the point of sample handling and storage 

until freezing the samples. Although the importance of homogeneity and uniformity 

within sample groups must be stressed, variation of such factors cannot totally be 
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excluded in a clinical setting. The most important issues for discriminating studies 

at this moment are a standardised and well-documented sample collection and a 

thorough study design. Further research for the statistical data-analysis is needed. 

Due to the lack of discriminating profi les, serum protein profi ling is not ready for 

introduction in a routine clinical setting. Nevertheless, based on the present data and 

these of Villanueva et al. [16], we feel that the methodology can be standardised to 

a level which allows application as a diagnostic and prognostic tool. Therefore, we 

are now in the process of carrying out a study to determine whether serum protein 

profi les can differentiate colorectal cancer patients from individuals with benign 

bowel disorders and healthy subjects. Further, identifi cation and functional analysis 

of these discriminating proteins will render new insights on tumour development 

and environmental responsiveness.

MICROARRAYS (PROGNOSTIC FACTORS)

Over the last decades, numerous molecular factors with prognostic and predictive 

value have been described. Specifi cally loss of heterozygousity (LOH) of chromo-

some 18q and microsatellite instability (MSI) have been repeatedly implicated both 

as prognosticators as well as predictive for 5-fl uorouracil based chemotherapy.[17] 

Despite multiple studies with large number of patients and unequivocal outcome 

data these markers have not yet found their way into routine treatment planning for 

patients with colorectal cancer. One of the reasons for this may be that the observed 

differences are studied retrospectively, which diminishes the expected benefi t of 

using these markers in clinical decision making. Furthermore, with respect to the 

triability, it takes a tremendous amount of work for potential adopters to prospec-

tively validate these markers. Also, the use of a single marker disregards the biologi-

cal complexity of tumour development. New techniques, such as cDNA microarray 

analysis enable the parallel monitoring of expression levels of thousands of genes. 

Current cDNA microarray protocols are based on the Southern blot technique in 

which labelled nucleic acid molecules are hybridised to complementary nuclear acid 

molecules attached to a solid surface such as glass. Technical innovations such as 

miniaturization and fl uorescence-based detection greatly enhance the throughput. 

A microarray consists of thousands of small spots of multiple copies of amplifi ed 

cDNA spotted on a glass microscopic slide. Each spot represents a unique sequence 

from a named gene or expressed sequence tag (EST) and one slide can hold up to 

10,000 probes. As a target for analysis, total RNA or mRNA from two cell populations 

is used (e.g. cell lines, clinical samples and animal models). Fluorescent marker dyes 

such as Cy3 and Cy5 are incorporated into target cDNA. The labelled cDNA from the 
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two cell populations of interest are mixed with a labelled control sample and hy-

bridised to the probes on the glass slides. The array is scanned using confocal laser 

microscopy. After excitation and emission of fl uorescence, signals can be measured 

and displayed. This results in a matrix of thousands of green, red and yellow spots. 

When, for example, a gene is equally expressed in test and control samples, both 

the red and green fl uorescent signals will be equally strong and will be visualised as 

a yellow dot. Consequently, in the case of differential expression, the red to green 

ratio will shift. Following hybridisation and scanning, large amounts of data are 

available for processing. A variety of software tools are available which can help to 

measure fl uorescent signal ratios, exclude artefacts and normalize data. 

In a small, unpublished series of rectal cancer patients we have tested the hypoth-

esis that microarray analysis could distinguish between patients with and without 

liver metastases. In collaboration with the Institute of Medical Sciences, University of 

Tokyo, Japan, we analysed tumour RNA from 20 rectal cancer patients; 12 patients 

with liver metastases and 8 patients without. RNA was extracted from fresh frozen 

tissue samples using laser capture micro dissection (LCM). After amplifi cation and 

labelling, probes were hybridised to a microarray consisting of 9,216 genes. After 

scanning, the differential expression ratio for each gene was determined.

Data were analysed according to the ‘leave-one-out’ methodology as described. 

The resulting set of 30 genes could correctly predict the presence of liver metastases 

in 10 out of 12 patients. These data are currently being validated in a larger series. 

However these preliminary data show that, as in many other tumours, cDNA mi-

croarrays are promising new tools for the prognostication of patients with colorectal 

cancer.

For the translation of these experimental techniques into standard care, some of 

the roadblocks ahead can be easily envisioned. First the proposed superiority over 

our standard classifi cation system must be (repeatedly) demonstrated in large groups 

of patients. To achieve this, tissue banks with fresh frozen tissues and serum must 

be established for validation studies. With adequate funding, these tissues can be 

collected from patients who are randomised in clinical trials and made available to 

the research community. International initiatives from the NCI and EORTC underline 

this view.

Secondly, the introduction and acceptance of prognostic gene sets would be more 

anticipated when experiments show a causal role of each of the genes in the clinical 

course of the disease. Microarray data are therefore by no means endpoints. Rather, 

they are hypothesis driven starting points for the development of new therapeutic 

strategies.
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MINIMAL RESIDUAL DISEASE

Detection of metastatic cells by molecular techniques has been reported to increase 

the sensitivity over standard pathological examination. Metastatic cells can be found 

in histopathological negative lymph nodes, bone marrow and blood of colorectal 

cancer patients. Many of the published papers indicate a poor prognosis in patients 

with molecular detected metastases in all of the mentioned sites. Despite this, mo-

lecular techniques are not routinely used in the staging of patients.

The prognosis for colorectal cancer patients whose lymph nodes are not involved 

(stage II) is good. Five-year survival rates approximate 70%. In the Netherlands, 

adjuvant chemotherapy, therefore, is not considered standard care. Our group 

studied 26 stage II patients to detect micro metastases in lymph nodes by reverse-

transcriptase-PCR of carcinoembryonic antigen (CEA) mRNA in microscopic negative 

lymph nodes. Overall, micro metastases could be detected in one or more lymph 

nodes from 14 patients (54%). These patients fared signifi cantly worse than the 

patients without micrometastases. In this study, survival dropped from 75% to 36% 

based on the presence of micrometastatic disease. When only cancer-related deaths 

were considered, survival dropped from 91% to 50% respectively. The relative risk 

for cancer related death associated with the presence of micrometastases was 11.7 

(95% C.I.: 1.2-106.9; P=0.03).[18] 

This study is one of the fi rst to relate micrometastatic disease to patient outcome 

and provides a rationale for the selection of patients who might benefi t from adju-

vant therapy. Since our publication others have confi rmed these fi ndings but there 

has been no massive introduction or these techniques into daily practice. The reason 

for this is that the pivotal question whether the prognosis of patients ‘upstaged’ by 

molecular techniques improves after adjuvant treatment remains unanswered. The 

perceived benefi t for this innovation therefore may be low and is subject of ongoing 

investigation by our group and others. A second reason for the lack of adoption of 

these techniques is that they are complex and time consuming. Sentinel node (SN) 

biopsy has been introduced to minimize the extent of surgery and to enable assess-

ment of minimal residual disease (MRD) without compromising accurate staging or 

survival.[19] For colorectal cancer the SN concept could be used to limit the number 

of nodes amenable for detailed molecular analysis. We are currently in the process of 

evaluation of micrometastases in sentinel nodes from colorectal cancer patients.

Another area of research is MRD detection in bone marrow. Viable cancer cells can 

be found in bone marrow from 20-40% of patients with colorectal cancer. This phe-

nomenon correlates with an adverse prognosis. We have tested different methods for 

MRD detection, including automated microscopy and RT-PCR and preliminary results 

indicate prognostic relevance of these tests for different stages of colorectal cancer.
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[20] Not all cancer cells that can be found in bone marrow are clinically relevant 

since they are present even in patients that never relapse. Experimental studies in 

breast cancer show that tumours consist of heterogeneous populations of cells with 

distinct tumorigenic potential.[21;22] 

Minimal residual disease may arise from tumorigenic or non-tumorigenic cancer 

cells. Only when tumorigenic cancer cells metastasize, clinically relevant metastasis 

will occur.[23] Support for this theory comes from observations that disseminated 

minimal residual cancer cells from patients with and without overt distant metastasis 

are genotypically different.[24] Therefore the development of diagnostic tools that 

allow for the prospective identifi cation of tumorigenic minimal residual cells may 

have therapeutic signifi cance for patients with solid tumours. This will be one of the 

research goals for our group in the coming years. 

CONCLUSION

In the ‘post-genomic era’ of biomedical research there are unprecedented opportuni-

ties to innovate and improve therapy for cancer. These opportunities are limited by 

today’s clinical infrastructure. Efforts to validate and implement novel therapies are 

characterised by lack of funding and fragmentation. For a successful translation of 

novel biomedical discoveries to improved, individual health there are several issues 

to be addressed. First of all, translational medicine should be a collective effort for the 

medical community as a whole with adequate fi nancial support and sound, measur-

able outcome. As extensive validation of the above mentioned research fi elds is neces-

sary, adequate funding is required. This may require some adjustments in the current 

funding policy as it involves non-innovative studies. Secondly, the pool of researchers/

clinicians capable of performing translational research must be increased. Thirdly, 

there must be an enhanced participation of patients in clinical trials and we have to 

optimize the effi ciency of these trials using validated surrogate markers. Especially 

when we move towards ‘tailor-made’ medicine, evidence from large randomised trials 

(with inherently large groups of uniformly treated patients) will be more diffi cult to 

obtain. Current clinical trials must be appended with basic biomedical science studies, 

with collection of tissues for retrospective analysis. Last, we have to deal with regula-

tory and cultural aspects of the implementation of health innovations. 

For the coming years it is the goal of our group to integrate three lines of research; 

MRD detection, cDNA microarray analysis and proteomics (Figure 2). We believe 

that integrating these techniques will improve the detection and staging of colorec-

tal cancer and allow more precise prediction and monitoring therapy responses of 

individual patients.
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Figure 2. Integrating the three different research techniques will result in a better understanding of the 
molecular mechanisms of colorectal cancer and will facilitate translating hypotheses derived from basic science 
into improved patient care. The combination of the different research techniques may result in earlier 
detection, prognostication and treatment monitoring of colorectal cancer. 
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Figure 2. Integrating the three di� erent research techniques will result in a better understanding of the molecular mechanisms of colorectal 
cancer and will facilitate translating hypotheses derived from basic science into improved patient care. The combination of the di� erent research 
techniques may result in earlier detection, prognostication and treatment monitoring of colorectal cancer.
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ABSTRACT

Protein profi ling with mass spectrometry is a promising approach for classifi cation 

and identifi cation of biomarkers. However, there is debate about measurement qual-

ity and reliability. Here we present a pipeline for pre-processing, statistical data 

analysis and presentation. Serum samples of sixteen healthy individuals are used 

to generate protein profi les with a high-resolution MALDI-TOF after isolation of 

peptides with C8 magnetic beads. Analysis of variance (ANOVA) was performed after 

binning, normalization and baseline correction of the mean spectra. Relative varia-

tions in the spectra are expressed as coeffi cient of variation (CV), which depending 

on the respective preanalytical variation parameter investigated, was found to range 

between 0.15 and 0.67 in this study. With this novel method the reproducibility 

of our protein profi ling procedure could be quantifi ed. We showed that circadian 

rhythm and the number of freeze-thaw cycles had relatively limited infl uence on 

serum protein profi les, whereas the period between collection and serum centrifuga-

tion had a more pronounced effect.
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INTRODUCTION

Proteomic pattern diagnostics is a recent and potentially revolutionary technology 

and approach for early disease detection, surveillance, and monitoring in oncology.

[1] In proteomics proteins and functional protein networks as well as their dynamic 

alteration during physiological and pathological processes are characterised. It is a 

potential powerful tool in the discovery of disease biomarkers, as the proteome re-

fl ects both the intrinsic genetic program of an organism and the impact of its immedi-

ate environment.[2] Human serum contains thousands of peptides, most of which are 

thought to be fragments of larger proteins, but their precise nature remains largely 

undetermined. High throughput mass spectrometry can generate a proteome/pep-

tidomic fi ngerprint of a given body fl uid, such as serum. Patterns of these peptides 

can be correlated to biological events occurring in the entire organism and are likely 

to change in the presence of disease. In oncology new types of bioinformatic pattern 

recognition algorithms have been used to identify patterns of protein changes in or-

der to discriminate cancer patients from healthy individuals.[3] Furthermore, different 

profi les may be associated with varying responses to therapeutics and other clinically 

relevant parameters and may also serve as prediction for treatment outcome. Several 

studies have shown that biomarkers can be identifi ed on the basis of the presence/

absence of multiple low-molecular-weight serum components using time-of-fl ight 

(TOF) mass spectrometry technologies such as SELDI-TOF and MALDI-TOF.[4-7] In 

general, although most studies measure serum components in a range in which 

primarily peptides and protein degradation products as well as small proteins are 

detected, the term protein profi ling is generally accepted to describe this approach. 

Although essentially imprecise, this term will also be used in this study. Petricoin et 

al. showed that patterns of low-molecular-weight serum proteins refl ect the patho-

logical state of organs. In addition, these disease-related protein patterns could be 

useful in the early detection of ovarian cancer.[8] Based on discriminating serological 

protein profi les that study showed a sensitivity of 100%, specifi city of 95% and a 

positive predictive value of 94% for the detection of ovarian cancer. 

Although serum protein patterns have shown high sensitivity and specifi city as an 

early diagnostic tool in several studies, critical notes have been made on biological 

variation, pre-analytical conditions and analytical reproducibility of serum protein 

profi les, which would make it diffi cult to differentiate a normal from a pathological 

and/or malignant status.[9] In addition, the reproducibility of serum protein profi les 

has been questioned, however more with respect to the bioinformatical analysis of 

the measured protein profi les than to the capturing and measuring techniques itself.

[10-12] Thus, if proteomics spectra are ultimately to be applied in a routine clinical 

setting, collection and processing of the data will need to be subject to stringent 
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quality control procedures.[13] In fact, some critics argue that discriminating protein 

profi les are so far based more on experimental artefacts than on real biological dif-

ferences.[14] 

There are many factors that are thought to have an infl uence on serum protein 

profi les, complicating clear and unambiguous study fi ndings. These factors include 

environmental and individual factors such as race, age, diet, smoking, stress, general 

physical condition and use of drugs, which all may infl uence serum protein profi les. 

Pre-analytical conditions of human serum also appear to infl uence protein pattern 

outcomes. So far, only a few studies have reported on the effects of different serum 

sample preparations and the use of a magnetic beads based approach to capture 

and concentrate serum proteins for MALDI-TOF mass spectrometry.[15-17] Since data 

processing and statistical analysis of protein spectra are essential elements in clinical 

proteomics, the objective of this study was to quantify the relative contributions of 

sources of variability on the protein spectra. To this end we developed a novel data 

processing pipeline, which was performed with an analysis of variance (ANOVA) of 

the spectra, after the spectra had been made comparable, reduced to common mass 

channels and the noise had been fi ltered. Strong baselines were always present in 

the spectra and had to be removed. This novel analysis method was used to assess 

the effect of variable pre-analytical conditions on human serum protein profi les, 

and their effect on reproducibility. In contrast to the above-mentioned study, we 

have chosen to primarily focus on assaying serum with C8 magnetic beads with 

hydrophobic functionality, followed by MALDI-TOF analysis. In line with the logistic 

conditions in a routine clinical setting, the effects of sample handling and storage, 

and also circadian rhythm factors on the serum protein profi les were analysed. 

MATERIAL AND METHODS

Serum samples

Blood was collected from 16 healthy adult volunteers, 8 men and 8 women, by 

antecubital venipuncture. All blood samples were drawn from the left arm while the 

volunteers were seated. Approximately 10 ml venous blood was collected in a 10 cc 

Serum Separator Vacutainer Tube (BD Vacutainer Systems, Preanalytical Solutions, 

Plymouth, UK) at three different time points throughout the day. The fi rst sample 

was drawn between 8 and 9 a.m. when all individuals had been fasting since mid-

night. The second specimen was obtained half an hour after lunch, between 1 and 2 

p.m. and the last sample between 5 and 6 p.m. Thirty minutes after collection serum 

was separated by centrifugation at 3,000rpm for 10 minutes, divided into aliquots 

(Greiner) and stored at -70ºC. The serum procurement, data management and blood 
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collection protocol were according to the guidelines of the Medical Ethical Commit-

tee of the Leiden University Medical Center. Informed consent was obtained from 

all subjects.

Protein pro� ling 

To enhance signal quality magnetic beads based on hydrophobic interaction chro-

matography (MB-HIC kit, Bruker Daltonics, Leipzig, Germany) were used for sample 

preparation prior to MALDI-TOF mass spectrometry analysis. Five µl of serum was 

diluted with 10 µl binding solution and 5 µl magnetic beads were added. The solu-

tion was mixed by carefully pipetting fi ve times. After 30 seconds supernatant was 

separated from the magnetic beads in a magnetic beads separator (MBS, Bruker) 

and discarded. This was followed by three washing steps with 100 µl wash solu-

tion (MB-HIC kit, Bruker) and supernatant was discarded each time. After 1 minute 

in 10µl e lution solution (50% Acetonitrile) the magnetic beads were separated in 

the MBS from the elution solution. An amount of 1 µl of this eluate, containing 

the captured peptides/proteins, was mixed with 10 µl matrix solution and 1 µl of 

this mixture was transferred to an Anchor Chip target plate ™ (Bruker Daltonics, 

Bremen, Germany) and allowed to dry before introduction into the mass spectrom-

eter. Alpha-cyano-4-hydroxycinnamicacid (HCCA) was used as matrix (0.3 mg/ml 

in Ethanol: Acetone 2:1). Each sample was deposited onto four spots of the target 

plate. Matrix Assisted Laser Desorption Ionisation Time-Of-Flight (MALDI-TOF) mass 

spectrometry measurements were performed using an Ultrafl ex TOF/TOF instrument 

(Bruker Daltonics, Bremen, Germany) equipped with a SCOUT ion source, operating 

in linear mode. Ions formed with a N2 pulse laser beam (337 nm) were accelerated 

to 25 kV. With the employed serum preparation peptide/protein peaks in the m/z 

range of 1500 to 10,000 were measured. An independent mass spectrometer operator 

performed all measurements with blinded samples. Hereafter the entire process of 

capturing and concentrating serum proteins using C8 magnetic beads including the 

generation of readouts of the MALDI-TOF spectra will be designated as the protein 

profi ling procedure.

Data processing

All spectra were compiled, and qualifi ed mass peaks with mass-to-charge ratios (m/z) 

between 1500 and 10,000 were auto-detected. Each mass spectrum, as exported in an 

ASCII fi le, consisted of approximately 45,000 pairs of mass-to-charge values (Dalton) 

and ion counts. As we preferred to analyze the data using the intensity of the mass 

spectra per bin, the fi rst processing step was to collect and average the data in bins 

of 1 Dalton wide. To reduce noise the Whittaker smoother was applied, using second 

differences, λ = 100 and weights proportional to the number of raw data points per 
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bin.[18] The resulting spectra generally showed strong baselines, which had to be re-

moved before further processing. We used the asymmetric least squares algorithm as 

described in the appendix of Eilers 2004 [19]; fi gure 1 shows a typical example. The 

intensity scale of the baseline-corrected spectra was un-calibrated. To normalize the 

spectra we divided each mass spectrum by the median of the intensities. We consider 

this to be more robust than normalization on the average (or equivalently, the area 

under the curve), as the median is less sensitive to spurious large peaks. While this 

is an ad-hoc solution, we hope to fi nd relatively stable regions in the spectra, so that 

we can normalize on medians over these regions in further research. 

Statistical data analysis

To quantify the effects of experimental conditions, variability between individual 

persons and noise, we applied analysis of variance (ANOVA). Consider, as an ex-

ample, an experiment in which we have Р subjects, Р subjects, Р Т storage times and Т storage times and Т С storage С storage С
temperatures points. For each combination of subject and time we have measured 

a spectrum. First, we concentrate on only one, arbitrary, mass channel. We have 

PTC measurements, which we indicate by PTC measurements, which we indicate by PTC УрtсУрtсУ . The ANOVA model assumes that 

УрtсУрtсУ  = μ+αр = μ+αр = μ+α +βt+γс+eрtс+eрtс+e . Here μ is the overall mean, αрαрα  is the effect of person Р, βt the ef-t the ef-t
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Figure 1.  MALDI-TOF spectrum before and after baseline correction.  

 
 
 
 

Figure 1.  MALDI-TOF spectrum before and after baseline correction. 
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fect of storage time t, γс is the effect of storage temperature s and eрtсeрtсe  is random varia-

tion. The values of μ and the vectors α, β and γ that minimize the sum of the squares 

of the elements of e are the so-called least squares estimates and the standard result 

of ANOVA. If all combinations of persons, storage times and temperatures are pres-

ent, they are the averages per person (storage time, temperature) over all spectra. 

When some combinations are missing, a somewhat more complicated regression 

approach has to be used. 

The ANOVA was performed for each bin on the mass axis. This results in 1) one 

spectrum for μ, the average spectrum; 2) Р spectra of person effects; 3) Р spectra of person effects; 3) Р Т spectra Т spectra Т
of time effects; 4) С spectra of storage temperature effects and a spectrum of С spectra of storage temperature effects and a spectrum of С ѕ, the 

standard deviation of the noise for each sample. The single spectra of μ and ѕ are 

easy to present and study, but the multiple spectra of the effects can be voluminous. 

We summarised them by computing standard deviations of α, β and γ per mass bin. 

The fi nal results are a plot of fi ve spectra for each of the performed experiments, 

but only shown in fi gure 3. The plot shows that, generally, the standard deviations 

increase when the overall mean increases. A simple measure of this relationship 

would be the coeffi cient of variation, like ѕ/μ or  ѕα /μ, where ѕα indicates the standard 

deviation of α. Unfortunately, this can provide wildly fl uctuating results when μ is 

near zero. Therefore, we computed сѵ = Σѕі μі /Σі μі
2, which is the slope of a regression 

line through the origin in a scatter plot of ѕ vs. μ. The summation can be over the 

whole mass range; this result is reported as a number in the title of each graph of 

standard deviations for all experiments. In addition, we graphically present CV as 

computed in m/z windows 500 Dalton wide.

To investigate the infl uence of the effective bin width on computed CVs, we varied 

the smoothing parameter λ over a large range, artifi cially increasing peak width up 

to fi ve times.

EXPERIMENTS

Reproducibility

In a fi rst set of experiments both the reproducibility of repeated measurements of the 

same eluate and the reproducibility of repeated analysis of the same samples on four 

different days were determined. Serum samples of 8 randomly chosen individuals, 

drawn at one time point during the day were used. Each of these serum samples was 

processed only once, and measured 8 times with MALDI-TOF according to the stan-

dard protocol. Additionally, to determine the inter-measurement variation, protein 

profi ling from 4 of the 8 serum samples was performed on 4 consecutive days. In all 

experiments samples were preparated just before each MALDI-TOF measurement. 
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Sample handling 

To simulate ‘realistic’ logistical factors, the effects of sample handling and storage tem-

perature prior to serum centrifugation on serum protein profi les were studied. Serum 

samples of 4 out of the 16 randomly chosen individuals, all drawn at the same time 

point were used for this experiment. From each individual 7 aliquots were stored at 

both room temperature and the same number at 4 °C. After a period of 30 minutes, 1 

hr, 2, 4, 8, 24 and 48 hours serum samples were processed according to the standard 

protocol and protein profi les of all samples were compared for each individual.

Freeze-thaw cycles 

To determine the utility of (archival) serum banking, effects of multiple freeze-thaw 

cycles on serum protein profi les were determined. Serum, drawn at one time point, 

of 8 randomly chosen individuals was used. Serum of each individual was divided 

into 11 primary aliquots. From each serum sample one aliquot was measured within 

30 minutes after blood collection. The remaining ten sets were immediately frozen 

at -70 °C. Four hours after the initial freezing, all aliquots were removed from the 

freezer. Two aliquots of each sample were left at room temperature and the rest on 

ice for approximately 2 hours until completely thawed. Following the fi rst freeze-

thaw cycle, two samples, one thawed on ice and one at room temperature, were 

assayed. The remaining sets of aliquots were refrozen at –70 °C for 4 hours. Again 

one sample of each individual was allowed to stand at room temperature and the 

rest on ice for 2 hours until completely thawed. Subsequently, two samples were 

processed and the rest refrozen. This was repeated after respectively three and four 

freeze-thaw cycles, but all samples were thawed on ice.

Circadian rhythm 

In a last set of experiments, effects of at which moment of the day blood was drawn 

on serum protein profi les were studied by analyzing serum samples of 16 individu-

als, drawn at three different times over the day. All samples were frozen and thawed 

once and assayed on one day according to the standard protocol.

RESULTS

The data processing pipeline described above was applied to all our experiments. In a 

preliminary step the infl uence of effective bin width was studied. We found that stron-

ger fi ltering, which corresponds to increasing the effective bin width, broadens peaks in 

both mean and standard deviation spectra, but that the CV did not change much (less 

than 20%). Therefore, the subsequent experiments were analysed with bins of 1 m/z. 
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Reproducibility 

A test concerning intra-measurement reproducibility was performed by determin-

ing the coeffi cient of variation (CV) over 8 MALDI-TOF spectra for each subject, as 

shown in fi gure 2. The CV of the reproducibility within one measurement was less 

than 20% for 6 out of 8 subjects. Subject D2 and D5 showed slightly higher CV’s of 

22% and 29%, respectively.

The inter-measurement reproducibility of 4 serum samples performed on 4 dif-

ferent days is shown in table 1. The range in CV between the spectra within one 

individual (14-23%) is similar to the CV between the consecutive days after correc-

tion for differences between individuals (17-26%). However, the variation in spectra 

between the 4 consecutive days was minor, with an increase in CV on day 4 - 26% 

(Figure 3).

Sample handling 

To establish the effects of serum sample handling, an ANOVA was performed for 

effects of persons, time and temperature and residual variation (Figure 4). After cor-

rection for inter-individual differences and residual standard deviations with ANOVA, 

CV between storages at room temperature or at 4 °C was calculated to be 45 and 

50%, respectively. The CV of the samples stored for different periods of time before 

centrifugation ranged from 42% to 67% (Table 2). There was no correlation between 

the storage time and the coeffi cient of variation. 

Freeze-thaw cycles 

The effects of multiple freeze-thaw cycles on serum protein profi les were deter-

mined for 10 sets with various storage circumstances, as set 5 had to be left out of 

the analysis due to technical problems. Table 3 shows the coeffi cient of variation 

between persons for different freeze-thaw cycles. In fresh serum samples (set 1) the 

CV was highest with 64%. With the growing number of hours that serum samples 

were stored in the fridge at 4 °C, the CV decreased to a minimum of 24% after 8 

Table 1. Coe�  cient of variation (CV) for inter-measurement reproducibility. The CV was determined over 4 MALDI-TOF spectra of each 
individual, all measured at consecutive days.

Subject CV (in %)

F 23

G 20

M 22

R 14
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Figure 2.  Intra-measurement reproducibility. The CV was determined over 8 MALDI spectra of each 

individual, all processed in one run. 

Figure 2.  Intra-measurement reproducibility. The CV was determined over 8 MALDI spectra of each individual, all processed in one run.
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Figure 3. ANOVA for inter-measurement reproducibility. The CV is calculated for spectra that are 

measured on the same day, after correction for inter individual differences. 

Figure 3. ANOVA for inter-measurement reproducibility. The CV is calculated for spectra that are measured on the same day, after correction for 
inter individual di� erences.
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Fi

gure 4. ANOVA of sample handling. From top to bottom: the average spectrum; the variation in spectra 

due to person's effect; the variation in spectra due to time effects is shown. Finally, the effects of storage 

temperature variation and the standard deviation of the noise for each sample are presented. 

Figure 4. ANOVA of sample handling. From top to bottom: the average spectrum; the variation in spectra due to person’s e� ect; the variation 
in spectra due to time e� ects is shown. Finally, the e� ects of storage temperature variation and the standard deviation of the noise for each 
sample are presented.
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hours. The number of freeze-thaw cycles had no infl uence on the CV. All CV of sets 

6 to 11 were smaller than 28%, with exception of set 7 (thawed at room temperature 

after one cycle) with a CV of 39%. 

To get an impression of the patterns of change with freeze-thaw cycles, we applied 

the following procedure to each of the 8 subjects: 1) selected the 8 spectra of the 

reference set spectra; 2) subtracted these reference spectra from the individual spec-

tra of all sets; 3) regressed (per spectrum) the absolute value of the corresponding 

reference spectrum, to calculate a CV. The so computed CVs are presented in fi gure 

Table 2. Coe�  cient of variation (CV) between storage times of venous blood before serum centrifugation, regardless the temperature of storage

Storage time CV (in %)

30 min 52

1 hr 42

2 hrs 63

4 hrs 53

8 hrs 49

24 hrs 52

48 hrs 67

Table 3. Coe�  cient of variation (CV) between persons per freeze-thaw set. Each set consisted of serum samples of 8 subjects. Each set was 
stored under di� erent circumstances, namely after none or 1 to 4 freeze-thaw cycles.  Sets 1 to 4 were not frozen at all, but stored at 4 ° C during 
di� erent periods of time.

Set No freeze-thaw cycles Temp CV (in %)

1 0 21 ° C 64

2 0 (2 hrs) 4 ° C 40

3 0 (4 hrs) 4 ° C 39

4 0 (8 hrs) 4 ° C 24

6 1 on ice 26

7 1 21 ° C 39

8 2 on ice 28

9 2 21 ° C 25

10 3 on ice 28

11 4 on ice 28
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5. Generally, all 8 subjects showed the same patterns per reference set, with one or 

two outliers. In contrast to the other reference sets, 6 showed a continuous increase 

in CV per extra set. Between the reference sets 7 and 10, the patterns became more 

identical and the CV was decreased over all sets. In set 11, the variation between the 

subjects increased, became more variable.

Circadian rhythm 

The effect of time variation of blood drawing on serum protein profi les is shown 

in table 4. Spectra in set 1, collected at 8 a.m. when subjects were fasting, showed 

a CV between the 8 individuals of 51%. Set 2, collected half an hour after lunch, 

and set 3, drawn at the end of the afternoon, non-fasting, resulted in 44% and 55%, 

respectively. No large difference in CV was found between the three sets. 

 

Figure 5. Coefficient of variation between the samples of one reference set and set 6 to 11. On the Y-axis 

the CV is stated . The sets of the freeze-thaw experiment, as described in table 3, are represented on the 

X-axis. 

Figure 5. Coe�  cient of variation between the samples of one reference set and set 6 to 11. On the Y-axis the CV is stated . The sets of the freeze-
thaw experiment, as described in table 3, are represented on the X-axis.
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DISCUSSION

So far, in a limited number of studies, proteomics-based approaches have shown 

promising results for the generation of diagnostic profi les in serum. Substantial at-

tention was given to analyze low molecular weight protein patterns from easy-

accessible body fl uids. To qualify as a future diagnostic test, the entire procedure 

of protein profi ling should be easy to use, robust, reproducible and affordable.[15] 

High-throughput will also be essential for embedding protein profi ling in the clinical 

setting. The use of fractionation protocols, such as reversed phase magnetic beads, 

to reduce the complexity of biological samples in MALDI-TOF is needed to avoid sig-

nal suppression effects.[20] Therefore, direct analysis of serum is not feasible. In this 

study we have chosen to use the increasingly accepted C8 magnetic bead capturing 

technique, taking into consideration that only a small fraction of proteins, from the 

potential ten thousands of proteins and peptides in human serum can be analysed 

with this approach. In future studies we will evaluate capturing techniques with 

different functionalities. In our MALDI-TOF experiments we obtained ‘rich’ mass 

spectra, containing many peaks and showing much detail. Our novel data processing 

pipeline proved to be an effective tool for quality assessment. Baseline correction, 

binning and fi ltering provided uniformly structured data in which most typical arte-

facts had been removed. The ANOVA algorithm separates the sources of variation 

and provides easily understood numerical summaries of their relative strength.

There is much room for further improvement and refi nement. Calibration of the 

spectra is now based on the median over the domain of interest (1500 to 10,000 

Dalton). This is a natural, but rather arbitrary choice. It would be attractive if stable 

areas in spectra could be located on which to base calibration, or if a reliable spiking 

procedure was available. 

The ANOVA assumed an additive model for the spectral intensities, which is ac-

ceptable to compare the relative infl uence of logistical factors. However, one could 

argue that a multiplicative model might hold as well, or perhaps even better. It is not 

possible to simply take logarithms and replicate the ANOVA, as many mass channels 

Table 4. Coe�  cient of variation (CV) between individuals per time point of blood collection. Each set consists of serum samples of 16 subjects, 
all drawn at time point as indicated in the table.

Set Time of blood drawing Fasting CV

1 8-9 a.m. Yes 0.51

2 13-14 p.m. No 0.44

3 18-19 p.m. No 0.55
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contain negative numbers after baseline correction, caused by noise. A threshold 

may solve this problem, but overall coeffi cients of variation depend on the level of 

this threshold. 

We have analysed the data in the form of binned spectra. An alternative approach 

is to detect individual peaks and analyze peak lists.[21;22] For our purpose, quanti-

fi cation of the reproducibility and of the effects of logistical factors, this would offer 

no advantages. The experiments with increased smoothing showed only a small 

infl uence of the effective bin width on the CV. In a peak list, each peak acts like 

one ‘bin’ representing a group of highly correlated intensities around it. Whether 

we compute a local coeffi cient of variation by averaging over these individual in-

tensities or over a smaller set of representative peak heights makes little difference. 

A disadvantage of peak lists is the need for fi nding complete lists for all spectra, 

because missing peaks complicate the ANOVA. Furthermore, we used the Whittaker 

smoother to remove noise and in baseline removal.[18] Compared to wavelets, it has 

the following advantages: one has continuous control over smoothness and one very 

short Matlab function does all the work, eliminating any need for toolboxes.[22] 

With the employed statistical data analysis the intra-measurement experiments 

showed a good reproducibility. It is generally accepted that factors like matrix com-

position and ionisation suppression infl uence the quality of the MALDI spectra, 

which in turn will always result in a certain degree of variance in intensity of the 

generated spectra. This phenomenon can be seen in spectra of subject D5. All spec-

tra of this individual were of inferior quality, possibly due to ionisation suppression 

or poor matrix solvent composition.[23] Ion suppression results from the presence 

of less volatile compounds that can change the effi ciency of droplet formation or 

droplet evaporation. This in turn affects the amount of charged ion in the gas phase 

that ultimately reaches the detector and may result in lower quality spectra.[24;25] To 

minimize these infl uences, we used HCCA as a matrix and each sample was spotted 

four times. However, differences in ionisation rate and thus in peak intensity are 

intrinsic to the technique and have to be accounted for in the statistical analysis.

The inter-measurement reproducibility within one individual corresponded to the 

intra-measurement reproducibility for all 4 individuals. However, there seems to be 

a very small but acceptable day-to-day variation between the different experiments. 

Therefore, we recommend performing all experiments on one day or to correct for 

day-to-day variation. To further enhance intra and inter-measurement reproducibility 

application of robotics for sample processing is recommended. Indeed, implementa-

tion of an automated procedure on an 8-channel Hamilton STAR® pipetting robot 

(Hamilton, Martinsried, Germany) did result in a further reduction of the CV (data 

not shown).
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Ultimately, it might be advisable to include a synthetic peptide mix in the gener-

ated spectra for external calibration. In larger profi ling studies, batch effects should 

be taken into account in the design of the study. 

Moreover, it is interesting to speculate on the potential discriminating power of 

MALDI spectra. In the reproducibility experiment we found the overall CV of the er-

ror to be 0.18 and that of the person effect 0.33. This can be expressed as a reliability 

coeffi cient r = 0.332/(0.332 + 0.182) = 77%. This indicates that nearly 80% of variation 

in spectra is related to differences between persons. This is not a percentage that in-

dicates that on the basis of whole spectra discrimination between individual spectra 

will be possible. The graphs of CV as computed for windows of 500 Dalton show 

strong variations, suggesting that better discrimination could in principle be achieved 

by using selected parts of the m/z domain. Of course, our data were generated from 

healthy volunteers, so it remains to be determined how much spectra will differ 

between healthy and diseased persons. 

In this study the largest effect was observed for sample handling conditions. There 

was no correlation between the increasing number of hours before centrifugation 

and the variation between the serum protein profi les, but the overall variation was 

larger. This would already justify acceptance of a certain time range after blood 

collection and before centrifugation. Furthermore it is unlikely that in a hospital’s 

daily practice this factor could be rigorously standardised. Thus, although a standard 

time period would be ideal, we accept a delay of 0-4 hours between the moment of 

blood collection and serum centrifugation. In view of the fact that there was no large 

difference between the storage temperatures and logistical factors, leaving all blood 

samples to stand at room temperature before centrifugation seems justifi ed. 

The effect of increasing numbers of freeze-thaw cycles was small and consistent, 

with the exception of set 7, in which serum samples were thawed only once at room 

temperature. The coeffi cient of variation in this set was larger than in all other sets, 

as shown in table 3. This might be explained by the fact that protein degradation oc-

curs sooner at room temperature, as also demonstrated in sets 2-4. This phenomenon 

might be explained by proteolytic activity and the fact that hydrophobic interactions 

are strengthened, while with increasing temperature the hydrogen bonding is weak-

ened and the electrostatic interactions are not changed due to its entropic origin.[26] 

Whereas the range in coeffi cients of variation between increasing numbers of freezes 

and thaw cycles is small, fresh serum samples provided the largest variation between 

persons, almost double in comparison to other sets. Furthermore, in fresh serum 

samples the number of peaks observed was less than 50, as also reported by other 

groups.[15;27] We suggest that in this early stage of defi ning optimal parameters/

conditions for serum pattern diagnostics the use of fresh serum samples is better 

avoided. This seems contradictory, as proteolytic activity after thawing implicates a 
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loss of proteins and peptides and thus of information. However, on the condition 

that all samples are treated according to a standard protocol, this would not be criti-

cal for a black box approach. Thus it would seem that the use of archival material 

is safe with respect to the effect of freezing and thawing; nevertheless it remains 

of paramount importance that the entire sample handling and storage procedure is 

standardised. Based on the fact that the coeffi cient of inter-group variation in refer-

ence set 8 is lower than in the other sets (Figure 5), we prefer to use serum samples 

for further studies, which have undergone two freeze-thaw cycles. Moreover, our 

choice is mainly rooted in practical and logistical reasons, as in many large hospitals; 

sample collection is centralised in the clinical chemical laboratory. 

With only minimal variation observed between protein profi les from samples col-

lected at three different time points over the day, circadian rhythm seems to have 

limited effect on individual serum protein profi les. This is an encouraging fact, as 

blood samples can be collected all over the day, which increases the future appli-

cability of serum protein profi ling in the clinic. Furthermore, there is no indication 

that fasting has any infl uence on serum protein profi les, which also facilitates future 

clinical use.

All together, we have presented a method to assess the reproducibility of a protein 

profi ling procedure using a high-end MALDI-TOF. Our appliance of ANOVA over 

the mean spectra allowed analysis of the effects of handling and storage procedures 

on serum protein profi les. The results from this study stress the importance of a 

standardised collection of all blood samples, from the moment of sample handling 

and storage until freezing the samples in order to prevent bias in classifi cation stud-

ies. Although the importance of homogeneity and uniformity within sample groups 

must be stressed, variation of such factors can not totally be excluded in a clinical 

setting. The most important issues for discriminating studies at this moment are a 

standardised and well-documented sample collection and a thorough study design. 

Based on the present data and those of Villanueva et al.[15], we feel that the method-

ology can be standardised to a level which allows application as a tool in biomarker 

discovery. Although it remains to be seen whether actual biomarkers can reliably be 

identifi ed with the current technique, we are now in the process of carrying out a 

study to determine whether serum protein profi les can differentiate colorectal cancer 

patients from individuals with benign bowel disorders and healthy subjects. To this 

end and to facilitate high-throughput studies, we developed an automated platform 

for our capturing technique with C8 magnetic beads with reverse-phase based func-

tionality and we used the MS instrument’s AutoXecute function to further enhance 

reproducibility (data not shown). In addition to large clinical studies as mentioned 

above, such a platform would also be valuable for more large-scale studies as e.g. 

inter group variance (cases versus controls) under different experimental setups.
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ABSTRACT

Purpose

Serum protein profi ling is a promising approach for classifi cation of cancer versus 

non-cancer samples. The objective of our study was to assess the feasibility of mass 

spectrometry based protein profi ling for the discrimination of colorectal cancer pa-

tients from healthy individuals.

Experimental design

In a randomised block design pre-operative serum samples obtained from 66 col-

orectal cancer patients and 50 controls, were used to generate MALDI-TOF protein 

profi les. After pre-processing of the spectra, linear discriminant analysis with double 

cross-validation was used to classify the protein profi les.

Results

A total recognition rate of 92.6%, a sensitivity of 95.2% and a specifi city of 90.0% 

for the detection of CRC were shown. The area under the curve of the classifi er was 

97.3%, which demonstrates the high, signifi cant separation power of the classifi er. 

Conclusions

Double cross-validation shows that classifi cation can be attributed to information in 

the protein profi le. Although preliminary, the high sensitivity and specifi city indicate 

the potential usefulness of serum protein profi les for the detection of colorectal 

cancer. 
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INTRODUCTION

Colorectal cancer (CRC) is among the most common malignancies and remains a 

leading cause of cancer-related morbidity and mortality. It is well recognised that 

CRC arises from a multistep sequence of genetic alterations that result in the trans-

formation of normal mucosa to a precursor adenoma and ultimately to carcinoma. 

Given the natural history of CRC, early diagnosis appears to be the most appropriate 

tool to reduce disease-related mortality.[1;2] Currently, there is no early diagnostic 

test with high sensitivity, specifi city and positive predictive value, which can be used 

as a routine screening tool. Therefore, there is a need for new biomarkers for col-

orectal cancer that can improve early diagnosis, monitoring of disease progression 

and therapeutic response and detect disease recurrence. Furthermore, these markers 

may give indications for targets for novel therapeutic strategies.

Proteomic expression profi les generated with mass spectrometry have been sug-

gested as potential tools for the early diagnosis of cancer and other diseases. Differ-

ent protein profi les may be associated with varying responses to therapeutics. It has 

been postulated that on the basis of the presence/absence of multiple low-molecular-

weight serum proteins using time-of-fl ight (TOF) mass spectrometry technologies, 

such as SELDI-TOF and MALDI-TOF, biomarkers can be identifi ed.[3-6] Although 

the data from these studies are encouraging, critical notes have been made on both 

study design and experimental procedures for proteomic profi ling.[7-9] In addition, 

the importance of avoiding confounding biological variables, as well as technologi-

cal factors that may bias the results, have previously been stressed by several au-

thors.[10;11] Another recurrent topic for debate is the use of independent validation 

sets for the classifi cation of diseased versus healthy individuals. A specifi c problem 

in the discovery-based research fi eld of clinical proteomics is overfi tting. Overfi tting 

may occur in the analysis of large datasets when multivariate models show apparent 

discrimination that is actually caused by data over-interpretation, and hence give rise 

to results that are not reproducible.[9;12;13] The chance of overfi tting, however, can 

be reduced by appropriate application of validatory estimation and assessment, such 

as through application of double cross-validation, when properly implemented. 

The objective of this study was to assess the feasibility of mass spectrometry based 

protein profi ling for the discrimination of colorectal cancer patients from healthy in-

dividuals. In addition to standardizing technical factors and biological variations, we 

performed blinded tests and employed a randomised block design experimentation 

to minimize impact of potential confounding factors and to avoid bias. To minimize 

danger of overfi tting, among other reasons, we used a fairly infl exible classifi cation 

method based on fi rst-and-second order statistics only. Specifi cally, Fisher linear 

discriminant analysis was employed with double cross-validatory integrated estima-
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tion and validation of error rate on the entire dataset to calculate an unbiased error 

rate assessment. 

MATERIAL AND METHODS

Subjects

Serum samples were obtained from a total of 66 colorectal cancer patients one day 

before surgery. All patients with stage IV disease had synchronous metastatic disease 

confi ned to the liver. Colorectal cancer was histological confi rmed on surgical speci-

mens and preoperatively assessed with abdominal CT scan and carcinoembryonic 

antigen (CEA) levels. The extent of tumour spread was assessed by TNM classifi cation 

based on histological examination of the resected specimen. All stages of colorectal 

cancer were represented in the patient group. The median age of the patient group 

was 62.8 years (range 32.6-90.3) and the male to female ratio was 31/35. Patients 

were included from October 2002 till December 2004 in our Center. The control 

group consisted of 50 healthy volunteers. The median age of the healthy symptom-

free control group was 49.7 years (range 25.9-76.6) and the male to female ratio was 

21/29. The controls were included from October till December 2004 (Table 1). 

Study design 

Having identifi ed plate-to-plate and day-today variation as important potential batch 

effects, we used a randomised blocked design.[14;15] All the available 116 samples 

from both groups (controls and colorectal cancer) were randomly distributed across 

3 plates in roughly equal proportions (Table 2). For colon cancer, the distribution of 

stadia across plates was again in random fashion and in approximately equal propor-

tions (Table 3). The position on the plates of samples allocated to each plate was 

randomised as well. Each plate was then assigned to a distinct day, which completes 

the design. Analysis was carried out on 3 consecutive days, Tuesday to Thursday, 

Table 1. Patient characteristics.

CRC patients Controls

inclusion results

n = 66 63 50

Age (mean) 62.6 62.2 49.7

Age (range) (32.6-90.3) (32.6-90.3) (25.9-76.6)

Male/female ratio 34/32 31/32 21/29
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processing a single plate each day. A duplicate of this randomised blocked study was 

performed in the following week.

Serum samples

Informed consent was obtained from all patients and the Medical Ethical Committee 

approved the study. All blood samples were drawn while the patients or healthy 

controls were seated and non-fasting. The samples were collected in a 10 cc Serum 

Separator Vacutainer Tube and centrifuged 30 min later at 3000 rpm for 10 minutes. 

The serum samples were distributed into 1 ml aliquots and stored at -70 ºC until the 

experiment.[16]

Table 2. Distribution and randomisation of serum samples of colorectal cancer patients with di� erent TNM stage before and after the MALDI-
TOF experiment. The distribution of stadia across plates was performed randomly and in approximately equal proportions.

Plate 1 Plate 2 Plate 3 Total

Colorectal cancer 22 22 19 63

Controls 17 17 16 50

Total 39 39 35 113

Table 3. Distribution and randomisation of serum samples of di� erent groups over the three MS target plates.

TNM stage Plate 1 Plate 2 Plate 3

Inclusion I 4 4 3

II 10 10 8

III 4 4 4

IV 4 4 4

0 4 3 3

Total 26 25 22

Exclusion I 0 0 1

II 0 0 1

III 0 0 1

IV 0 0 0

0 4 3 3

Total 4 3 6
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Isolation of peptides 

The isolation of peptides from serum was performed using the magnetic beads, 

based hydrophobic interaction chromatography (MB-HIC) kit from Bruker, mainly 

according to the manufacturers instructions, adapted for automation on an 8-channel 

Hamilton STAR® pipetting robot (Hamilton, Martinsried, Germany). Magnetic beads 

with C8- functionality (MB-HIC8) were divided in 5-µl aliquots in a 96-well microtiter 

plate, which was placed on the magnetic beads separation device (MPC®-auto96, 

Dynal, Oslo, Norway), with the magnet down. Ten µl MB-HIC binding solution and 

5-µl serum sample were added to the beads and carefully mixed using the mixing 

feature of the robot. The sample was incubated for 30 sec and the magnet was lifted, 

followed by a 30 sec waiting interval to settle the magnetic beads. The supernatant 

was removed and the magnet was lowered again. The magnetic beads were washed 

three times with MB-HIC washing solution (also provided with the kit) lifting and 

lowering the magnet as needed. The peptides were eluted from the beads using 

10-µl 50% acetonitrile and 2-µl of this eluate was transferred to a fresh 384-well 

microtiter plate (Greiner). Most of the remaining eluate (6-µl) was transferred to an 

auto sampler vial containing 54-µl water and stored for later use. 15-µl α-cyano-4-

hydroxycinnamic acid (0.3 mg/l in ethanol: acetone 2:1) was added to the 1-µl eluate 

in the 384-well microtiter plate and mixed carefully. 1-µl of this mixture was spotted 

in quadruplicate on a MALDI AnchorChip™ (Bruker Daltonics, Bremen, Germany).

Protein pro� ling 

Matrix Assisted Laser Desorption Ionisation Time-Of-Flight (MALDI-TOF) mass spec-

trometry measurements were performed using an Ultrafl ex TOF/TOF instrument 

(Bruker Daltonics, Bremen, Germany) equipped with a SCOUT ion source, operating 

in linear mode. Ions formed with a N2 pulse laser beam (337 nm) were accelerated 

to 25 kV. With this specifi c serum preparation peptide/protein peaks in the m/z 

range of 960 to 11,169 Dalton were measured. An independent mass spectrometer 

operator performed the experiments at 3 consecutive days after cleaning of the 

instrument. One week later the experiment was duplicated in exactly same order. 

Hereafter the entire process of capturing and concentrating serum proteins using C8 

magnetic beads including the generation of readouts of the MALDI-TOF spectra will 

be designated as the protein profi ling procedure.

Data processing 

All unprocessed spectra were exported from the Ultrafl ex in standard 8-bit binary 

ASCII format. They consisted of approximately 45,000 mass-to-charge ratio (m/z) 

values, covering a domain of 1160-11,600 Dalton. To increase robustness, the aver-

age of four spots was used to represent one serum sample. Subsequently, we lightly 
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smoothed the spectra using the Whittaker[17] smoother. Due to the quadratic nature 

of the TOF-equation, the high-resolution spectra were binned using a linear scaling 

at the time scale, resulting in bin widths of approximately 1 Dalton at the beginning 

of the spectrum and 3 Dalton at the end at the mass/charge scale. The resulting spec-

tra generally showed strong baseline effects. These were removed using an asym-

metric least squares algorithm. To normalize the spectra, we calculated the median 

intensity of every spectrum and subtracted it from the original spectrum. Each of the 

thus normalised spectra was then also divided by the interquartile range of intensity 

within that spectrum. We consider this more robust than normalization of the spectra 

on the average, as it is less sensitive to the most extreme intensities. Finally, prior 

to classifi cation and evaluation of error rate, the logarithm was taken of all intensity 

measurements (predominantly to ensure numerical stability of computations). 

Statistical data-analysis 

Fully validated classifi cation error rates were estimated based on a classical Fisher 

linear discriminant analysis through complete double cross-validatory joint estima-

tion and assessment of class predictions, as is further explained in appendix 1.[18-20] 

Instead of ordinary leave-one-out cross-validatory choice of k, we employ double 

cross-validation. This is an extension of leave-one-out cross-validation which com-

bines validatory ‘choice of model’ (the parameter k in this case) with ‘predictive k in this case) with ‘predictive k

assessment’ (of the same model, through use of error rate or other suitable summary 

statistic). The reason for this additional “technical complication” is that we do not 

wish to incur the bias inherent in the assessment, which would normally result 

from a model choice based on ordinary leave-one-out validation only. In a double 

cross-validatory evaluation, we remove each individual in turn from the data (just 

as in ordinary leave-one-out cross-validation), after which the discriminant rule is 

fully recalibrated and optimised for prediction on the leftover data (now of size n-1, 

where n is the total initial sample size) and using the same procedure in each case. 

The choice of the calibration rule (i.e. choice of k in this case) to classify the left-k in this case) to classify the left-k

out observation is then again based on a leave-one-out cross-validatory estimation 

(hence the name ‘double-cross’) within the leftover set of size n-1. The resulting 

classifi cation rule is then applied to the left-out datum to obtain an unbiased alloca-

tion for this sample. This procedure is then repeated across all individuals and for 

each person separately, after which we can calculate a truly unbiased estimate of the 

misclassifi cation rates on the basis of the thus validated (and calibrated) classifi ca-

tions. In other words, ‘double-cross’ is actually ‘leave-one-out cross-validation within 

leave-one-out cross-validation’ and it is precisely because of this that we can avoid 

bias in error rate estimation that an ordinary application of standard leave-one-out 

choice would imply. 
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RESULTS

In the fi rst week three different randomised target plates were successfully mea-

sured on three consecutive days in the middle of the week. A duplicate experiment 

Chapter 4 
 
 
 
 
 

 

Figure 1a.  
Figure 1a

 

Figure 5b. 

 
 
 

 

Figure 1b

Figure 1. MALDI-TOF spectrum of a colorectal cancer patient (1a) and a healthy subject (1b) after peptide isolation with C8 magnetic beads. On 
the Y-axis the relative intensity is shown. The mass to charge ration (m/z) is demonstrated on the X-axis in Dalton.
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was performed in the second week on the same days. Figure 1 shows a raw data 

spectrum, directly obtained from the MALDI-TOF mass spectrometer. Before pre-

processing and further analysis a mean spectrum of each sample was calculated over 

all four spots that were measured for each sample. In case all four spots from one 

sample showed spectra of poor quality due to a technical problem, the sample was 

left out of the analysis. This was the case for 3 CRC patients’ samples. The above-

described pre-processing steps resulted in a sequence of 4483 normalised m/z values 

ranging from 1160 to 11,600 Dalton, for each individual. 

Detection of colorectal cancer 

Double cross-validatory analysis and evaluation carried out on the protein spectra mea-

sured in week 1, correctly classifi ed 45 of the 50 controls as not cancer. Sixty of the 63 

cancer samples were correctly classifi ed as malignant, including 9 of 10 TNM stage I pa-

tients (Table 4tients (Table 4tients ( ). The remaining 2 misclassifi ed patients had stage II disease. All patients 

with stage III and IV disease were correctly recognised as malignant within the double 

cross-validatory evaluation. These validated results thus yield a total recognition rate of 

92.6%, a sensitivity of 95.2% and a specifi city of 90.0% for the detection of CRC (Table 592.6%, a sensitivity of 95.2% and a specifi city of 90.0% for the detection of CRC (Table 592.6%, a sensitivity of 95.2% and a specifi city of 90.0% for the detection of CRC ( ). 

To analyze the actual discriminative power of the classifi er, we produced an ROC-curve 

(again based on the double cross-validatory classifi cation probabilities), visualizing the 

performance of the two-class classifi er in fi gure 2. The AUC of the classifi er was 97.6%.

Table 4. Double cross-validatory classi� cation of serum samples. A positive test results assigns subjects to the CRC group and a negative to the 
controls. In the horizontal plane the actual histologically con� rmed diagnosis is stated.

Test results for detection of CRC

Neg Pos Total

Controls 45 5 50

CRC patients 3 60 63

48 65 113

Table 5. Cross-validated classi� cation results for the detection of CRC. TRR is the total recognition rate; Sens and Spec are sensitivity and 
speci� city respectively. AUC is the estimated area under the ROC curve.

Method First week Second week

TRR Sens Spec AUC TRR Sens Spec AUC

PCA selection 92.6 95.2 90.0 97.3 88.8 80.6 97.1 96.8
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We repeated the entire double cross-validatory evaluation executed with the week 

1 data using the duplicate measured spectra from week 2. This procedure was identi-

cal to that carried out in week 1 and used the same calibration spectra. However, 

prior to classifying each left-out datum in the outer “shell” of the double cross-

validatory procedure, we substituted the week 1 data with the corresponding mea-

sured spectra from the same sample in week 2. In this manner, we could calculate a 

double cross-validatory error rate, which takes the effect of replicate measurement of 

the spectrum (and thus also recalibration of the equipment) into account. The effect 

of classifying the remaining replicate data was that the recognition rate dropped to 

88.8%. The sensitivity and specifi city for the detection of CRC for the second week 

data was 80.6% and 97.1% respectively (Table 4). The associated AUC of this repeat 

double cross-validatory estimation on week 2 was 96.8%. 

It is of interest to evaluate bias of the double cross-validatory calculations. Hence, 

we performed a permutation exercise, which randomly permutes and reassigns 

the class labels across subjects and then repeats the entire double cross-validation 

procedure. Carrying out this procedure more than 600 times resulted in a median 

recognition rate of 50.0% (95% confi dence interval is [36.3, 72.7]). The median AUC 

was 49.4% with confi dence interval of [24.8, 64.2]. As both median recognition rates 

 

Figure 2.. 

Figure 2. ROC-curve for the double cross-validated two-group classi� er. The true positive recognition rate (sensitivity) is demonstrated on the 
y-axis against the false negative recognition rate (1-speci� city) on the x-axis of the classi� er. 
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and AUC’s equal 50%, there is thus no substantial evidence of bias remaining within 

the cross-validatory calculation.

Having executed the above-described validatory evaluation, we can explore the 

nature of the classifi cation through a post hoc analysis. We found that the fi rst 

two principal components provide most of the between-group separation. Figure 3

shows a plot of the correlation coeffi cients, with the class indicator, which can be 

calculated from the linear discriminant weightings in the region between 1160 and 

11,600 Dalton.[20;21] The remainder of the plot is not shown, as the coeffi cients are 

effectively zero in that range. As can be seen, the classifi cation is achieved primarily 

through a contrast in peak intensities between the fi rst and second principal compo-

nent. This can also be seen from the scatter plot shown in fi gure 4: low intensities at 

the fi rst peak for cases separates cases from controls. Likewise, a small contribution 

for controls at the second peak separates controls from patients. To illustrate these 

results further, we can simply calculate the contrast between the two peak intensities 

directly across all subjects and construct a simple one-dimensional summary of the 

data, as shown in the histogram displayed in fi gure 5, which shows overlapping 

histograms of this (ad hoc) contrast for each group separately. The separation is 

clearly visible. We may also quantify the signifi cance of this difference by performing 

a two-sample Student t-test on this contrast, which is t=14.0 (p<0.0001). 

 
 
Figure 3. 
 
 
 
 

Figure 3. Correlation coe�  cients of two � rst principal components with the class indicator. The correlation coe�  cients were calculated from the 
linear discriminant weightings. The negative correlation of the � rst peak is an indicator for the control group and the positive correlation of the 
second peak points out the cases.
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second com
ponent

first component 

Figure 4. Scatter plot of the � rst two principle components on basis of which the classi� cation patient-control group was made.

Figure 5. Histogram showing the di� erence between the normalized intensities of the two most discriminating “peaks” (bins). The X-axis shows 
the di� erence between the normalized intensities of the peaks. On the Y-axis the number of subjects is displayed.
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DISCUSSION

Our study supports the hypothesis that serum protein profi les can discriminate a 

normal from a malignant state of organs, in our case of the colon. Here we show 

that, based upon information in MALDI-TOF serum spectra, a classifi er could be 

constructed for the detection of CRC. This classifi er, calibrated and validated on 

spectra of week one demonstrated a sensitivity and specifi city of 95.2% and 90.0% 

respectively. Thirty-four patients out of thirty-seven with early stage disease (stage 1 

and 2) and all patients with stage 3 or 4 disease were correctly classifi ed as having 

cancer. For the misclassifi ed control subjects it was not possible to retrieve the cur-

rent physical state as it concerned anonymous healthy controls. 

Sensitivity and specifi city of 80.6% and 97.1% respectively was achieved when the 

entire double cross-validatory evaluation was repeated for the data of week 2. The 

latter evaluation, through use of replicate measurements within the double cross-

validation, is likely to provide the more realistic assessment of true error rates and 

appears to better represent possible diagnostic potential as will be discussed further 

in this paper.

Although previous studies have reported similar high classifi cation results for 

various solid tumours, we prefer evaluation through a thorough study design and 

double cross-validation of classifi cation as proposed in this study.[3-6;12;22;23] As 

a great variety of different discriminating peaks for the same malignancy have been 

described,[3;4;24] caution with proteomic data has been stressed before.[7;8] The dis-

crepancies in discriminating protein profi les, found by different research groups, lead 

to serious concerns regarding biological variations and technological reproducibility 

issues. Therefore, we used a standardised and well-documented sample collection 

and a thorough study design, matching biological variables and pre-analytical condi-

tions.[16] Still, patient samples from all stages of CRC were equally distributed over 

the different target plates, as was the male/female ratio between the two groups, 

excluding these factors as a discriminator in the detection classifi er. Unfortunately 

there was signifi cant difference in age; the control group being younger than the 

CRC patients. Ideally, the control group should consist of age-matched symptom-free 

individuals undergoing a colonoscopy showing no aberrations. However, due to the 

nature of the intervention, ethical legislation and the increasing disease burden with 

ageing this is diffi cult to realize in clinical practice. Notwithstanding, we performed 

an analysis to examine the differences in intensity of most discriminating peaks 

based on age, gender and sample age. In the present study there was no signifi cant 

contribution of one of these factors on the most discriminating peaks of our clas-

sifi cation model (data not shown).
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A source of bias may be the presence of batch effects, such as day-to-day varia-

tion or plate-to-plate variation. The presence of batch effects is unavoidable and 

– rather than to eliminate them from the design – a better approach is to account 

for and accommodate these effects, in such a way that they do not lead to errors 

of artifi cially induced group separation. Consequently, we randomly distributed the 

available samples from each group across the batches such that proportions were 

equal across batches within group. The so-called randomised block design ensured 

that the batch effect – if it materialised – would not induce an artifi cial between-

group effect.[14;15] 

A crucial point of discussion in the evolving fi eld of clinical proteomics is valida-

tion of classifi cation.[9;25] Given the sample size achievable within the experiment, 

use of a separate (possibly set-aside) validation set was precluded. The other prob-

lem is ‘predictive optimisation’. However, as evaluation of predictive performance 

of the classifi er is our primary focus, it is crucial that calibration is not carried out 

on the same data used for validation, which in turn would require an additional 

tuning set. Again, this would greatly increase the burden of collecting suffi cient 

samples. For these reasons, other studies often carry out predictive optimisation on 

the full data in practice - which results in optimistically biased error rate evaluations, 

particularly with high-dimensional data such as in mass spectrometry proteomics.[26] 

As we have already suggested, another option is to reduce the available calibration 

data prior to optimisation, so as to set aside data, both for a training and validation 

set. However, this ‘solution’ is not as innocent as would appear at fi rst sight, since it 

typically reduces the calibration set beyond the point of what is needed for reason-

able calibration. Once more, this is particularly the case in high-dimensional cases 

such as clinical proteomics, where samples of malignancies are relatively diffi cult to 

obtain. Both problems may be avoided by carrying out a double-cross-validatory ap-

proach, which avoids the need for separate test and validation sets to yield unbiased 

error rate estimates. The double validatory aspect of the procedure results from the 

fact that the discriminant rule constructed to classify the left-out data was optimised 

through a secondary cross-validatory evaluation within the fi rst cross-validatory layer 

(i.e. full cross-validation again on each ‘leftover’ set after removal of an observa-

tion). In this manner, we are able to integrate predictive optimisation and predictive 

unbiased validation in the same procedure, without loss of data – which is a crucial 

requirement to get realistic estimates of error rate with high-dimensional data while 

reducing the risk of overfi tting.[27] Although the principle is sound and understood, 

this procedure has until recently not been applied in practice due to the considerable 

computational cost and (algebraic) complexity of the method. 

Our classifi er is based on Fisher linear discrimination, which has been derived and 

may be justifi ed based on a variety of principles of inference, such as maximization 
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of the between-group separation relative to within-group error in the two-group case 

or the likelihood principle for normally distributed within-group populations. The 

methodology has been amply studied and has been established as reliable and robust 

form of classifi cation and discriminant analysis. Furthermore, Fisher discrimination 

does not require an assumption of within-group normal dispersion.[21;28;29] Hastie 

et al. contains an up-to-date account of many new applications that demonstrate 

the continuing success of the approach.[18;21;28-30] Much similar and confi rma-

tory experience has accumulated in related fi elds of application, which identifi es 

this classifi cation method as most reliable in high-dimensional analysis.[19;31] For 

proteomic mass spectra, principal components are attractive as it provides a means 

of non-parametrically smoothing and pooling information across peaks. 

The controversy about the use of protein profi les as a pattern diagnostic without 

analysis of the diagnostic biomarkers remains to be solved for its clinical applica-

tion. Identifi cation and functional analysis of these discriminating proteins/peptides 

might render new insights on tumour development and environmental responsive-

ness, which could eventually be translated in new diagnostic and prognostic insights 

for the clinician. Unfortunately, little success has been booked so far in assigning 

reproducible discriminating biomarkers.[12;25] Though this study showed two most 

discriminating mass values of MALDI-TOF based protein profi ling analysis to be low 

molecular weight fragments, we have not identifi ed these potential biomarkers yet. 

In the present study we used patterns of proteomic signatures from high dimen-

sional mass spectrometry data to generate a diagnostic classifi er for the detection 

of CRC. To our knowledge, this is the fi rst double cross-validatory study in a ran-

domised block design in this fi eld of research. Although independent validation 

would strengthen the observations and follow up studies are now underway, we ob-

tained maximal reliability in classifi cation in this study while maintaining protection 

against overfi tting. Due to the relatively small sample size we have chosen to use our 

entire dataset for a within-study validation to avoid optimistic biased (error) misclas-

sifi cation rates. To assess the performance of our classifi er a further independent 

validation study will be necessary. In addition, in future studies the specifi city of dis-

criminating protein profi les for colorectal cancer have to be assessed in comparison 

with other cancer types. Nevertheless, we are currently able to detect CRC accurately 

on the basis of differences in actual information in the serum protein profi les with 

a rigorously standardised approach and exclusion of batch effects. Thus, although 

introduction in a routine clinical setting may take longer than originally hoped for, 

this study is an initial proof for a successful evolution of the potentially great use of 

discriminating protein profi les in the detection of CRC.
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Appendix 1

Fisher linear discriminant analysis may be defined as assigning an observation to the group for which the 

smallest within-group distance 1( ) ( ) ( )T
gD g gx x x is found for the corresponding observed 

feature vector ( ,..., )1 p= x xx  with respect to the gth group (g=1,2 here, for either cases or controls), where p 

is the dimensionality of the problem, g denotes the population within-group sample mean for the gth group 

and  is the (common) within-group dispersion matrix.  We may estimate the population means through the 

within-group sample means. When the dimensionality of the problem is greater than the sample size, as is the 

case in this problem, the observed within-group pooled covariance matrix S will typically not be of full rank 

and hence special measures are called for before we can apply the above paradigm in this context. This can be 

achieved through an initial principal components decomposition of the observed within-group pooled 

covariance matrix TS = Q Q , where Q  and 1( ,..., )rdiag  are the matrices of principal 

component weightings and variances respectively (r is the rank of the pooled covariance matrix). We then re-

estimate the within-group covariance matrix by only retaining the first k components only: 

T
(k) (k) (k) (k)S = Q Q , which account for most of the variation in the spectra. The discriminant rule may now 

be expressed as assigning an observation to the group for which we observe the smallest sample estimate 

1
( )( ) ( ) ( )T

g g gkD x x x S x x . 

In the two-group case, this is also equivalent to least-squares regression analysis using the Moore-Penrose 

inverse of the pooled covariance matrix when k=r (all components kept, also known as shortest least squares 

regression), or else is equivalent to so-called shrunken least-squares regression.20,21 When choosing k<r, the 

choice may be made through appeal to a (cross-) validatory evaluation of the performance of the respective 

possible choices for the parameter k. The above methodology has been described and compared to other 

methods in the recent paper by Mertens18, which shows this method to be competitive in the closely related 

high-dimensional setting for classification with microarrays. Much similar and confirmatory experience has 

accumulated in related fields of application, which identifies this classification method as reliable and stable in 

high-dimensional analysis, as has been described by Stone and Jonathan, among others.19,31 

 
Appendix 1 
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ABSTRACT

This paper presents an approach to the evaluation and validation of the diagnostic 

potential of mass spectrometry data in an application on the construction of an ‘early 

warning’ diagnostic procedure. Our approach is based on a full implementation and 

application of double cross-validatory calibration and evaluation. It is a key feature 

of this methodology that we can jointly optimize the classifi ers for prediction while 

simultaneously calculating validated error rates. The methodology leaves the size 

of the training data nearly intact. We present application to data from a designed 

experiment in a colon-cancer study. Subsequent to presentation of results from the 

double cross-validatory analysis, we explore a post-hoc analysis of the calibrated 

classifi ers to identify the markers that drive the classifi cation.
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INTRODUCTION 

There is currently much interest in application of mass spectrometry for the con-

struction of new diagnostic proteomic approaches for the early detection of disease. 

This is particularly the case in oncology, where there is need for new and reliable 

diagnostic tests. In this paper, we discuss the problem of ascertaining the presence of 

discriminatory information in mass spectra of serum samples in a case-control study 

for the detection of colorectal cancer. In other words, we describe -in essence -an 

early-stage feasibility study for subsequent construction of a diagnostic test based on 

proteomic mass spectra. A crucial objective of such research is to provide informa-

tion which allows researchers to make informed decisions as to the continuation of 

the research effort (which may involve experiments of much greater cost and com-

plexity in comparison to the fi rst-stage evaluation). Hence, it is essential to get a fully 

validated and unbiased assessment of predictive error rates that may be achieved, 

based on the proteomic data. At the same time, in a high-dimensional setting such as 

mass spectrometry, it is desirable that construction of the diagnostic classifi er would 

involve calibration of the predictive potential of the allocation rule itself. 

Mass spectrometry proteomics, sample size and clinical science 

In problems such as these and related settings (e.g.: microarray diagnostics, ch-

emometric discriminant studies), a key diffi culty is often the collection of a suf-

fi cient number of samples. In oncology applications this may tend to happen, due 

to logistical and ethical reasons. Our example is a typical one, as our study is a 

fi rst-stage evaluation within the context of an academic center, which has a typical 

patient population with more advanced disease. This limits the number of patients 

available for research. On the other hand, clinicians and biomedical researchers 

who wish to explore application of proteomic mass spectrometry for the construc-

tion of new diagnostic procedures, will be interested fi rst to get an indication of 

whether there is information in the spectra to allow groups to be separated and what 

the likely error rates of misclassifi cation will be. This is particularly the case since 

ethical review boards (or funding authorities) are not inclined to give permission 

for large-scale collaborative trials between hospitals, which would ease the patient 

recruitment problem, without preliminary evidence from smaller within-center trials. 

Both these reasons may conspire to cause proteomic studies to be of small sample 

size initially. 

Classical statistics will often use a separate validation set to optimize a chosen 

diagnostic classifi er for prediction fi rst. Assessment of the rule is then carried out 

on yet another test set, which must often be set-aside from the available data [1]. 

Unfortunately, when the amount of experimental data is small to begin with, the 
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training set left over may be too small to allow researchers to apply this paradigm 

fully. In this paper, we present a double cross-validatory approach which allows for 

simultaneous predictive calibration and assessment of the allocation rule, without 

(substantial) reduction of the size of the calibration data. 

Mass spectrometry data 

The experiment and data discussed and analysed in this paper are derived from 

a MALDI-TOF (Matrix Assisted Laser Desorption Ionisation Time-Of-Flight) mass 

spectrometer (Ultraflex TOF/TOF, Bruker Daltonics, equipped with a SCOUT ion 

source which was operated in linear mode). The spectrometer produces a sequence 

of intensity readings for each sample on an ordered set of contiguous bins in the 

m/z range from 960 to 11,160 Dalton. Bin sizes (length) of the unprocessed spectra 

gradually increase with increasing m/z values, ranging from 0.07 Dalton at the lower 

end of the mass/charge scale up to 0.24 Dalton at the upper end of the scale. This 

gives intensity readings on a fi xed grid of 4483 bins within the mass-charge range 

across all samples. We refer to an earlier paper by our group for detailed information 

on experimental setup and measurement protocols.[2] 

We will discuss the essential aspects of the study design fi rst, followed by a de-

scription of the discriminant method and the double cross-validatory approach to 

joint predictive estimation (calibration) and validation of the allocation rule, which 

allows for validated error rate evaluation. Subsequent to description of the meth-

odological approach, we consider application to the colon cancer data and present 

a post hoc exploratory data analysis to interpretation of the results. While we will 

focus on our example to structure the discussion, the issues apply quite generally to 

similar problems in proteomics and many other related problems in bioinformatics, 

chemometrics, statistical prediction and beyond. We will assume that the reader has 

some knowledge of standard leave-one-out cross-validation. 

DESIGN AND SAMPLE REPLICATION 

Design 

A characteristic problem of proteomic mass spectrometry design is the need to cope 

with the presence of what we may loosely refer to as so-called ‘batch effects’. Ex-

amples are plate-to-plate variability, day-to-day variation and so on, whose presence 

is in reality unavoidable. To accommodate these effects, we identify each plate 

by day combination as a block and employ standard randomised block design by 

randomly distributing the available samples from each group (colon cancer and con-

trols) across the blocks such that proportions are (as near as) equal within and across 
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blocks for each group. For colon cancer, we randomised samples to plates in such a 

manner that the distribution of disease stages is in approximately equal proportions 

within and across plates. The position on the plates of samples allocated to each 

plate was also randomised. Each plate was then assigned to a distinct day, which 

completes the design. Table 1 summarizes the design as executed on the fi rst week, 

which provides mass spectra on 63 colon cancer patients and 50 healthy controls. 

Table 1. Design as executed on the � rst week. A replicate of the entire experiment was run on the subsequent week using plate duplicates. 
‘Stage’ refers to the distribution of cases across the four respective disease stages.

TNM stage Plate 1 Plate 2 Plate 3 Total

Cases I 4 4 3

63
II 10 10 8

III 4 4 4

IV 4 4 4

22 22 19

Controls
17 17 16 50

Total 39 39 35 113

In our case, it was decided to carry out the experiment in a single week using three 

plates only, each of which was assigned to a consecutive day in the middle of the 

week - Tuesday to Thursday. We refer the reader to the statistical literature on design 

of experiments for further discussion and details of the issues involved, as well as 

many other examples of these basic design principles.[3-6] 

Sample replication 

We can exploit design to augment cross-validatory analysis. This is because while 

sample sizes may be small (i.e. it is diffi cult to get new independent samples), the 

amount of sample material available for each sample may be more abundant. This 

allows the introduction of so-called replicate samples into the design. Since the 

samples are pre-arranged on rectangular plates, a second ‘copy’ of any plate can 

be made provided suffi cient sample material is available from each sample. (In 

our case, suffi cient sample material was available for a second copy only). Thus, 

we can duplicate the entire design from the fi rst week and remeasure the replicate 

plates through the same design on the second subsequent week, using new sample 

material from each sample (but of course not new samples themselves). With this 
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approach, we thus generally have available from each ith sample an observation 

x1
i 
= (x1

i1
, ... , x1

ip 
)  of the associated recorded mass spectrum in the fi rst week, where 

the vector elements refer to the measured mass/charge intensities on a predefi ned 

and ordered grid of mass/charges of dimensionality p. In addition, we have for each 

sample a duplicate measurement x2
i 
= (x2

i1
, ... , x2

ip 
) obtained from the corresponding 

replicate on the corresponding plate measured on the same day one week later. We 

may denote the associated class label from each ith observation as c(i) which takes i) which takes i

value in the set of group indicators {1,...,G}, where ,...,G}, where ,...,G G is the number of groups. [Note 

we will drop use of the suffi xes 1,2 when the context makes clear to which week 

the data relates.] Unfortunately, due to a technical malfunction which occurred on 

the last day of the second week the replicate measurements from the third plate are 

unavailable. As a consequence we only have available the 78 replicates from the fi rst 

2 plates in week 2 for further analysis. 

INTEGRATED CALIBRATION AND VALIDATION FOR CLASSIFICATION BY 
DOUBLE CROSS-VALIDATION 

We restrict attention to double cross-validated linear discrimination for joint calibration 

and validation.[7] First we discuss shrinkage-based estimation and the need for it in 

linear discrimination. Then we explain the double cross-validatory implementation. 

Linear classi� cation and shrinkage estimation methodology 

We base classifi cation on Fisher linear discrimination. There is voluminous literature 

on the method, which is well established in the applied sciences, such as biology and 

medicine.[1;8-10] An article by Hastie et al. contains an up-to-date account of many 

new applications which demonstrate the continuing success of the approach.[1] 

Fisher linear discriminant allocation may be defi ned as assigning a new observa-

tion with feature vector x to the group for which the distance measure 

Dg(x)=(x − µ
g
)Σ−1(x − µ

g
)T 

is minimal, where g denotes the group indicator with g є {1,...,G}, ,...,G}, ,...,G µ
g

the popula-

tion means and Σ the population within-group dispersion matrix which is assumed 

equal across groups. In practice, the population means and dispersion matrix will 

be unknown and hence must be estimated from the data. In a high-dimensional 

problem such as in mass spectrometry proteomics, this leaves us with a diffi culty 

in estimating the dispersion matrix as we will typically not be able to achieve a full 

rank estimate. 
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At the risk of some oversimplifi cation of the discussion, there are basically two 

ways in which we may remedy the problem so that the above methodology may 

again be applied. The fi rst is through either selection or construction (or a combina-

tion of both) of a set of features which is reduced in dimensionality, while capturing 

most of the variability in the data. In essence, this is the approach which is currently 

applied in most of the mass spectrometry proteomics literature. Typical examples are 

found in papers by Baggerly, Yasui, Sauve and Morris, among others.[11-14] We do 

not consider this approach to be fundamentally flawed for mass spectrometry pro-

teomic data. On the contrary, it is self evident that mass spectra consist of mixtures of 

possibly overlaid intensity peaks corresponding to substances present in the analyte. 

Thus, to elucidate this structure (fi rst) is in principle of interest. 

The alternative is not to select in the fi rst instance, but instead explicitly utilize the 

correlations which are induced between intensities on the mass-charge bins through 

the associated discretisation of the continuous signal (peaks). The simplest approach 

is through principal components decomposition [15], which has a long history of 

successful application in classical spectroscopy such as in near infrared spectroscopy 

for example Krzanowski et al. [16] 

Within this approach, we leave the dimensionality of the data intact and instead 

introduce a regularised estimation of the dispersion matrix to cope with the singular-

ity of the sample dispersion matrix, based on the component decomposition. We ex-

plore two distinct forms of regularization, both of which may be expressed in terms 

of the spectral decomposition of the ‘observed’ (or sample) pooled dispersion matrix 

S = QΛQT where Q and Λ = diag (λ1, ..., λr) are the matrices of principal component r) are the matrices of principal component r

weights (or loadings) and variances respectively, with λ1 > ...> λr > 0 respectively 

(r is the rank of the pooled covariance matrix). The within-group covariance matrix 

is re-estimated by only retaining the fi rst 1≤k≤ r components only, which gives an 

estimate 

S(k) = k) = k Q
(k)

Λ
(k)

QT 
(k)

,

where Λ
(k)

 = diag (λ
1
, ..., λ

k
) and Q

(k)
 denotes the corresponding reduced matrix of 

component loadings. The associated linear discriminant allocation rule hence assigns 

observations to the group for which the smallest sample-based distance estimates 

g 
(x) = (x - 

g
) S-1

(k) 
 (x - 

g
)T 

are observed, with 
g
the sample group means for g є {1, ... G}. In the two-group case, 

this is also equivalent to least-squares regression analysis using the Moore-Penrose 

inverse of the pooled covariance matrix when k=r (all components kept, also known 
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as shortest least squares regression), or else (k<r) is equivalent to so-called shrunken k<r) is equivalent to so-called shrunken k<r

least-squares regression.[8;17] Alternatively, we may employ ridge regularization 

S(γ) = Q[(1 − γ)Λ + γI]QT ,

where 0<γ≤ 1 is the ridge regularization or ‘tuning’ parameter, in which case the 

sample distance measures are (x - 
g
) S-1

(λ) 
(x - 

g
)T. 

Double cross-validatory estimation and validation 

Application of the above described classifi cation approaches still require choice of 

the tuning parameters k or γ involved. As we are specifi cally interested in an evalu-

ation of predictive performance of any diagnostic allocation rule, it becomes crucial 

that any optimization -such as the choice of the tuning parameters - does not take 

place on the same data used for validation. On the other hand, predictive tuning is 

clearly highly desirable if diagnosis is of interest, so we would not wish to base the 

choice of tuning parameters on the full calibration data itself (and thus effectively 

drop predictive tuning from the analysis), but use a truly validatory choice instead. 

This implies we either set aside a so-called separate ‘tuning set’ from the avail-

able calibration data prior to validation of predictive performance itself or appeal 

to some form of cross-validation. Good predictive optimization or tuning becomes 

particularly important in a high-dimensional setting, such as proteomics, as it pro-

vides an opportunity to safeguard model choice against over-fi tting (in other words: 

over-interpreting the data). Meanwhile, even if we were able to effectively choose 

good tuning parameters, the predictive performance (in our case essentially the 

error rates) of any implied allocation rule should again be validated, which again 

introduces a need for yet another set-aside validation set or cross-validation. 

We may solve both problems by carrying out a so-called double cross-validatory 

approach, which avoids the need to introduce separate test (tuning) and valida-

tion sets. The method has been fi rst proposed and investigated by Stone[7] and 

integrates predictive optimization and unbiased validated error rate estimation in a 

single validatory procedure. While the principle of the methodology is sound and 

well described, this procedure has until recently not been applied in practice due 

to the considerable computational cost and (algebraic) complexity of the method.

[18] This paper describes a fi rst full implementation in the related setting of discrimi-

nant allocation on microarray data. Other papers by our group give further details 

on computational background, application for leave-one-out in spectroscopy and 

further references.[19;20] 

Similar to with ordinary leave-one-out cross-validation, double cross-validation 

removes each individual (sample) in turn from the data, after which the discriminant 
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rule is fully recalibrated (and optimised for prediction) on the leftover data and using 

the same procedure in each case. The resulting classifi cation rule is then applied to 

the left-out datum to obtain an unbiased allocation for this sample. This procedure 

is then repeated across all individuals and for each person separately, after which 

misclassifi cation rates are calculated on the basis of the thus validated classifi ca-

tions. The double-validatory aspect results from the fact that the discriminant rule 

constructed to classify each left-out datum is optimised through a secondary cross-

validatory evaluation within the fi rst cross-validatory layer (i.e. full cross-validation 

again on each ‘leftover’ set after removal of an observation). In this manner, we are 

able to combine predictive optimization and predictive unbiased validation in the 

same procedure, without loss of data -which is an important requirement to get 

realistic estimates of error rate with high-dimensional data.

APPLICATION AND EVALUATION 

Preprocessing of mass spectra 

Some pre-processing can be benefi cial when it removes variation from the data 

which does not relate to the group separation and might obscure an existing group 

separation. We describe the pre-processing steps carried out prior to the double 

cross-validatory classifi cation analysis. 

First, we calculated for each sample the average intensity within each bin across 

the four mass spectra from the associated spots on the target plate. Then, we aggre-

gated contiguous bins on the m/z scale, such that the new aggregated bin size spans 

approximately one Dalton at the left side of the spectrum and gradually increases 

to a width of approximately 3 Dalton at the right hand side. For each of these new 

aggregated bins, we calculated for each spectrum the associated aggregate intensity 

by summing the intensities across the bins being aggregated. Subsequently, spectral 

baseline was removed from each of the thus aggregated spectra separately using an 

asymmetric least squares algorithm.[21] 

Suppose x
bi 

= (x
bi1

, ... , x
bip 

) denotes the ordered sequence of baseline corrected 

m/z intensity values for the ith sample at this stage of preprocessing. We then correct 

the spectrum for the typical intensity and variability across the spectrum by calculat-

ing the standardised values 

x
sbij  

x
sbij  

x =
x

bij
 - medain(

bij
 - medain(

bij
x

bi
)

bi
)

bi

 (q
x
 (q
x

sbij   (qsbij  
x

sbij  
x
 (q
x

sbij  
x

 0.75 
(x

bi 
) - q

 0.25 
(x

bi 
)) ,

where q
 0.25 

(x
bi 
) and q

 0.75 
(x

bi 
)) denote the 25th and 75th percentiles of the baseline cor-

rected intensity values for the ith sample. These steps bear close resemblance to the 
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preprocessing procedure proposed by Satten et al , although our cruder version does 

not employ local estimates.[22] The fi nal preprocessing step is a log-transformation 

x
ij 
= log(x

sbij
x

sbij
x  + 

sbij
 + 

sbij
α)

of each spectrum, where α is a real constant. We chose α = 100. The main purpose 

of the log-transform is to ensure numerical stability of calculations. The above pre-

processing steps were applied for each sample and within each week separately, 

which thus gives us the observations x1
i
and x2

i
from the fi rst and second weeks. It 

is important to stress that the preprocessing of the data of any ith sample does not 

involve use of any information based on the remaining samples {k|k ≠ i}, nor of the 

duplicate replicate measured spectrum of the same sample on another week. This 

is an important requirement to ensure the validity of the cross-validatory evaluation 

described subsequently. 

Double cross-validatory error rates 

First, we restrict ourselves to the data from the fi rst week. Table 2 displays the esti-

mated recognition rates and performance measures from an analysis of the fi rst week 

data (leftmost 3 columns). All of the estimates are based on double cross-validation. 

We used the average of sensitivity (Se) and specifi city (Sp) as our estimate of the 

total recognition rate (T), which implies we assume prior class probabilities to equal 

0.5. A threshold of 0.5 was also used to assign observations on the basis of the a-

posteriori class probabilities within the cross-validatory calculations. B denotes the 

Brier distance defi ned 

B = B = B 1  ∑
i
  

i
  

i
[1 - p (c(i)|x

i 
)]2n

where p(c(i)|i)|i x
i
) is the double cross-validated predicted a-posteriori class prob-

ability for the correct class c(i) for each ii) for each ii th sample and n is the total sample size. 

Likewise, AUC is a double cross-validation estimate of the area under the empirical 

ROC curve defi ned as 

AUC = AUC = AUC 1   ∑
iεG1    

∑
i

    
i

    εG2  
[I( I( I p (1|x

i 
) > p (1|x

i 
)) + 0.5 * I ( p (1|x

i 
) = p (1|x

j 
x

j 
x ))],n

1 
n

2

where G1 and G2 refer to the sample index labels for samples from the fi rst and 

second group respectively. Use of the threshold at 0.5 is appropriate and suffi cient 

for an evaluation of diagnostic potential only. Application in e.g. a screening type 

application would require a more careful choice of prior probability, which is how-
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ever a subtly different and also subsequent research question and not the focus of 

this paper. 

The rightmost three columns of the table refers to a repetition of this entire double 

cross-validatory exercise, which replaces each sample feature vector x1
i
 with the 

i
 with the 

i

corresponding replicate measurement x2
i
 immediately prior to classifi cation of that 

i
 immediately prior to classifi cation of that 

i
ith

sample (i.e. replacing the feature vectors with the data from week 2 in the outermost 

layer (only!) of the double cross-validatory calculation). Crucially and importantly, 

construction of the corresponding discriminant rule for the classifi cation of each such 

ith sample in the internal ‘calibration’ layer of the double cross-validatory procedure 

does of course remain based on the data from week 1. Note that as the replicate data 

from the third plate are not available, these results are based on the double cross-

validated predictions for the remaining 78 replicate samples from week 2 only.
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Figure 1: Mean spectra for each group separately, after preprocessing. We plot negative

intensity value for the control group (bottom mean spectrum).

as

AUC =
1

n1n2


i∈G1


j∈G2

[I(p(1 | xi) > p(1 | xj)) + 0.5 ∗ I(p(1 | xi) = p(1 | xj))],

where G1 and G2 refer to the sample index labels for samples from the first and second

group respectively. Use of the threshold at 0.5 is appropriate and sufficient for an evalu-

ation of diagnostic potential only. Application in e.g. a screening type application would

require a more careful choice of prior probability, which is however a subtly different and

also subsequent research question and not the focus of this paper.

The rightmost three columns of the table refers to a repetition of this entire double

cross-validatory exercise, which replaces each sample feature vector x1
i with the corre-

sponding replicate measurement x2
i immediately prior to classification of that ith sample

13

Figure 1. Mean spectra for each group separately, after preprocessing. We plot negative intensity value for the control group (bottom mean 
spectrum).
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Table 2. Double cross-validated classi� cation results for the colon cancer data. T is the total recognition rate. Se and Sp are sensitivity and 
speci� city, respectively. B is the Brier distance and AUC is the estimated area under the ROC curve.

Method First week Second week

T (Se, Sp) B AUC T (Se, Sp) B AUC

Moore-Penrose S(r)r)r 92.6 (95.2, 90.0) 0.0618 97.6 94.4 (91.7,97.1) 0.0600 97.4

PCA Selection S(κ) 92.6 (95.2, 90.0) 0.0606 97.3 88.8 (80.6,97.1) 0.0914 96.8

Moore-Penrose Euclidian S(r)r)r    λ (r)r)r  = I (r)r)r 89.4 (88.9,90.0) 0.0829 96.0 87.2 (86.1,88.2) 0.0770 97.0

PCA Selection Euclidian S(κ)   λ(κ)  = I (κ) 88.7 (87.3, 90.0) 0.0865 96.0 90.0 (88.9,91.2) 0.0795 97.0

Ridge S(r)r)r 92.0 (95.2,88.0) 0.0602 98.4 95.8 (91.7,100.0) 0.0469 97.9

At fi rst sight, the Moore Penrose implementation (top line of the table, both weeks 

one and two) would seem to be the best performing and most consistent method. 

In week 1, Moore-Penrose, PCA-selection (both using the Mahalanobis distance) 

and ridge estimation perform equally well, but there seems to be an increase in 

error rate for week 2 for both the PCA-selection and ridge implementation. The 

Euclidean distance based implementations are worse in the evaluation on the fi rst 

week, but recognition rates are consistent across both weeks when compared to the 

other methods. These results should be interpreted with some caution and require 

some explanation. First of all, the ‘plain’ Moore-Penrose is leave-one-out only as 

it does not involve choice of shrinkage or data reduction parameter (k or λ). The 

deterioration of the PCA-selection implementations is partly due to the uncertainty 

in estimating the shrinkage terms or choice which is introduced by the double-cross-

validatory estimation. For the ridge implementation, performance is comparable to 

that from Moore-Penrose in week 1, which is not surprising since the chosen ridge 

shrinkage parameter λ< 0.0001 for most observations. The effects of uncertainty 

in the determination of the shrinkage term become particularly apparent for PCA-

selection using Mahalanobis distance (second line in the table) in week 2. The two 

Euclidean distance based implementations on the other hand seem more consistent 

across both weeks. The reason is that component selection is much more stringent 

for these two implementations, which selects only the fi rst 2 components for nearly 

all observations (with exception of two observations out of 113 for which only the 

fi rst principal component is retained). This explains the reduced performance but 

also the greater consistency of the classifi cation results. It is precisely because of this 

reason that these results (from the Euclidean based implementations) are more cred-

ible and may well turn out to be more repeatable if the classifi er were applied in the 

future to data from a new repeat experiment. For comparison, component selection 

in the Mahalanobis distance based PCA implementation is much less stringent and 

selects (k = 23 for 53 observations, k = 28 for 28 observations and the remainder of 
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the samples uses even more components). There is thus some evidence of insuf-

fi cient shrinkage for this method, and similarly for the ridge implementation. 

Investigating bias: a permutation exercise 

We have proposed double cross-validatory integrated estimation and assessment of 

statistical diagnostic rules on the basis of the argument that it should protect against 

optimistically biased evaluations. We may check this property by ‘removing’ the class 

labels c(i) from the samples i) from the samples i i є {1, ... ,n}, randomly permute and then reassign them 

to the samples. We then carry out the double cross-validatory procedure again for 

any of our classifi cation methods. Repeating this procedure several times will give an 

indication of the biases involved, as the typical recognition rate -for example -should 

equal 50% across a large number of permutations for an unbiased method. 

Table 3. Permutation-based evaluation of double cross-validatory calculations for linear discrimination using principal component selection. 
DBCV refers to the actual double cross-validatory results (see table 2). q2:5 and q97:5 are the 2.5 and 97.5 percentiles. B is the Brier distance 
and AUC is the estimated area under the ROC curve.

Permutation results

Measure DBCV median q 2.5 q 72.5

Misclassi� cation rate 7.4 50.0 36.3 72.7

AUC 97.3 49.4 24.8 64.2

B 0.0606 0.324 0.200 0.446

Table 3 shows results from such an exercise for the pca-selection based algorithm 

across more than 600 such permutations. The results, both for misclassifi cation rate 

as we fi nd median rates and areas of 50% exactly. Table 3 also includes 95% con-

fi dence intervals for the permutation-based performance measures. These give an 

indication of the variability which can be expected with purely random data and 

can be compared with the actually observed double-cross-validation results in our 

study (second column of the table). Clearly, the distance between the validated mea-

sures actually observed and even the extreme bounds of the random permutation 

confi dence intervals is considerable, demonstrating the presence of discriminating 

information in the mass spectra. 

Data reduction and post-hoc exploratory analysis 

We wish to get an indication of which markers drive the classifi cation. To explore 

these aspects, we can complement the double cross-validatory analysis with post-

hoc exploratory analyses. We consider two analyses, the fi rst of which is based on 

a very ad hoc algorithmic approach through pre-selection of a small set of adjacent 
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bins which together account for most of the variation in the spectra. The second 

explores the linear discriminant weights from a post-hoc fi t on the full data. 

Data reduction 

Initialize I = {1,...,p} as the ordered set of bin indices and V = {v1,...,vp
,...,v

p
,...,v } the associated 

set of variances for all p bins in the preprocessed spectra and across all n samples, 

such that v
j 

v
j 

v = ∑
i
 [(x

i
 [(x

i ij
 - 

ij
 - 

ij jj
) 

j
) 

j
2]/(n - 1), where 

jj
 = 

j
 = 

j
∑x

ij 
/n is the sample mean and j is the 

bin index number. Calculate the constant vref = q
0.95

(V ) as the 95% percentile of all 

p bin variances. Now initialize the bin selection set B as the set containing the bin 

indicator j for which the maximum variance vj is observed in the set V . Initialize 

the set of intensity readings X
s 
= {x

[j[j[ ]j]j
|j є B} corresponding to the set B, where x

[j[j[ ]j]j
= 

(x
1i 

, ... , x
nj 

)T. We write m = (m
1
,...,m

n
)T as the set of means m

1
 = mean({x

ij
 |

ij
 |

ij
j є B}), 

i :1, ... ,n. Defi ne cor(a, b) to be the coeffi cient of correlation between two vectors 

a and b. 

Now run the following algorithm. Now run the following algorithm.

{Start of outer loop}
{Start of inner loop}

Set k=1, I = I − {j} and V = V − {vj}
Now iterate the following procedure until termination.

Calculate ρlower = cor(mi,x[j−k]) and ρupper = cor(mi,x[j+k])

If ρlower > 0.9 and ρupper > 0.9 then

1. Add j − k and j + k to the bin selection set: B = {j − k} ∪B ∪ {j + k}.
2. Update the means mi,i : 1, . . . , n.

3. Remove indices j − k and j + k from the index set I, such that

I = I − {j − k, j + k}. Similarly update V = V − {vj−k, vj+k}
4. set k=k+1

Else

k=k-1

End iteration.

Now select the bin index j for which vj = max(V ).

If vj > vref then

Update the index set B = B + {j} and likewise Xs and m.

Go to {Start of inner loop}
Else End algorithm.

The algorithm identifies a set of ‘clusters’ of bins. There is no assumption on either

shape of the signal or of monotonicity involved (a single cluster may span mixture of

underlying peaks). Running this algorithm on the data from the first week finds the

set of indices B that corresponds to the bins which account for most of the variation in

the data. Applying this to our data results in a subset of 330 bins (in 32 bin clusters -

18

The algorithm identifi es a set of ‘clusters’ of bins. There is no assumption on either 

shape of the signal or of monotonicity involved (a single cluster may span mixture of 

underlying peaks). Running this algorithm on the data from the fi rst week fi nds the 

set of indices B that corresponds to the bins which account for most of the variation 
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in the data. Applying this to our data results in a subset of 330 bins (in 32 bin clus-

ters -but note it is possible that we visit the same contiguous region of bins several 

times). Repeating the entire double cross-validatory procedure using the principal 

component selection shrinkage procedure on this reduced set yields recognition 

rates as described in table 4, which are not inconsistent with those from the full 

double cross-validatory evaluation shown in table 2. (Note however, ”double-cross” 

error rates from this algorithmic approach will be biased as they are based on feature 

selection from the full data.) 

Table 4. Results from re-running double cross-validatory calculations after bin-selection for the colon cancer data (week 1 data only). T is the total 
recognition rate. Se and Sp are sensitivity and speci¯city respectively. B is the Brier distance and AUC is the estimated area under the ROC curve.

Method T (Se,Sp) B AUC

PCA-selection S(κ) 90.0 (92.1, 88.0) 0.0807 96.5

PCA-selection Euclidisch S(κ)   λ(κ)  = I (κ) 89.0 (92.1, 86.0) 0.0824 95.4

Post-hoc data exploration 

The second aspect which is of interest is a post-hoc exploration of the (linear) 

discriminant coeffi cients β (β
1
, β

2
, ... , β

p 
β

p 
β )T = T = T S-1

(k) 
(

1
 - 

2
)T [see (Seber 1984) or (Hand T [see (Seber 1984) or (Hand T

1997)], where 
1
 and 

2
 are the two sample group means (for cases and controls).

[9;17] An appropriate and convenient way to summarize the information contained 

in these coeffi cients is via the associated correlations of the measured intensities for 

each jthjthj  bin with the class indicator, which are easily calculated as ρ
j

ρ
j

ρ  = s
j
 = s

j xj
β

j 
β

j 
β / s

g 
, for 

j = 1, ... , j = 1, ... , j p where s
xj
 = 

xj
 = 

xj
√v

j
v

j
v  is the standard deviation at the 

j
 is the standard deviation at the 

j
jthjthj  bin and s

g
the standard 

deviation of class indicators. We will base this investigation on the linear discrimi-

nant fi t using the Euclidean distance on the fi rst two principal components (use S
(k)

, 

with k = 2 and Λ
(k)

 = I
(k)

), as the double validatory assessment of this classifi er clearly 

identifi es the fi rst 2 components as containing the discriminatory information. 

At this point, we can carry out the analysis starting from a linear discriminant fi t 

based on the full data. Alternatively, we may equally well base the evaluation on a 

recomputation of the linear discriminant fi t on the reduced data described in previ-

ous subsection (in both cases we use the data from the fi rst week). Figure 2 (middle 

section) shows a plot of the correlation coeffi cients, subsequent to data reduction 

(previously described selection of 330 bins, but of course now using all 113 samples 

from the fi rst week). We only show results within the m/z region between 1200 and 

2200 Dalton, as the correlations are effectively zero in the remainder of the m/z 

range. Evidently, this immediately implies that the separating information is to be 

found within the 1200 to 2200 m/z range. 
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Figure 2: Discriminant correlation coefficients ρj = sxjβj/sg of observed intensity values

with the class indicators in the m/z range from 1200 up to 2200 Dalton. We have plotted

the first two principal components above these correlations for visual comparison and

interpretation. Below the correlations, we plot mean spectra per group (i.e., the vectors

x1 and x2, as in figure 1). The y-axis is only relevant to the correlation coefficient, while

we have vertically offset and rescaled both components and mean spectra to aid visual

comparison across the m/z range.
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Figure 2. Discriminant correlation coe�  cients ρjρjρ = sxj βj βj β /sg of observed intensity values with the class indicators in the m/z range from 1200 up 
to 2200 Dalton. We have plotted the � rst two principal components above these correlations for visual comparison and interpretation. Below the 
correlations, we plot mean spectra per group (i.e., the vectors x1 and x2, as in � gure 1). The y-axis is only relevant to the correlation coe�  cient, 
while we have vertically o� set and rescaled both components and mean spectra to aid visual comparison across the m/z range.
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We note that the picture shown is virtually indistinguishable by eye from that 

which results from an analysis of the full data (not shown to save space). The 

reason for this is that the data reduction restricts attention to the dominant sources 

of variation, which is not very different from what is achieved through principal 

component reduction. Immediately above the correlation coeffi cients graph, fi gure 

2 displays the fi rst two principal components (vertically offset and rescaled to aid 

visual interpretation) and again based on the reduced data. In this case, the distinct 

bin subsets selected by the previous data reduction step are clearly visible in the 

two components, and display the characteristic ‘peaks’ we would expect to identify. 

Disjoint neighbouring bin sets are connected with straight lines. The thus calculated 

components are a close approximation to those which would result from an analysis 

of the full data, as we should expect (results not shown). As for the correlation coef-

fi cients, any conclusions are therefore identical whether we use the reduced data or 

not, although the data reduction step perhaps makes the component plot easier to 

‘read’. At the bottom of the graph we give the mean spectrum again for each group 

separately and from the original data within the m/z range of interest, as shown in 

fi gure 1 also, along the complete m/z range. 

From this graphical analysis, it is clear how the linear discriminant correlation coef-

fi cients identify two major discriminating contributions, the fi rst of which is centered 

at 1467.7 Dalton and the second at 1867.7 Dalton. Furthermore, the correlations 

have opposite signs at these locations, which would indicate that the discriminating 

information can be summarised through a contrast effect between corresponding 

measured intensities in the spectra. An investigation of the principal components 

plots above learns that the contribution at 1467.7 Dalton is primarily accounted for 

by the fi rst component, which also already contains the contrast with intensities 

recorded at 1867.7 Dalton. This contrast is then further amplifi ed by the second 

component which identifi es a second orthogonal source of variation relative to the 

fi rst component, centered predominately at the already identifi ed peak at 1867.7 Dal-

ton. Note how each component identifi es several other smaller contributions, which 

could also be of interest for further investigation. Comparing these graphs with the 

within-group mean spectra, the resemblance with the principal components plots at 

the top of the fi gure are striking and would suggest that the fi rst component may 

be primarily explained through variation within the control group at 1467.7 Dalton. 

Likewise, the second component accounts for a substantial intensity peak at 1867.7 

Dalton within the colon cancer group. 

To investigate this further, fi gure 3 provides scatter plots of cases and controls 

versus the fi rst 2 components (left plot) and between intensities at 1467.7 and 1867.7 

Dalton respectively (right plot). The resemblance between both graphs is striking as 

the right plot can be obtained (virtually) after clockwise rotation of the left plot. As 
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Figure 3: Scatter plots distinguishing cases (o) from controls (+). On the left we plot

the second versus the first principal component. The right plot shows intensity values

at 1867.2 m/z versus those at 1467.7 m/z.

applies to the principal components scatter plot, which confirms our interpretation of

the data in figure 2. Figure 4 provides a concise summary graphical illustration of the

results. We calculate the contrast (difference) for all 113 individuals participating in

the study between the measured intensities at 1467.7 and 1867.7 Dalton and display the

differences in a dotplot using distinct plotting symbols for cases and controls respectively,

which demonstrates the separation between both groups.

For further discussion of the clinical background, study rationale, setup, execution

and interpretation of results from a substantive clinical perspective, we refer to (Noo

2006) and subsequent papers from these authors.
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the data in figure 2. Figure 4 provides a concise summary graphical illustration of the

results. We calculate the contrast (difference) for all 113 individuals participating in

the study between the measured intensities at 1467.7 and 1867.7 Dalton and display the

differences in a dotplot using distinct plotting symbols for cases and controls respectively,

which demonstrates the separation between both groups.

For further discussion of the clinical background, study rationale, setup, execution

and interpretation of results from a substantive clinical perspective, we refer to (Noo

2006) and subsequent papers from these authors.
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Figure 3. Scatter plots distinguishing cases (o) from controls (+). On the left we plot the second versus the � rst principal component. The right 
plot shows intensity values at 1867.2 m/z versus those at 1467.7 m/z.
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we can see, an increase in intensity at 1467.7 Dalton separates controls from cases. 

Similarly, an increase in intensity at 1867.7 Dalton separates cases from controls. The 

same interpretation applies to the principal components scatter plot, which confi rms 

our interpretation of the data in fi gure 2. Figure 4 provides a concise summary 

graphical illustration of the results. We calculate the contrast (difference) for all 113 

individuals participating in the study between the measured intensities at 1467.7 and 

1867.7 Dalton and display the differences in a dot plot using distinct plotting sym-

bols for cases and controls respectively, which demonstrates the separation between 

both groups. 

For further discussion of the clinical background, study rationale, setup, execution 

and interpretation of results from a substantive clinical perspective, we refer to (Noo 

2006) and subsequent papers from these authors. 

DISCUSSION 

Double validatory analysis 

Use of a separate validation or test set is often precluded in high dimensional prob-

lems, due to sample size restrictions. In our case, this arises because the experiment 

was carried out in an academic medical center, which implies (colon cancer) cases 

are restricted to a maximum of about 50 patients yearly and with more advanced 

disease. Selection of appropriate control samples may be more diffi cult still, even if 

we use surrogate serum samples -as in this experiment. Larger numbers of cases may 

be recruited by setting up multi-center trials and using longer recruitment periods. 

However, researchers may need some justifi cation in the form of a small feasibility 

study before setting up such complex trials. It is in such situations that double cross-

validatory analysis can be most useful to help researchers make the maximum use 

of the scarce data available. The other option of reducing the available calibration 

data prior to optimization of any discriminant rule by setting aside data (perhaps for 

both a ‘predictive tuning’ as well as ‘validation’ set) is not as innocent as appears 

at fi rst sight. This is because it will often reduce the calibration set beyond what is 

−1 −0.5 0 0.5 1 1.5
contrast between intensities at m/z 1467.7 and m/z 1867.7

Figure 4: Plot of the contrasts (differences) between intensities at 1467.7 m/z and 1867.7

m/z across all observations, using distinct plotting symbols for each group: cases (o) and

controls (+).

5 Discussion

5.1 Double validatory analysis

Use of a separate validation or test set is often precluded in high dimensional problems,

due to sample size restrictions. In our case, this arises because the experiment was carried

out in an academic medical center, which implies (colon cancer) cases are restricted to

a maximum of about 50 patients yearly and with more advanced disease. Selection of

appropriate control samples may be more difficult still, even if we use surrogate serum

samples - as in this experiment. Larger numbers of cases may be recruited by setting up

multi-center trials and using longer recruitment periods. However, researchers may need

some justification in the form of a small feasibility study before setting up such complex

trials. It is in such situations that double cross-validatory analysis can be most useful to

help researchers make the maximum use of the scarce data available. The other option

of reducing the available calibration data prior to optimization of any discriminant rule

by setting aside data (perhaps for both a ‘predictive tuning’ as well as ‘validation’ set)

is not as innocuous as appears at first sight. This is because it will often reduce the

calibration set beyond what is needed for reasonable calibration. Moreover, reducing the

size of the calibration data changes the condition of the estimation itself. To put this

simply: we are not only reducing the data by setting-aside data from the calibration

24

Figure 4. Plot of the diferences between intensities at 1467.7 m/z and 1867.7 m/z across all observations, using distinct plotting symbols for 
each group: cases (o) and controls (+).
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needed for reasonable calibration. Moreover, reducing the size of the calibration data 

changes the condition of the estimation itself. To put this simply: we are not only 

reducing the data by setting-aside data from the calibration set, but also changing the 

discriminant problem itself. This is again particularly the case in high-dimensional 

cases such as in proteomics where the problem will typically be ill-conditioned. 

The approach we have described in this paper avoids these diffi culties through 

application of double cross-validation to combine the two aspects of predictive op-

timization and validation. Subsequent to this basic evaluation of the discrimina-

tory potential of the spectral data, a more exploratory analysis can be carried out, 

provided we are carefully to interpret results cautiously without contradicting the 

primary validated evaluation. We discuss a number of issues related to application 

of (double) cross-validation. 

Full validation 

One potential cause for concern is whether double cross-validation precludes the 

need for a completely separate validation set entirely. Is ‘double-cross’ also ‘full’ vali-

dation? The simple answer to this question is that it can not be, as any form of cross-

validation must typically always remain ‘within-study’ validation and there can be 

factors beyond our knowledge which have influenced the study results. Good scien-

tifi c practice requires that we replicate results in a separate repeat study. This caution 

applies particularly to the defi nition of the case and control group, as the impact of 

systematic effects due to measurement can be minimised through use of randomised 

block design. Repeat studies may help to detect such problems. Note however, that 

these criticisms would also have applied to the standard practice of using within-

study set-aside test and validation sets. Meanwhile, double cross-validation should 

give reasonable protection against overfi tting and unbiased estimates of error rate at 

the time of study. Double-cross represents the maximum usage we can make of the 

data for joint predictive optimization and validation within a single experiment. Even 

when separate test and validation sets are available however, researchers may still 

be interested to compare the thus validated re-search fi ndings with those from a fully 

double cross-validated analysis on the combined data in order to evaluate whether 

the greater sample size would have allowed for better calibrations -possibly because 

of improved detection of the smaller signal sources in the spectra.[23] More gener-

ally, we could speculate where the validation process should stop. Typically, the 

performance of any decision rule or classifi er has a tendency to ‘decay’ over time. To 

assess this, subsequent experiments are needed to verify the estimated error rates. 
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What classi� er are we evaluating? 

Two related questions to the previous discussion are ‘What classifi er does double 

cross-validation evaluate?’ and ‘How to assign a new observation?’. Indeed, each 

observation has its own classifi er in the double cross-validatory evaluation. This 

seems to run counter to the intuition that we calibrate a discriminant rule fi rst and 

only then evaluate. In that case, the estimated error rate is taken as a reflection of the 

diagnostic abilities of that particular classifi er and the allocation of a new sample is 

immediate. There is however no logical inconsistency here. Double cross-validation 

estimates the error rate we would get ‘if we were to apply leave-one-out’ on the 

whole data. Once we know what the error rate is, we may choose the specifi c 

classifi er (choice of k or λ in our case) for allocation of future samples (if required) 

through application of ordinary leave-one-out on the whole data (this is in line with 

the discussion presented by Mervin Stone.[7] With double cross-validation, there are 

however other options to allow allocation of new samples which have not yet been 

discussed in the literature. In our case for example, we may use the mode of the 

number of components selected (k) across all samples and then re-estimate the dis-k) across all samples and then re-estimate the dis-k

criminant model with this choice from the full data. More adventurous still, we could 

retain each of the n classifi cation rules which are calibrated within the double-cross 

procedure and use this ensemble (of classifi ers) for allocation of any future new 

observation x. This could be done by calculating the associated a-posteriori class 

probabilities p
i 
(g(g( |x), for each i є {1, ... ,n} and g є {1, ... ,G}, where pG}, where pG

i
is obtained from 

the discriminant model calibrated in the double-cross procedure when the ith datum 

has been removed from the data (in the outer shell of the double-cross procedure). 

Classifi cation may then be based on the mean across these n a-posteriori class prob-

abilities for any gth class. We will not pursue these options further in this paper. 

Validation and the future of (statistical) proteomics 

Rigorous emphasis on validation and proper design can help to establish long-term 

credibility for proteomic research and more general bioinformatics applications. 

The double-cross approach with randomised block design described in this paper 

represents one contribution towards this goal. Many other steps may however be 

taken to enhance the quality of such research studies. One example is to promote 

use of ‘truly’ separate validation sets, as obtained from subsequent separate and ad-

ditional sampling from the population of interest and measurement through identical 

protocols as applied in the fi rst study. In practice, this will be particularly relevant 

for those studies which indicate potential from the fi rst within-study verifi cation of 

diagnostic ability. Editors of scientifi c journals can also contribute much to inspire a 

conservative attitude by careful scrutiny of the papers presented for publication. Per-

haps simple check lists could be developed to help reviewers establish the degree 
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to which validatory evaluation did (or should) contribute to the research fi ndings 

presented. This may also prevent mistakes from slipping through the net. Although 

this may cause considerable annoyance in some cases when we face the diffi cul-

ties of establishing results in the short term, but may enhance scientifi c credibility 

of (proteomic) research as a whole in the long run. Results from the present study 

show that, with good designed experimentation, these precautions need not form 

insurmountable obstacles. 
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ABSTRACT

Purpose

With a lifetime risk currently estimated one in nine, breast cancer is among the most 

common diagnosed malignancies and remains a leading cause of cancer-related mor-

bidity and mortality. Proteomic expression profi ling generated by mass spectrometry 

has been suggested as a potential tool for the early diagnosis of cancer and other 

diseases. The objective of our study was to assess the feasibility of this approach for 

the discrimination of breast cancer patients from healthy individuals.

Experimental design

In a randomised block design pre-operative serum samples obtained from 77 breast 

cancer patients and 29 controls were used to generate high-resolution MALDI-TOF 

protein profi les. The median age of the patient group and control group was respec-

tively, 57.2 years and 50.0 years. All available 106 samples from both groups were 

randomly distributed across 3 plates in roughly equal proportions. The MALDI-TOF 

spectra generated using C8 magnetic beads assisted mass spectrometry (Ultrafl ex, 

Bruker Daltonics, Germany) were smoothed, binned and normalised after base-

line correction. After pre-processing of the spectra, linear discriminant analysis with 

double cross-validation, based on principal component analysis, was used to classify 

the protein profi les.

Results

A total recognition rate of 99%, a sensitivity of 100% and a specifi city of 97.0% for 

the detection of breast cancer were shown. The area under the curve of the clas-

sifi er was 98.3%, which demonstrates the high, signifi cant separation power of the 

classifi er. The fi rst 2 principal components account for most of the between-group 

separation. 

Conclusions

Double cross-validation showed that classifi cation could be attributed to actual infor-

mation in the protein profi les rather than to chance. Although preliminary, the high 

sensitivity and specifi city indicate the potential usefulness of serum protein profi les 

for the detection of breast cancer. 
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INTRODUCTION

With a lifetime risk currently estimated one in nine, breast cancer is among the most 

common diagnosed malignancies and remains a leading cause of cancer-related mor-

bidity and mortality. Although the precise pathways of tumour genesis remain poorly 

defi ned, it appears that most invasive breast cancers arise from gene alterations that 

result in an initial transformation of normal breast tissue to in situ carcinoma.[1] 

Currently, mammography remains the most important diagnostic tool, although MRI 

and ultrasonography are used in case of impairment of the latter diagnostic results.

[2] However, up to 20% of new breast cancers are not detected or visible on a mam-

mogram.[3] Prognosis and selection of therapy may be infl uenced by the age and 

menopausal status of the patient, Bloom-Richardson stage, histological and nuclear 

grade of the primary tumour, oestrogen-receptor (ER) and progesterone-receptor 

(PR) status, measures of proliferative capacity, and HER2/neu gene amplifi cation.

[4] Currently, serum tumour markers play no role of importance in the diagnosis of 

breast cancer due to a lack of sensitivity and specifi city. 

Proteomic expression profi les generated with mass spectrometry have been sug-

gested as potential tools for the early diagnosis of cancer and other diseases. After 

the initial ‘hype’ of biomarker detection on the basis of multiple low-molecular-

weight serum proteins stringent demands have been proposed on both study design 

and experimental procedures for proteomic profi ling.[5-11] Subsequently, several 

studies appeared showing the importance of standardised protocols and homogene-

ity of subject groups and especially validation of the classifi cation method.[12-16] 

This study aims to live up to all these demands.

Since no serum biomarker is currently known to reliably detect breast cancer, the 

present study was designed to test and validate whether serum protein profi les gen-

erated with mass spectrometry could be indicative of the presence breast cancer.

MATERIAL AND METHODS

Subjects

Serum samples were obtained from a total of 77 patients one day prior to surgery for 

a breast disease. All surgical specimens were histologically examined and if malig-

nant, the extent of tumour spread was assessed by TNM classifi cation. All stages of 

breast cancer were present in the patient group. The median age of the patient group 

was 57.2 years (range 32.6-90.3). Patients were included from October 2002 till July 

2005 in our center. The control group consisted of 29 healthy female volunteers. The 
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median age of the healthy symptom-free control group was 50.0 years (25.9-76.7). 

The 29 controls were included in November and December 2004 (Table 1). 

Serum samples

Informed consent was obtained from all patients and the study was approved by the 

Medical Ethical Committee of the LUMC. All samples were collected and processed 

following a standardised protocol: all blood samples were drawn while the patients 

or healthy controls were seated and non-fasting. The samples were collected in a 

10 cc Serum Separator Vacutainer Tube (BD Diagnostics, Plymouth, UK) and centri-

fuged 30 min later at 3000 rpm for 10 minutes. The serum samples were distributed 

into 1 ml aliquots and stored at -70 ºC. After thawing on ice the serum samples were 

randomised over different 96-well microtitration racks (Matrix) and then stored at 

-70ºC until the experiment.

Study design

We used a randomised blocked design to avoid any potential batch effects.[17;18] 

All the available 106 samples from both groups were randomly distributed across 

3 plates in roughly equal proportions (Table 2). For breast cancer, the distribution 

of stadia across plates was again in random fashion and in approximately equal 

proportions (Table 3). The position on the plates of samples allocated to each plate 

was randomised as well. Each plate was then assigned to a distinct day. Analysis was 

carried out on 3 consecutive days, Tuesday to Thursday, processing a single plate 

each day. 

Table 1. Patient characteristics.

Patients Controls

n = 78 29

Age (mean) 56.6 49.9

 (range) 36.2-90.3 25.9-76.7

Table 2. Distribution and randomisation of serum samples of colorectal cancer patients with di� erent TNM stage before and after the MALDI-
TOF experiment. The distribution of stadia across plates was performed randomly random fashion and approximately equal proportions.

Plate 1 Plate 2 Plate 3 Total

Breast cancer 26 26 26 78

Controls 11 9 9 29

Total 37 35 35 107
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Isolation of peptides and protein pro� ling

The isolation of peptides from serum was performed using the C8 magnetic beads 

based hydrophobic interaction chromatography (MB-HIC) kit from Bruker Daltonics 

(Bremen, Germany) mainly according to manufacturers instructions, adapted for 

automation on a 8-channel Hamilton STAR® pipetting robot (Hamilton, Martinsried, 

Germany) as previously described by our group. Each sample was spotted in quadru-

plicate on a MALDI AnchorChip™. Matrix Assisted Laser Desorption Ionisation Time-

Of-Flight (MALDI-TOF) mass spectrometry measurements were performed using an 

Ultrafl ex I TOF/TOF instrument (Bruker Daltonics, Bremen, Germany) equipped 

with a SCOUT ion source, operating in linear mode. Ions formed with a N2 pulse 

laser beam (337 nm) were accelerated to 25 kV. With this specifi c serum preparation 

peptide/protein peaks in the m/z range of 960 to 11,169 Dalton were measured. 

Data processing and statistical analysis

All unprocessed spectra were exported from the Ultrafl ex in standard 8-bit binary 

ASCII format. They consisted of approximately 45,000 mass-to-charge ratio (m/z) 

values, covering a domain of 1.160 - 11,600 Dalton. To increase robustness, the 

average of four spots was used to represent one serum sample. Subsequently, we 

lightly smoothed, binned and normalised the spectra after baseline correction. Fully 

validated classifi cation error rates were estimated based on a classical Fisher linear 

discriminant analysis through complete double cross-validatory joint estimation and 

assessment of class predictions as previously described.[19]

Table 3. Distribution and randomisation of serum samples of breast cancer group over the three MS target plates.

Stage Plate 1 Plate 2 Plate 3 Total

DCIS 5 4 3 12

I 6 6 8 22

IIA 7 8 3 18

IIB 4 6 4 14

IIIA 1 2 4 5

IIIB 1 0 2 3

IIIC 1 0 2 3

Total 25 26 26 77
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RESULTS

 Three different randomised target plates were successfully measured on three con-

secutive days in the middle of the week. Figure 1 shows a raw data spectrum, 

directly obtained from the MALDI-TOF mass spectrometer. Before pre-processing 

and further analysis a mean spectrum of each sample was calculated over all four 

spots that were measured for each sample. The above-described pre-processing 

steps resulted in a sequence of 4483 normalised m/z values ranging from 1160 to 

11,600 Dalton, for each individual. One sample from the breast cancer group was 

excluded from analysis due to its poor quality spectra.

Double cross-validatory analysis and evaluation carried out on the protein spectra 

correctly classifi ed 28 of 29 controls as non-cancer. All breast cancer patients were 

correctly classifi ed as malignant (Table 4). These validated results yield a total recog-

nition rate of 98.2%, a sensitivity of 100% and a specifi city of 97.6% for the detection 

of breast cancer. To analyze the actual discriminative power of the classifi er, we pro-

duced an ROC-curve (again based on the double cross-validatory classifi cation prob-

abilities), visualizing the performance of the two-class classifi er in fi gure 2. The AUC 

of the classifi er was 98.3%. The median AUC was 49.4% with confi dence interval of 

Chapter 6 
 
 

 

 
 

 
Figure 1.   

Figure 1. MALDI-TOF spectrum of a breast cancer patient after peptide isolation with C8 magnetic beads. On the Y-axis the relative intensity is 
shown. The mass to charge ration (m/z) is demonstrated on the X-axis in Dalton.
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[24.8, 64.2]. As both median recognition rates and AUC’s equal 50%, there is thus no 

substantial evidence of bias remaining within the cross-validatory calculation.

We then proceeded to a post hoc exploration of the classifi cation model. In the 

present study the fi rst two principal components provided most of the between-

group separation. Figure 3 shows a plot of the correlation coeffi cients, with the class 

indicator, which can be calculated from the linear discriminant weightings in the 

region between 1.160 and 11,600 Dalton.[20;21] As illustrated, the classifi cation is 

achieved primarily through a contrast in peak intensities between the fi rst and sec-

Table 4. Double cross-validatory classi� cation of serum samples. A positive test results assigns subjects to the breast 
cancer (BC) group and a negative to the controls. In the horizontal plane the actual histologically con� rmed diagnosis 
is stated.

Test results for detection of BC

Neg Pos Total

Controls 77 0 77

CRC patients 1 28 29

78 28 106

ROC curve 

 

 
 
Figure 2. 

Figure 2. ROC-curve for the double cross-validated two-group classi� er. The true positive recognition rate (sensitivity) is demonstrated on the 
y-axis against the false negative recognition rate (1-speci� city) on the x-axis of the classi� er. 
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Figure 3. Correlation coe�  cients of two � rst principal components with the class indicator. The correlation coe�  cients were calculated from the 
linear discriminant weightings. The negative correlation of the � rst peak is an indicator for the control group and the positive correlation of the 
second peak points out the cases.

 

 
Figure 4. 

o  Patient group
+  Control 

Figure 4. Scatter plot of the � rst two principle components on basis of which the classi� cation patient-control group was made.
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ond principal component. This can also be seen in the scatter plot shown in fi gure 

4: low intensities at the fi rst peak for cases separates cases from controls. Likewise, 

a small contribution for controls at the second peak separates controls from patients. 

To illustrate these results further, we can simply calculate the contrast between the 

two peak intensities directly across all subjects and construct a simple one-dimen-

sional summary of the data, as shown in the histogram displayed in fi gure 5, which 

shows overlapping histograms of this (ad hoc) contrast for each group separately. 

The separation is clearly visible. We also quantifi ed the signifi cance of this difference 

by performing a two-sample Student t-test on this contrast, (p<0.0001). 

DISCUSSION

This study underlines the potential of serum protein profi ling for the detection of 

breast cancer. We were able to classify breast cancer patients and healthy individuals 

very accurately based upon information in MALDI-TOF serum spectra. The classifi er, 

calibrated and validated on spectra of the entire dataset demonstrated a sensitivity 

and specifi city of 100% and 97.6% respectively. Only one subject from the control 

 
Fig.  5 

 

correlation [-] 

count

Difference in most discriminating peaks 

Figure 5. Histogram showing the di� erence between the normalized intensities of the two most discriminating “peaks” (bins). The X-axis shows 
the di� erence between the normalized intensities of the peaks. On the Y-axis the number of subjects is displayed.
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group was misclassifi ed in the malignant group (Table 4). Moreover, with a lifetime 

risk of one in nine, it might even be the case that one of 29 control subjects cur-

rently is developing or carrying the disease. Unfortunately, since the control group 

consisted of anonymous symptom-free subjects it was impossible to retrieve the 

current physical state. All patients with various stages of breast cancer were correctly 

classifi ed, including DCIS patients. The fact that all DCIS patients are recognised in 

the cancer group, adds to its possible future applicability as a tool for early detection. 

If these results are validated, future studies could be performed to screen women at 

high risk for breast cancer by both mammography and serum protein profi ling.[22] 

In that way the positive predictive value of the proteomic pattern approach could 

be assessed. Further, efforts have to be made to correlate different stages of breast 

cancer with serum protein profi les because this may contribute better prognostica-

tion and may eventually lead to more individualised treatment. Obviously, validation 

and suffi cient sample size are once again of paramount importance for the reliability 

and its potential in a clinical setting.

We favour a thorough and stringent study design and double cross-validation of 

our classifi cation model.[19] We feel that the use of standardised serum collection 

and mass spectrometry protocols, as advocated in various studies, has lifted serum 

protein profi ling to a more reliable level.[12;13;16;23] To avoid the most common pit-

falls in clinical proteomics sample collection, pre-analytical conditions and biological 

variables were in the present study matched for both groups and were rigorously 

standardised. The location of blood collection, i.e. the outdoor clinic for controls and 

the surgical ward for the patient group showed no infl uence on serum protein pro-

fi les (data not shown). Furthermore, patient samples from all stages of breast cancer 

were randomly distributed over three different target plates, excluding these factors 

as a discriminator in the current classifi er. Ideally, the control group should consist 

of precisely age-matched individuals undergoing a mammography showing no aber-

rations. However, in practice this is diffi cult to realize, due to ethical and logistical 

issues. Notwithstanding, we performed an analysis to examine the differences in 

intensity of most discriminating peaks based on age. In the present study there was 

no signifi cant contribution of one of these factors on the most discriminating peaks 

of our classifi cation model (data not shown).

Regarding the bioinformatic and statistical approach of these high dimensional 

data there were two main points to consider: avoiding batch effects and validation 

of the classifi cation model. To avoid observational bias, a randomised block design 

was used as an additional precaution. The randomised block design ensured that 

no batch effects were introduced and excluded artifi cial between-group separations.

[17;18] Another recurrent topic of debate in serum protein profi ling is validation of 

the classifi cation model.[11;24] Consensus is achieved that, ideally, discriminating 
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protein profi les for the detection of a certain malignancy should be validated using 

an independent dataset. In the current phase of this study, the use of an independent 

validation set was excluded since the relatively small sample size did not allow this. 

Until a larger sample set is obtained, we advocate the use of a double cross valida-

tion of classifi cation. This procedure avoids the need for separate test and validation 

sets to yield unbiased error rate estimates. The double validatory aspect of the 

procedure results from the fact that the discriminant rule constructed to classify the 

left-out data was optimised through a secondary cross-validatory evaluation within 

the fi rst cross-validatory layer.[19;25]

The classifi cation between cancer and non-cancer was mostly performed using 

the fi rst two principal components, corresponding to two most discriminating peaks. 

Identifi cation and functional analysis of these discriminating proteins/peptides might 

render new insights on tumour development and environmental responsiveness, 

which could eventually be translated in new diagnostic and prognostic insights 

for the clinician. Until nowadays, little success has been booked in assigning re-

producible discriminating biomarkers.[14;24] Though this study showed two most 

discriminating mass values of MALDI-TOF based protein profi ling analysis to be 

low molecular weight fragments, we have not identifi ed these potential biomarkers 

yet. Some have argued that low molecular weight proteins in serum, the serum 

peptidome, is nothing but aspecifi c biological trash and therefore does not yield 

any reliable biomarkers in the currently technically available mass range.[26-28] 

However, very recently Villanueva et al. published a study in which they proposed 

that although discriminating peptides do indeed belong to well known coagulation 

and complement pathways, their patterns or signatures do most certainly indicate 

the presence of cancer.[29] This study showed that most of the cancer-type specifi c 

biomarker fragments were generated in patient serum by enzymatic cleavage at 

previously known endoproteage cleavage sites after the blood sample was collected.

[30] They postulated that these cancer-specifi c low molecular weight proteins in 

the serum peptidome are an indirect snapshot of the enzyme activity in tumour 

cells. We support to their hypothesis that discriminating serum protein profi les are a 

compilation of surrogate markers for the detection and classifi cation of certain types 

of tumours. 

In conclusion, the present study demonstrated that patterns of proteomic signa-

tures from high dimensional mass spectrometry data can be used as highly reliable 

diagnostic classifi ers for the detection of breast cancer. With the double crossvalida-

tory study in a randomised block design we obtained maximal reliability in classifi ca-

tion while maintaining protection against overfi tting. Surely, independent validation 

and follow up studies are necessary and currently in progress. Nevertheless, the 
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extremely high sensitivity and specifi city of the present study are highly promising 

for a new diagnostic approach in breast cancer. 
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ABSTRACT

Background

With over 1 million new cases in the world each year, breast cancer is the common-

est malignancy in women and comprises 18% of all female cancers. Proteomic ex-

pression profi ling generated by mass spectrometry has been suggested as a potential 

tool for the early diagnosis of cancer. The objective of our study was to assess and 

validate the feasibility of this approach for the detection of breast cancer.

Methods

In a randomised block design pre-operative serum samples obtained from 63 breast 

cancer patients and 73 controls were used to generate high-resolution MALDI-TOF 

protein profi les as a calibration set. The median age of the patient and control group 

was respectively, 52 (20-81) and 57 years (39-87). The MALDI-TOF spectra generated 

using WCX magnetic beads assisted mass spectrometry (Ultrafl ex) were smoothed, 

binned and normalised after baseline correction. After pre-processing of the spectra, 

linear discriminant analysis with double cross-validation, based on principal compo-

nent analysis, was used to classify the protein profi les. Consequently, the classifi er 

constructed on the fi rst 2 plates was applied on the spectra of an independent 

validation set. This validation set consisted of serum samples from 29 breast cancer 

patients and 38 controls. The median age was 59 years (26-87) and 57 years (24-71) 

for the patient and control group respectively.

Results

Double cross-validatory analysis carried out on the protein spectra of the calibration 

set yielded a total recognition rate of 86%, a sensitivity of 88% and a specifi city of 

84% for the detection of breast cancer within the calibration set. The AUC of this 

classifi er was 90.3%. When this classifi er was applied on the spectra of the inde-

pendent validation set a total recognition rate of 80.9%, a sensitivity of 72% and a 

specifi city of 89% were found.

Conclusions

The use of a randomised block design, but mainly an independent validation set 

proves that discriminating protein profi les can be detected between breast cancer 

patients and healthy controls. Although further validation in larger series and iden-

tifi cation of the discriminating proteins must be achieved, the high sensitivity and 

specifi city indicate that serum protein profi les could be an option for the detection 

of breast cancer.
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INTRODUCTION

With over 1 million new cases in the world each year, breast cancer is the com-

monest malignancy in women and comprises 18% of all female cancers. In 2005, 

breast cancer caused 502,000 deaths (7% of cancer deaths; almost 1% of all deaths) 

worldwide.[1] Despite increasing incidence rates, annual mortality rates from breast 

cancer have decreased over the last decade (2.3% per year from 1990 to 2002).[2] 

The effect of reduction due to early diagnosis of breast cancer has been outlined 

with patients’ data by the Surveillance, Epidemiology, and End Results program in 

a competing-risk analysis calculating probabilities of death from breast cancer and 

other causes according tot stage, race and age at diagnosis.[3] 

Currently, mammography remains the most important diagnostic tool in women 

with breast tissue that is not dense, although MRI and ultrasonography are used in 

case of impairment of the latter diagnostic results.[4] In many countries mammog-

raphy is used as a population based screening in woman older than 50 years. The 

effect of breast screening in terms of breast cancer mortality reduction persists after 

long-term follow-up. A recent meta-analysis of seven randomised trials concluded 

that there was a 15-20% reduction in risk of death from breast cancer in women 

attending mammography.[5] However, up to 20% of new breast cancers are not 

detected or visible on a mammogram.[6] 

Prognosis and selection of therapy may be infl uenced by the age and menopausal 

status of the patient, Bloom-Richardson stage, histological and nuclear grade of the 

primary tumour, oestrogen-receptor (ER) and progesterone-receptor (PR) status and 

HER2/neu gene amplifi cation.[7] Currently, serum tumour markers play no role of 

importance in the diagnosis of breast cancer due to a lack of sensitivity and specifi c-

ity. 

Proteomic expression profi les generated with mass spectrometry have been 

suggested as a potential tool for the early diagnosis of cancer and other diseases. 

Although promising results have been shown in classifying cancer studies based 

on biomarker detection with multiple low-molecular-weight serum proteins[8-11] 

stringent demands have been proposed on both study design and experimental pro-

cedures for proteomic profi ling.[12-14] Subsequently, several groups have stressed 

the importance of standardised protocols and homogeneity of subject groups and 

especially validation of the classifi cation method.[15-19] Since no serum biomarker 

is currently available to detect breast cancer, the present study was designed to test 

and validate whether serum protein profi les generated with mass spectrometry could 

be indicative of the presence of breast cancer in an independent set.
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MATERIAL AND METHODS

Subjects 

Serum samples were obtained from a total of 111 patients one day prior to surgery for 

breast disease. All surgical specimens were histological examined and if malignant, 

the extent of tumour spread was assessed by TNM classifi cation. Next to invasive 

stages of breast cancer, ductal carcinoma in situ (DCIS) samples were present in the 

patient group. The control group consisted of 92 healthy female volunteers. Patients 

and controls were included from October 2002 till July 2006 in our center. 

In the calibration set the mean age of the patient group and control group was 

52 (20-81) and 57 years (39-87) respectively. In the validation set the mean age was 

59 years (26-87) and 57 years (24-71) for the patient and control group respectively 

(Table 1).

Serum samples 

Informed consent was obtained from all subjects and the study was approved by the 

Medical Ethical Committee of the LUMC. All samples were collected and processed 

following a standardised protocol: all blood samples were drawn from non-fasting 

patients or healthy controls while they were seated. The samples were collected in a 

8.5 cc Serum Separator Vacutainer Tube (BD Diagnostics, Plymouth, UK) and centri-

fuged 30 min later at 3000 rpm for 10 minutes. The serum samples were distributed 

into 0.5 ml aliquots and stored at -70ºC. After thawing on ice the serum samples were 

randomised over different 96-well microtitration racks (Matrix, Hudson, USA) and 

then stored at -70ºC until the experiment.

Study design 

We used a randomised blocked design to avoid any potential batch effects.[20;21] All 

the available samples from both groups were randomly distributed across 3 plates 

in roughly equal proportions (Table 2). For breast cancer, the distribution of disease 

stages across plates was again in random fashion and in approximately equal pro-

Table 1. Patient characteristics.

Calibration set Validation set

Patients Controls Patients Controls

N= 73 63 38 29

Age (median) 52 57 57 59

(range) 20-81 39-87 26-87 24-71
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portions (Table 3). The position on the plates of samples allocated to each plate was 

randomised as well. Each plate was then assigned to a distinct day. Analysis was car-

ried out on 3 consecutive days, Tuesday to Thursday, processing a single plate each 

day. During the fi rst two days, a calibration set with serum samples from 73 breast 

cancer patients and 63 controls was used to generate high-resolution MALDI-TOF 

protein profi les. The last day of the experiment, an independent validation set with 

serum samples from 38 breast cancer patients and 29 controls was measured.

Isolation of peptides and protein pro� ling 

The isolation of peptides from serum was performed using magnetic beads based 

weak cation exchange chromatography (MB-WCX) kit from Bruker, mainly accord-

ing to the manufacturers instructions, and adapted for automation on a 8-channel 

Hamilton STAR® pipetting robot (Hamilton, Martinsried, Germany). Magnetic beads 

with WCX-functionality (MB-WCX) were divided in 10 µl -aliquots in a 96-well mi-

crotiter plate, which was placed on the magnetic beads separation device (MPC®-

auto96, Dynal, Oslo, Norway), with the magnet down. MB-WCX binding solution 

Table 2. Distribution and randomisation of serum samples of breast cancer patients and controls over the 3 MS target plates. Plate 1 and 2 were 
used as a calibration set, while plate 3 was used as a validation set. 

Plate 1 Plate 2 Plate 3 Total

Breast cancer 36 37 38 111

Controls 30 33 29 92

Total 66 70 67 203

Table 3. Distribution and randomisation of all di� erent stages of breast cancer over the 3 MS target plates. Plate 1 and 2 were used as a 
calibration set, while plate 3 was used as a validation set. 

Stage Plate 1 Plate 2 Plate 3 Total

DCIS 3 7 7 17

I 12 14 14 40

IIA 11 11 6 28

IIB 5 3 7 15

IIIA 3 1 2 7

IIIB 1 1 2 4

IIIC 1 0 0 1

Total 36 37 38 111
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(10 µl) and 5 µl serum sample were added to the beads and carefully mixed using 

the mixing feature of the robot. The sample was incubated for 5 minutes and the 

magnet was lifted, followed by a 30s waiting interval to settle the magnetic beads. 

The supernatant was removed and the magnet was lowered again. The magnetic 

beads were washed three times with MB-WCX washing solution (also provided with 

the kit) lifting and lowering the magnet as needed. The peptides were eluted from 

the beads using 10 µl elution solution (from the kit). Stabilization buffer was added 

(10 µl) and 2 µl of the stabilised eluate was transferred to a fresh 384-well microtiter 

plate (Greiner). Fifteen µl of α-cyano-4-hydroxycinnamic acid (0.3 g/l in ethanol: 

acetone 2:1) was added to the 2 µl eluate in the 384-well microtiter plate and mixed 

carefully. One microliter of this mixture was spotted in quadruplicate on a MALDI 

AnchorChip™ (Bruker Daltonics, Bremen, Germany).

Data processing and statistical analysis

To increase robustness, the average of four spots was used to represent one se-

rum sample. All unprocessed spectra were exported from the Ultrafl ex in standard 

8-bit binary ASCII format. They consisted of approximately 32,670 mass-to-charge 

ratio (m/z) values, covering a domain of 960 - 11,168 Dalton. The high-resolution 

spectra were fi rst lightly smoothed and then, due to the quadratic nature of the TOF-

equation, binned using a linear function of the time scale, resulting in bin widths 

of approximately 0.4 Dalton at the beginning of the spectrum and 1.4 Dalton at the 

end at the mass/charge scale. Subsequently, we normalised the spectra after base-

line correction. In the calibration set, classifi cation error rates were estimated and 

validated based on a classical Fisher linear discriminant analysis through complete 

double cross-validation as previously described.[24] This double cross-validated clas-

sifi er was then applied on the validation set. This set was pre-processed using the 

exact same procedure as the calibration set. Using the estimated parameters from the 

calibration set, each sample in the validation set was assigned to the group for which 

the probability was highest. The error rates are based on sensitivity and specifi city 

values, assuming a prior class probability of 0.5 for each group. 

RESULTS

Three different randomised target plates were successfully measured on three con-

secutive days in the middle of the week. Figure 1 shows a raw data spectrum, 

directly obtained from the MALDI-TOF mass spectrometer. For further analysis, we 

fi rst calculated the mean spectrum of each sample across all four spots that were 

measured for each sample, after pre-processing. The above-described pre-processing 
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steps resulted in a sequence of 11,205 normalised m/z values ranging from 960 to 

11,168 Dalton, for each individual. 

Double cross-validatory analysis and evaluation carried out on the protein spectra 

of the calibration set (2 target plates) correctly classifi ed 56 of 63 breast cancer pa-

tients as malignant. Sixty-one of 73 controls were correctly classifi ed as non-cancer 

(Table 4a). The misclassifi ed patients in the calibration set included 1 patient with 

DCIS, 4 stage I patients, 3 with stage IIA and 4 patients with stage IIB. There was no 

correlation with hormonal status.

These double cross validated results yielded a total recognition rate of 86%, a 

sensitivity of 88% and a specifi city of 84% for the detection of breast cancer within 

the calibration set. To analyze the actual discriminative power of the classifi er, we 

produced an ROC-curve (again based on the double cross-validatory classifi cation 

probabilities), visualizing the performance of the two-class classifi er in fi gure 2. The 

AUC of the classifi er was 90.3%. To further evaluate possible bias of the double 

cross-validatory calculations, we performed a permutation exercise, which randomly 

permutes and reassigns the class labels across subjects and then repeats the entire 

Chapter 7 
 
 

 

 

 

 

Figure 1.   

Figure 1. MALDI-TOF spectrum of a breast cancer patient after peptide isolation with WCX magnetic beads. On the Y-axis the relative intensity is 
shown. The mass to charge ration (m/z) is demonstrated on the X-axis in Dalton.



Ch
ap

te
r 7

118

Table 4a. Double cross-validatory classi� cation of serum samples in calibration set. A positive test results assigns subjects to the breast 
cancer (BC) group and a negative to the controls. 

Test results for detection of BC

Pos Neg Total

BC patients 61 12 73

Controls 7 56 63

68 68 136

Table 4b. Double cross-validatory classi� cation of serum samples in validation set.

Test results for detection of BC

Pos Neg Total

BC patients 4 34 38

Controls 21 8 29

25 42 67

ROC curve 

 

 

 

Figure. 2. 

Figure 2. ROC-curve for the double cross-validated two-group classi� er. The true positive recognition rate (sensitivity) is demonstrated on the 
y-axis against the false negative recognition rate (1-speci� city) on the x-axis of the classi� er. 
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Figure 3.  
Figure 3. Histogram showing the normal distribution for the misclassi� cation rate in the permutation exercise. The X-axis shows the 
misclassi� cation rate calculated in the permutation exercise. On the Y-axis the number of permutations is displayed (n=600). 

 

Figure 4. 

m/z values

Figure 4. Correlation coe�  cients of most discriminating principal components with the class indicator. The correlation coe�  cients were 
calculated from the linear discriminant weightings.



Ch
ap

te
r 7

120

double cross-validation procedure. Carrying out this procedure more than 600 times 

resulted in a median recognition rate of 49.0% with a 95% confi dence interval of 

[0.39, 0.69] as shown in fi gure 3. The median AUC was 49.7% with confi dence inter-

val of [0.28, 0.61]. As both median recognition rates and AUC’s equal roughly 50.0%, 

there is thus no substantial evidence of bias remaining within the cross-validatory 

calculation. Moreover, the actually observed recognition rates as well as AUC are 
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Figure 5b

Figure 5. Scatter plot of the � rst two principle components on basis of which the classi� cation patient-control group was made.
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clearly separated from these permutation-based null-hypothesis confi dence intervals, 

which prove the existence of discriminatory information in the spectra. 

A post hoc exploration of the classifi cation model was performed. In the pres-

ent study 8 peaks that correlated most with the two groups provided most of the 

between-group separation. Figure 4 shows a plot of the correlation coeffi cients, with 

the class indicator, which can be calculated from the linear discriminant weightings 

in the region between 960 and 11,168 Dalton. Figure 5 shows scatter plots of 4 of 

these most discriminating peaks between cases from controls.

Consequently, we applied the double cross-validated classifi er constructed on the 

fi rst 2 plates on the spectra of the independent validation set. In this set 21 of 29 

controls were correctly classifi ed as non-malignant and only 3 of 38 breast cancer 

patients were misclassifi ed, as shown in table 4b. From the 4 misclassifi ed patients 

1 had DCIS, whereas 2 patients both had stage I disease, according to their post-

operative histological report. Nevertheless, these results produce a total recognition 

rate of 80.9%, a sensitivity of 72% and a specifi city of 92% of the classifi er in an 

independent dataset.

DISCUSSION

This validation study shows that breast cancer can be detected by serum protein 

profi ling. We were able to classify breast cancer patients and healthy individuals 

accurately based upon information in MALDI-TOF serum spectra. In the calibration 

set the double cross-validated classifi er demonstrated a sensitivity and specifi city of 

88% and 84% respectively. Sixty-one out of 73 controls were correctly classifi ed as 

non-cancer. Moreover, with a lifetime risk of 1 in 9, it cannot be excluded that some 

of the control subjects currently are developing or carrying the disease. Unfortu-

nately, since the control group consisted of anonymous symptom-free subjects it was 

impossible to retrieve the current physical state. The misclassifi ed cancer patients 

had varying early stages of disease, from stage I to IIB. However, the fact that all but 

one DCIS patients was recognised in the cancer group, adds to its possible future 

applicability as a tool for early detection. 

More importantly, in the independent validation set the classifi er demonstrated a 

sensitivity and specifi city of 72% and 92% respectively. While for the misclassifi ed 

controls in the validation set the current physical state was also unknown due to 

their anonymity, the current physical state could easily be retrieved for the misclas-

sifi ed patients. Histological reports showed that one of them had DCIS and two 

of them were diagnosed with stage I disease. In this case the breast tumour had 

been resected for 2 years. Interestingly, this protein profi le was classifi ed in the 
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non-cancer group, which was confi rmed from the treatment chart at the time of 

blood collection. When this sample would have been excluded of the analysis, the 

specifi city of the classifi er would increase even more in the validation set. Especially 

this high specifi city adds to the potential of serum protein profi les to screen women 

at high risk for breast cancer, since there appears to be a low chance of false positive 

test results and unnecessary treatment will be avoided. When combined with mam-

mography the positive predictive value of the proteomic pattern approach could be 

assessed in a high risk population.[22] 

Since a potential drawback of any approach with high dimensional data is the 

tendency to discover patterns among many variables that may not be a direct re-

sult of the pathological state but rather a result of pre-analytical characteristics the 

need of an independent validation set has been stressed extensively.[14;23;24] In 

our previous studies, the use of an independent validation set was not possible 

due the relatively small sample. Therefore, until now we advocated a thorough 

and stringent study design and double cross-validation of the classifi cation model.

[24] This procedure avoided the need for separate test and validation sets to yield 

unbiased error rate estimates. However, in the current study discriminating protein 

profi les for the detection of breast cancer could be validated using an independent 

dataset. Nevertheless, the classifi er in the calibration set was constructed following 

stringent demands. Again, a randomised block design was used to avoid observa-

tional bias, ensuring that no batch effects were introduced and artifi cial between-

group separations excluded.[20;21] However, the issue clinically most relevant is the 

use of an independent validation set for the classifi cation of diseased versus healthy 

individuals. This is primarily based on a specifi c problem in the discovery-based 

research fi eld of clinical proteomics, namely overfi tting. Overfi tting may occur when 

multivariate models show apparent discrimination that is actually caused by data 

over-interpretation, and hence give rise to results that are not reproducible.[14;17;18] 

Therefore, protection against overfi tting of the classifi er was maintained by using the 

double cross validation in the calibration set. In this way, maximal reliability of the 

classifi er was obtained by this procedure. Then, the performance of the classifi er was 

tested in the independent validation set and it proved that breast cancer can indeed 

reliably be detected by discriminating protein profi les.

Obviously, other most common pitfalls in clinical proteomics such as sample col-

lection, pre-analytical conditions and biological variation were avoided.[15;16;25] 

Therefore, serum sample collection and pre-analytical factors were rigorously stan-

dardised.[19] Furthermore, subjects in both groups were matched for age, although 

age is recently shown not to bias serum peptodomics.[26] In addition, patient samples 

from all stages of breast cancer were randomly distributed over three different target 

plates, excluding these factors as a discriminator in the current classifi er. 



Validation of serum protein pro� ling for the detection of breast cancer 123

Interestingly, the classifi cation between cancer and non-cancer was performed 

using more principal components than in our earlier work when C8 magnetic beads 

were used. In the present study more than 2 peaks were responsible for most on 

the between group separation. As shown in fi gure 2 and 5, these include peaks with 

1451, 1617, 5906 and 6644 m/z. Since the primary focus of this study was to assess 

and validate the feasibility of protein profi les based detection of breast cancer and 

therefore merely concentrated on pattern diagnostics, we have not identifi ed these 

potential biomarkers yet. However, the controversy about the use of protein profi les 

as a pattern diagnostic without analysis of the diagnostic biomarkers still remains to 

be solved for its clinical application. Some have argued that low molecular weight 

proteins in serum, the serum peptidome, is nothing but aspecifi c biological trash and 

therefore does not yield any reliable biomarkers in the currently technically avail-

able mass range.[27-29] Nonetheless, recently it was postulated that although dis-

criminating peptides do indeed belong to well known coagulation and complement 

pathways, their patterns or signatures do most certainly indicate the presence of 

cancer.[26] This study showed that most of the cancer-type specifi c biomarker frag-

ments were generated in patient serum by enzymatic cleavage at previously known 

endoproteage cleavage sites after the blood sample was collected.[30] Villanueva et 

al. postulated that these cancer-specifi c low molecular weight proteins in the serum 

peptidome are an indirect snapshot of the enzyme activity in tumour cells. We sup-

port their hypothesis that discriminating serum protein profi les are a compilation of 

surrogate markers for the detection and classifi cation of certain types of tumours. 

In conclusion, the present study demonstrated that serum protein profi les gener-

ated with mass spectrometry could be indicative of the presence breast cancer. In 

order to obtain most realistic estimates of the discriminating power of serum protein 

profi les a classifi er was constructed in a randomised block design. Maximal reliability 

in classifi cation was achieved through double cross-validation of the classifi er while 

maintaining protection against overfi tting. Principally the potential of proteomic sig-

natures from high dimensional mass spectrometry data as highly reliable diagnostic 

classifi ers for the detection of breast cancer was actually confi rmed in the indepen-

dent validation set. The fact that high sensitivity and specifi city could be maintained 

in the validation set is the fi rst steps towards a new diagnostic approach in breast 

cancer. 
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BACKGROUND

There is an urgent need for new biomarkers in oncology to improve early detection, 

monitor disease outcome and fi nd targets for more individualised therapy. A fi eld 

of recent interest is clinical proteomics, which was reported to lead to high sensitiv-

ity and specifi cities for early detection of several solid tumours.[1;2] This emerging 

fi eld uses mass spectrometry based protein profi les/patterns of easy accessible body 

fl uids to distinguish cancer from none-cancer patients. This would be a solution to 

the problem that cancer is often diagnosed in late stages, when curative resection of 

the diseased organ is not possible anymore and the disease has already metastised, 

dropping survival rates dramatically. However, after the initial hype in early 2002 

critical noise has been heard on several aspects of serum proteomics. In this paper 

we describe the hopes and fears for the introduction of clinical proteomics for (early) 

detection of CRC. 

COLORECTAL CANCER

Colorectal adenocarcinoma is the third most common cancer and the fourth most 

frequent cause of death due to cancer worldwide. Worldwide almost one million 

new cases occur yearly, with 492,000 related deaths.[3] In developed countries it is 

the second most common tumour, with a lifetime risk of 5%, but its incidence and 

mortality are now decreasing.[4;5] Surgery is the cornerstone of therapy when the 

disease is confi ned to the bowel wall. This results in 70 to 80% of patients who have 

tumours that, at diagnosis, can be resected with curative intent.[6] After curative sur-

gery the fi ve-year survival rate for patients with localised disease is 90%, decreasing 

to 65% in case of metastised disease in the lymph nodes. Adjuvant radiation therapy, 

chemotherapy, or both are useful in selected patients. Classifi cation of tumours into 

pathogenetical subtypes with distinct clinical courses enables clinicians to target 

therapy. For CRC TNM staging system remains the golden standard and relies entirely 

on morphological appearance of the tumour. However, tumours with similar histo-

pathological characteristics may have different clinical outcome and responsiveness 

to therapy.[7] Therefore, more individualised treatment would benefi t the individual 

patient and avoid unnecessary morbidity. Nonetheless, early detection of CRC will 

increase survival most, in view of the fact that it is well recognised that CRC arises 

from a multistep sequence of genetic alterations that result in the transformation 

of normal mucosa to a precursor adenoma and ultimately to carcinoma. Given the 

natural history of CRC, early diagnosis appears to be the most appropriate tool to 

reduce disease-related mortality.[8-10]
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BIOMARKERS

In cancer research biomarkers are molecules that indicate the presence of cancer in 

the body. Most biomarkers are based on abnormal changes or mutation in genes, 

RNA, proteins and metabolites. Since the molecular changes that occur during tu-

mour development can take place over a number of years, some biomarkers can 

potentially be used to detect colorectal cancer early. Furthermore, they might be 

used to predict prognosis, monitor disease progression and therapeutic response. 

Gion et al. classifi ed different circulating biomarkers according to their clinical ap-

plication.[11] These candidate biomarkers however, are frequently found in relatively 

low concentrations amid a sea of other biomolecules, so biomarker research and 

possible diagnostic tests depend critically on the ability to make high sensitive and 

accurate biochemical measurements. Ideally, such biomarkers should be specifi c to 

the disease and easy accessible, such as serum, plasma or urine, increasing their 

clinical applicability.

Carcinoembryonic antigen (CEA) is the best-characterised serologic tumour marker 

for CRC. However, its use as a population based screening tool for early detection 

and diagnosis of CRC is hindered by its low sensitivity and specifi city. Fletcher 

showed that for screening purposes in a normal population, a cut-off concentra-

tion of 2.5 µg/L CEA would yield a sensitivity of 30-40%. Based on these data he 

calculated that there would be 250 false positive tests for every true positive test, 

i.e. a patient with cancer. Furthermore, 60% of the cancers would not be detected. 

The same poor sensitivity applies for diagnosis of CRC. In addition, as CEA can be 

elevated in the absence of malignancy, specifi city is also impaired.[12-15]

Faecal occult-blood testing (FOBT) is another biomarker for which clinical trials 

have shown evidence of a decreased risk of death. This approach is a non-invasive 

option that limits the need for follow-up colonoscopy to patients with evidence 

of bleeding. Neoplasms bleed intermittently, however, allowing many to escape 

detection with faecal occult-blood testing. Annual retesting is therefore necessary 

but is still insuffi cient, detecting only 25 to 50% of colorectal cancers and 10% of 

adenomas. The specifi city of FOBT is also limited by frequent false positive reactions 

to dietary compounds, medications, and gastrointestinal bleeding from causes other 

than colorectal cancer.[16-18]

A NEW DIAGNOSTIC PARADIGM: CLINICAL PROTEOMICS

In 2002 several studies discriminated patients with various cancers from healthy 

subjects on the basis of presence/absence of multiple low-molecular-weight serum 
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proteins using SELDI-TOF mass spectrometry technologies.[19-22] The authors hy-

pothesised that proteomic patterns are correlated to biological events occurring in 

the entire organism and are likely to change in the presence of disease. New types 

of bioinformatic pattern recognition algorithms were used to identify patterns of 

protein changes in order to discriminate cancer patients from healthy individuals 

with promising results. 

Petricoin and his co-workers stated that fi nding a single disease-related biomarker 

is like searching for a needle in a haystack; each entity has to be separated and 

identifi ed individually.[23;24] Moreover, they postulated that the blood proteome 

constantly changes as a consequence of the perfusion of the diseased organ add-

ing, subtracting, or modifying the circulating proteome. These differences might 

be the result of proteins being abnormally produced or shed and added to the 

serum proteome, clipped or modifi ed as a consequence of the disease process, 

or subtracted from the proteome owing to disease-related proteolytic degradation 

pathways. Therefore, protein pattern diagnostics would provide easier and more 

reliable tools for detection of cancer. The advantages of the SELDI proteomic pat-

tern approach were stressed in several papers. In addition to the high sensitivity 

and specifi city, cost-effectiveness, easy accessibility of body fl uid and especially the 

high-throughput, ultimately allowing application in future screening studies, were 

mentioned.[20;25] Next to these hopeful voices, soon critical notes were made on 

analytical reproducibility and the use of the so-called black box approach, lacking 

identifi cation of discriminating proteins. 

In the next paragraphs this paper will focus on the current status of clinical pro-

teomics research in oncology and will refl ect on pitfalls and fears in this relatively 

new area in clinical medicine: reproducibility issues and pre-analytical factors; statis-

tical issues; and identifi cation and nature of discriminating proteins/peptides.

REPRODUCIBILITY ISSUES AND PRE-ANALYTICAL FACTORS

Boguski and McIntosh were among the fi rst to argue that serum proteomics may be 

susceptible to observational biases. They stated that any confounding factor could 

conceivably cause a phenotypic response that might be confused with a specifi c 

characteristic of the disease process under study.[26] Confounding factors such as 

smoking, diet and preoperative stress, but also sample collection and quality, trouble 

a reliable and clear differentiation of a normal or malignant status. Another cause 

for concern mentioned in this study, is the sample quality and number. The authors 

favoured use of homogeneous groups with suffi cient sample size and stringent stan-

dard procedures for serum collection, an aspect which is also advocated in other 
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studies.[27;28] Another critical study questioned the reliability of the presence of 

statistically signifi cant signals at M/Z values less than 500, as used in one of the fi rst 

studies. Sorace et al. claimed that the presence of statistically signifi cant bands of 

low M/Z includes degradation products of higher molecular weight macromolecules 

or a matrix effect. Furthermore, this study cautioned for poor reproducibility of 

experimental conditions of chip based mass spectrometry.[29] This is also reported 

by another group, which showed the poor reproducibility of the SELDI-TOF ovarian 

cancer data. Baggerly and colleagues postulated that this could partly be contributed 

to baseline correction, poor sample features in noise regions and even a change 

of protocol mid-experiment.[30] Most importantly, the promising results that were 

reported earlier could not be reproduced and therefore stressed the importance of 

standardised approaches, stringent experimental design. Furthermore, their study 

pointed out that strong pre-processing of the protein spectra is required in order tot 

obtain reliable classifi cation results in the search for new biomarkers. 

Possible confounding factors can be categorised into three sources of variation and 

bias: biological variation, pre-analytical variation and analytical reproducibility. Bio-

logical variation, consist of both environmental and individual factors, such as race, 

age, diet, smoking, stress, general physical condition, and use of drugs, and may 

also infl uence serum protein profi les. However, at the present no data have been 

published on this source of variation. Nevertheless, in a previous study our group 

analysed pre-analytical and reproducibility issues of our MALDI-TOF approach.[31] 

The pre-analytical variations corresponded to the logistical conditions in the routine 

clinical setting; the effects of sample handling and storage. So far, only few other 

studies have reported on the effects of different serum sample preparations and the 

use of a magnetic-beads-based approach to capture and concentrate serum proteins 

for MALDI-TOF mass spectrometry.[32-34] Where Villanueva et al. mostly focused on 

infl uences of different magnetic beads capturing and its automation on the reproduc-

ibility of serum protein profi les, Baumann and co-workers mainly studied pre-ana-

lytical variation of sample handling. In table 1, different results of sample handling 

experiments of the above mentioned studies are summarised. For clinical studies the 

use of two freeze/thaw cycles is recommended by 3 out of 4 manuscripts. This in 

mainly due to logistical reasons, such as the ´standard´ for centralised sample col-

lection in large hospitals. The point all authors agreed on is the infl uence of sample 

handling, i.e. the time venous blood is left to stand before serum centrifugation. This 

aspect appears to account for the largest effect on serum or plasma protein profi les. 

Consequently, standardised sample collection and a well documented population are 

recommended in all performed studies. Standardised protocols should be used from 

the point of sample collection, sample handling, storage and freezing of the samples. 

Although the importance of homogeneity and uniformity within sample groups must 
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once again be stressed, variation of such factors can not totally be excluded in a 

clinical setting. In all, when these recommendations are strictly followed and both 

clinical and analytical factors are controlled, we think that the methodology can be 

standardised to a level which allows application as a tool in biomarker discovery. 

STATISTICAL ISSUES

As in all research with high dimensional data, two practical realities constrain the 

analysis of mass spectra in proteomics. The fi rst is the ‘curse of dimensionality’: 

the number of features characterizing these data is in the thousands or tens of 

thousands. The second is the ‘curse of dataset sparsity’: the number of samples is 

limited. Somorjai et al. showed the infl uences of these two curses on classifi cation 

outcomes. Both the sample per feature ratio, which should be 5 to 10 ideally, and 

feature selection are pivotal importance for reliable classifi cation and biological op-

timal relevance.[35;36] 

Previous to any feature selection or classifi cation, raw mass spectra have to be 

submitted to so-called pre-processing. During this process noise of protein/peptide 

mass spectra is reduced and spectra are normalised. Furthermore, smoothing, bin-

ning and baseline correction are also performed during pre-processing of the data. 

Currently, there is a lot of discussion between several groups on how to establish 

the best method, because data pre-processing is extremely important. There are 

complex interactions between baseline subtraction, normalization, noise estimation, 

and peak identifi cation, and therefore these steps should not be considered in isola-

tion.[31;37-40]

Another recurrent topic for debate is the bioinformatic approach and statistical 

analysis of protein spectra. Clinically most relevant is the issue of an independent 

validation set for the classifi cation of diseased versus healthy individuals. This is pri-

Table 1. Recommendations of various pre-analytical variations from three MALDI-TOF based reproducibility studies. 

Blood 
component

Peptide 
isolation

Temp before 
sample 
handling

Time before 
centrifugation

Storage of 
serum

Freeze/thaw 
cycles

Circadian 
rhythm e� ect

Baumann et al. Serum/Plasma C3, C8, C18 
beads

21° C < 30 min -80° C 1 N.A.

de Noo  et al. Serum C8 beads 21° C Ideally < 30 min, 
practically
< 2-4 hrs

N.A. 2 No e� ect

West-Nielsen 
et al. 

Serum/Plasma C8 beads 21° C < 8 hrs -20/ -80 ° C 1 N.A.
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marily based on a specifi c problem in the discovery-based research fi eld of clinical 

proteomics, namely overfi tting. Overfi tting may occur in the analysis of large datasets 

when multivariate models show apparent discrimination that is actually caused by 

data over-interpretation, and hence give rise to results that are not reproducible.

[30;41;42] The chance of overfi tting, however, can be reduced by appropriate ap-

plication of validatory estimation and assessment, such as through application of 

double cross-validation, when properly implemented.[43] Although we have shown 

this in a previous study, the general opinion is in favor performing a classifi cation 

study with independent validation. Furthermore, feature selection is also given a lot 

of attention by statisticians in the fi eld. Several experimental investigations have been 

made with different peak feature selection methods. A common approach thus far 

is analysing the data in two phases. First, the peaks in the spectra are extracted and 

quantifi ed. Secondly, a resulting matrix of peak quantifi cations is created. For more 

detailed information on this statistical matter, we refer to the literature.[37;44-46]

IDENTIFICATION AND NATURE OF DISCRIMINATING PROTEINS

The controversy about the use of protein profi les as a pattern diagnostic without 

identifi cation of the individual diagnostic biomarkers remains to be solved before 

its clinical application. Whereas the fi rst clinical proteomics studies published their 

classifi cation method mainly as a black box study, nowadays identifi cation of the 

most discriminating proteins or peptides is required for publication in most scien-

tifi c journals. Identifi cation and functional analysis of these discriminating proteins/

peptides might render new insights on tumour development and environmental 

responsiveness, which could eventually be translated into new diagnostic and prog-

nostic insights for the clinician. Unfortunately, little success has been booked so far 

in assigning reproducible discriminating biomarkers.[35;42]

Furthermore, several studies have identifi ed their discriminating peaks as compo-

nents of the coagulation cascade or complement system.[47-51] So, in contrast to the 

original refl ection that discriminating proteomic patterns would identify cancer-spe-

cifi c proteins, it appears that these potential markers belong to the normal serum and 

plasma proteome. Consequently, some investigators have argued that low molecular 

weight proteins in serum, the serum peptidome, is nothing but aspecifi c biological 

trash and therefore does not yield any reliable biomarkers in the currently technically 

available mass range.[29;52] Others have proposed that the discriminatory protein 

peaks represent acute phase reactants that are present in serum in extremely high 

concentrations.[49;53] Conversely, recently a study reported that although discrimi-

nating peptides do indeed belong to the well known coagulation and complement 
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pathways, their patterns or signatures can nevertheless indicate the presence of 

cancer. Villanueva et al. showed that most of the cancer-type specifi c biomarker frag-

ments were generated in patient serum by enzymatic cleavage at previously known 

endoprotease cleavage sites after the blood sample was collected.[54;55] They postu-

lated that the discriminating peptides originated after ex vivo proteolysis by tumour 

specifi c proteases of high abundance protein fragments primarily generated by the 

coagulation and complement enzymatic cascades. In this view, they consider these 

cancer-specifi c low molecular weight proteins in the serum peptidome an indirect 

snapshot of the enzyme activity in tumour cells. We support their hypothesis that 

proteolytic process profi les in the serum peptidome hold important information that 

may have direct clinical utility as a surrogate marker for the detection and classifi ca-

tion of certain types of tumours. Unique proteases may be shed by tumour cells or 

refl ect activity of the host immune response, which may contribute to new proteins 

such as chemokines and lymfokines. These processes result in subtle changes in 

low molecular proteomic signatures, which may ultimately be used for classifi cation 

methods in various cancers and disease in the future.[54] Proteases have been exten-

sively implicated in the development and progression of cancer.[56;57] Song et al. 

recently stated that proteolytic processing of high abundance host-response proteins 

actually amplifi es the signal of potentially low-abundance biologically active disease 

markers such as proteases. Therefore, it might be expected that more convenient and 

reliable blood proteins and peptides simply serve as an endogenous substrate pool 

for proteases as surrogate markers for the detection and classifi cation of cancer.[58]

Another recurrent topic of debate is which blood component is best used for pro-

tein profi ling and peptidome analysis. Some investigators favour the use of plasma 

because they presume that, in serum, ongoing enzymatic activity, occurring during 

clotting, is likely to cleave even proteins that are not involved in biological relevant 

pathways.[53;59] Others, however, advocate the use of serum. We support the hy-

pothesis that since the kidneys rapidly clear peptides smaller than 4 kDa which 

are in vivo generated in the circulation, the majority of peptides in blood samples 

exist from ex vivo proteolysis. This explains that low abundance proteins, including 

possible tumour markers, may be totally obscured and not retraceable during direct 

mass spectrometry. However, it has recently been shown that exogenous proteases 

are functionally measurable in serum, yet in higher concentrations than in plasma.

[54] 

Functional proteomics studies allow the investigation of environmental factors over 

time, rendering the monitoring of metabolic responses to various stimuli. Hence, 

post translational modifi cations can be studied, whereas they can not be detected 

by genomic studies. Posttranslational modifi cations changes like glycosylation of 

proteins and lipids are a common feature in colorectal cancer and infl uence cancer 
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cell behaviour and can be detected using mass spectrometry due to characteristic 

mass shifts.[60] We expect that both phosphoproteomics and/or glycoproteomics, 

enabling study of crucial post translational modifi cations of proteins in the cancer 

pathway, will revolutionize our understanding of the function of these proteins, and 

hence render new insights for monitoring and therapy.

CLINICAL PROTEOMICS IN CRC 

So far, few protein profi ling studies have been published on the detection of CRC, 

of two were based on SELDI/TOF and one on MALDI-TOF mass spectrometry. The 

fi rst SELDI/TOF study showed seven potential biomarkers that could differentiate 

CRC patients from patients with colorectal adenoma with a sensitivity of 89% and 

specifi city of 83%. The seven potential biomarkers have a large range in mass values, 

differing from 4654 till 21,742 Da.[61] A more recent published study found 5 pos-

sible biomarkers to differentiate between healthy control subjects and CRC patients. 

For three of these potential markers they found a sensitivity and specifi city between 

65% and 90%. They reported that m/z 3100, 3300, 4500, 6600 and 28,000 were the 

most important biomarkers.[62] Our group used MALDI-TOF mass spectrometry to 

differentiate CRC patients from healthy controls. In a randomised block design pre-

operative serum samples obtained from 66 colorectal cancer patients and 50 controls 

were used to generate high-resolution MALDI-TOF protein profi les.[43] After pre-

processing of the spectra, linear discriminant analysis with double cross-validation, 

based on principal component analysis was used to classify the protein profi les. A 

total recognition rate of 92.6%, a sensitivity of 95.2% and a specifi city of 90.0% for 

the detection of CRC were shown. In our study two fi rst principal components ac-

counted for most of the between-group separation, both with a m/z between 1000 

and 2000 Da. 

Although a lot of research has been done using 2D gel electrophoresis to detect 

possible biomarkers and targets for CRC, this falls outside the scope of this paper 

since this technique can not be scaled up to a directly applicable diagnostic test. On 

the other hand, recently a screening assay based on APC protein truncation test has 

been proposed and other studies mention the potential use of protein microarrays.

[2;63-65] However, studies linking large protein expression patterns with clinical out-

come in colorectal cancer are still in their infancy. To be able to predict occurrence 

of disease, and treatment outcome, more studies on genotype-phenotype correla-

tions are needed both in sporadic and in hereditary colorectal cancer. 
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FUTURE PERSPECTIVES

The best anticancer strategies still rely on early detection followed by close monitor-

ing for early relapse so that therapies can be appropriately adjusted.[66] In addition, 

new targets for therapy are a constant subject of study in oncology. In fact, increased 

understanding of the molecular mechanisms of cancer progression may refi ne treat-

ment and management of patients. Advances in genomics and proteomics may lead 

to earlier detection of cancer and may enable a more precise classifi cation of (smaller 

subsets of) patients based on their predicted response to individual therapies. Con-

ceptually, proteomics is more suitable than genomics for novel targeted therapies, 

since most of protein biomarkers are based on aberrant protein signalling circuits 

represented by post translational modifi cations. The dynamic range of the proteome 

allows more insight in the functional state of a cell, tissue or organ over time. Be-

sides, protein profi ling and classifi cation of several components of multiple aberrant 

cell signalling cascades would be expected to predict disease behaviour better than 

just single pathways in isolation.[64] Therefore, proteomics could be expected to 

render better insight in pathogenetic mechanisms, disease progression and treatment 

response. This is of paramount importance as cancer advances dynamically and 

affects heterogeneous cell populations, either as a part of cancer or as a part of a 

tumour-host reaction.[49;67] 

Further refi nement of serum protein profi les is needed before these mass spec-

trometry based techniques become part of clinical routine. Nowadays, several stud-

ies have carefully evaluated reproducibility, automation, sample throughput and 

sensitivity of serum proteomic techniques. The fi rst problems related to these factors 

seem to have been overcome due to stringent standardised approaches as described 

earlier. However, proteomics studies still have several drawbacks: 1) current tools 

only allow narrow-range analyses, 2) identifi cation of proteins of interest remains 

cumbersome, 3) protein studies address mixtures of high complexity. Hence, due to 

the dynamic ranges of the human proteome and the lack of amplifi cation methods 

in protein studies, targeted proteomics techniques for (quantitative) identifi cation 

of low-abundant proteins have to be further investigated.[68] Another approach to 

study proteins at a functional level might be the use of array-based proteomics 

platforms. This techniques offers the potential for highly multiplex and sensitive 

analysis of serum or tumour proteins.[64] Using this direct approach of studying the 

proteomic circuitry would theoretically allow for the creation of functional signalling 

maps of cancers, even at the level of the individual patient. Regarding identifi cation 

of potential biomarkers, limitations of direct MS/MS have been stressed before as 

well as the fact that antibody-approaches may yield higher sensitivity.[53;54]
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In the next era research in oncology will drift to more individualised medicine. 

In this view, molecular profi ling forms a welcome addition to the pathology report 

of cancer. Until now, histopathological staging and demographics have been used 

to predict disease outcome. However, we believe that protein profi ling and other 

proteomics techniques may lead to more individualised medicine and tailor made 

therapy.[69;70] At fi rst, both approaches should be used complementary instead of 

competitively.

It is unlikely that in the next decade, serum protein profi les will certainly replace 

the current gold standard colonoscopy for the diagnosis of CRC. Nevertheless, we 

hypothesise that MALDI-TOF based serum protein profi les, once validated in inde-

pendent studies, could be used as selection criteria for the more invasive and time 

consuming diagnostic colonoscopy (Figure 1). Eventually, with the present debate 

on screenings programs for colorectal cancer in several countries, clinical proteom-

ics may replace and surpass the use of faecal occult-blood testing (FOBT). When in 

independent validation studies sensitivity and specifi city remain about 90% protein 

profi ling might even replace FOBT, since this approach has a lower specifi city and 

a number of disadvantages. Non-bleeding tumours and more relevant, polyps and 

adenomas can not be detected using FOBT, whereas we expect to realise this with 

serum protein profi ling within the next decade.[17;18]

So, although the current reality may not have kept pace with previous expectations 

and the translation from bench to beside is more laborious than initially thought, 

there is supporting evidence for the potential great use of clinical proteomics in 

oncology. Particularly, when efforts for technical innovations to further increase sen-

sitivity and specifi city of proteomic techniques will be implemented and more sensi-
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Figure 1.  Flow chart of possible clinical application of MALDI-TOF 
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tive methods for protein identifi cation on alternations are developed. In combination 

with the use and set-up of well-defi ned cases with well documented serum banks, 

including not only CRC samples, but also infl ammatory disease and polyps, serum 

protein profi ling may propel diagnostic research in CRC in the right direction.
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Kanker van de dikke darm is een van de meest voorkomende vormen van kanker in 

de westerse wereld. In Nederland worden er jaarlijks circa 10.000 nieuwe patiënten 

gedocumenteerd, terwijl er wereldwijd bijna 900.000 nieuwe gevallen per jaar wor-

den gemeld. Over het algemeen geldt dat hoe eerder de diagnose gesteld wordt, hoe 

groter de kans dat een curatieve resectie mogelijk is en dus de kans op een betere 

overleving. Helaas wordt kanker van de dikkedarm vaak pas in een laat stadium ge-

diagnosticeerd en behandeld, met als gevolg een relatief slechte prognose. Daarom 

bestaat er een dringende behoefte aan een weinig invasief, specifi ek onderzoek dat 

de diagnose reeds in een vroeg ziektestadium stelt, waardoor de behandeling eerder 

gestart en tevens beter op het individu toegespitst kan worden.

De gouden standaard voor de diagnostiek van primaire colorectale tumoren is de 

colonoscopie. Afgezien van het invasieve karakter en de voor patiënten onprettige 

darmvoorbereiding zijn ook de kosten en tijd een beperkende factor om deze me-

thode grootschalig te gebruiken in bijvoorbeeld een bevolkingsonderzoek. Naast de 

colonoscopie wordt tot op heden de concentratie van het eiwit CarcinoEmbryonic 

Antigen (CEA) in het bloed gebruikt als diagnostische marker voor de aanwezigheid 

van colorectale tumoren, vooral tijdens de follow-up. Echter als diagnostische test 

voor het detecteren van primaire darmtumoren heeft CEA een lage sensitiviteit van 

44% en specifi citeit van 88%. Door deze matige betrouwbaarheid is de techniek niet 

geschikt voor vroegdiagnostiek toepassing op grote schaal, laat staan voor screenings 

doeleinden. Daarentegen is na resectie van de primaire tumor het verloop van de 

CEA spiegel wel een betrouwbare indicator voor de ziektestatus. Een relatief nieuwe 

screeningstechniek voor dikke darmkanker is de Fecale Occulte Bloed Test (FOBT), 

een test die spoortjes bloed aantoont in de ontlasting. Het is een non-invasieve tech-

niek die de noodzaak voor follow-up colonoscopie limiteert. Een nadeel is echter dat 

tumoren die intermitterend bloeden, aan detectie door FOBT kunnen ontsnappen. 

Bovendien is de specifi citeit van de test beperkt doordat er frequent foutpositieve 

uitslagen optreden als gevolg van dieet (rauw vlees), medicatie en andere oorzaken 

van gastro-intestinale bloeding dan darmkanker.

Recapitulerend is er momenteel geen gebruiksvriendelijke diagnostische test met 

voldoende hoge sensitiviteit en specifi citeit om de ziekte in een vroeg stadium op te 

sporen. Nochtans is er grote behoefte aan gevoelige technieken om tumormarkers 

te identifi ceren, waarmee detectie van zowel primaire tumoren als recidiverende 

ziekte of metastasen in een vroeg stadium mogelijk wordt. Hierdoor kan er eerder 

tot behandeling van tumor(recidief) of metastasen worden overgegaan, wat tot een 

betere overleving zal leiden.

In hoofdstuk 1 wordt een introductie gegeven over een nieuwe en gevoelige 

techniek, proteomics genaamd; een zich snel ontwikkelend onderzoeksveld dat ten 

doel heeft om zowel kwalitatief als kwantitatief alle functionele eiwitten van een 
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organisme in kaart te brengen. Na het afronden van het humane genoomproject 

is het mogelijk geworden om een groot aantal van deze eiwitten te identifi ceren. 

Proteomics is gebaseerd op de separatie en visualisatie van complexe eiwitmeng-

sels. Zo kunnen eiwitten die een veranderd expressiepatroon vertonen, worden 

opgespoord en in verband worden gebracht met de aanwezigheid van een tumor. 

Deze discriminerende eiwitprofi elen kunnen als diagnostische of prognostische test 

gebruikt worden, of zelfs targets vormen voor nieuwe behandelingsstrategieën. De 

meeste clinical proteomics studies binnen de oncologie richten zich op het detec-

teren van verschillen in eiwitexpressie in serummonsters tussen gezonde proefper-

sonen en patiënten met een maligniteit. Deze techniek werd in 2002 voor het eerst 

toegepast bij de detectie van ovariumcarcinoom. Deze studie was, afgezien van de 

veelbelovende resultaten voor de opsporing van een solide tumor, erg vernieuwend 

door het gebruik van patroonherkenning van meerdere eiwitten zonder dat deze 

geïdentifi ceerd waren, een zogenaamde black box methode. Deze aanpak kreeg al 

snel navolging en ook de resultaten van detectie van prostaat en longkanker waren 

zeer veelbelovend in volgende studies. 

De eiwitprofi elen worden gemeten met behulp van massaspectrometrie, een 

veelzijdige techniek die gebruikt kan worden voor identifi catie, kwantifi ceren en 

profi lering van isotopen, moleculen en molecuulcomplexen in kleine hoeveelheden 

van chemische en biologische mengsels. In een massaspectrometer worden indi-

viduele eiwitten van het serummonster in de gasfase geïoniseerd. Daarna worden 

de gevormde ionen versneld in een zeer precies geregeld elektrisch veld en in een 

vluchtbuis afgeschoten. De ionen worden vervolgens gescheiden op basis van hun 

massa/ ladingsverhouding (m/z) waarna de detectie volgt. Na de detectie wordt een 

massaspectrum gegenereerd als grafi ek, waarin de intensiteit (Y-as) van iedere m/z 

(X-as) wordt weergegeven.

Na initiële positieve reacties op de veelbelovende resultaten van het gebruik van 

eiwitprofi elen als patroonherkenning voor de aanwezigheid van een tumor, kwam 

er in de internationale literatuur kritiek op de reproduceerbaarheid en betrouwbaar-

heid van de massaspectrometrie. De vraag was of de classifi catieresultaten, die op 

basis van de eiwitprofi elen een individu aan de kanker of gezonde groep toewees, 

vertroebeld zouden worden door andere factoren. Verschil in experimentele om-

standigheden en individuele variaties werden aangewezen als potentiële co-factoren 

op eiwitprofi elen. Indien de eiwitprofi elen inderdaad zo gevoelig zouden zijn voor 

variaties in bloedafname, opslag, voorbewerking van het serum en het massaspec-

trometrie experiment, dan zou de eventuele klinische toepasbaarheid voor de toe-

komst drastisch afnemen. 
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Hoofdstuk 2 is een overzicht van de verschillende vormen van translationeel 

onderzoek die onze onderzoeksgroep verricht naar colorectale tumoren en kan als 

inleiding van het proteomics onderzoek gelezen worden. 

Om te verifi ëren of de eiwitprofi elen inderdaad onderhevig zijn aan variatie door 

externe factoren onderzochten wij in hoofdstuk 3 van dit proefschrift de reprodu-

ceerbaarheid van onze methode en de invloed van verschillende logistieke preana-

lytische variaties de serum eiwitprofi elen. Om zoveel mogelijk de reële klinische 

situatie na te bootsen, werden er experiment gedaan met verschil in tijd tussen 

afdraaien van de bloedbuis tot serum, verschil in afname tijdstip over de dag en het 

uitvoeren van meerdere vries -en dooicycli met een serummonster. Uit de resultaten 

van deze experimenten bleek dat de tijd dat het bloed staat voordat het serum wordt 

gecentrifugeerd de grootste variatie op serum eiwitprofi elen heeft. Er was een te ver-

waarlozen invloed van het afnametijdstip op de dag en ook het aantal vries -en dooi 

cycli, mits kleiner dan 4, had weinig invloed op de variatie van de massaspectra. 

Een ander belangrijk aspect voor de praktische bruikbaarheid van een toekomstige 

serumtest voor de detectie van colorectale tumoren, is de invloed van maaltijden 

op de eiwitprofi elen. Als klein onderdeel van de experimenten naar de invloed 

van preanalytische variatie vergeleken wij tevens eiwitprofi elen van een individu in 

nuchtere toestand en na maaltijden. Hierin was echter geen verschil te vinden en 

daarmee werd geconcludeerd dat dit geen invloed heeft op de serum eiwitprofi elen. 

De gehele studie was één van de eerste studies die de reproduceerbaarheid van de 

eigen methodiek onderzocht en op basis van deze resultaten een gestandaardiseerde 

aanpak voor alle verdere studies aanbeval. Het belang van het gebruik van een 

uniforme en goed gedocumenteerde populatie en een gestandaardiseerd afname 

protocol voor de serummonsters werd in alle studies onderstreept. Mits aan deze 

voorwaarden wordt voldaan, kan met behulp van discriminerende eiwitprofi elen 

betrouwbare classifi catie resultaten geboekt worden in het kankeronderzoek.

In hoofdstuk 4 en 5 wordt ingegaan op de resultaten die met behulp van dezelfde 

aanpak verkregen zijn om op basis van discriminerende serum eiwitprofi elen on-

derscheid te maken tussen patiënten met dikke darmkanker en gezonde controles. 

Hierbij voldeed elk geselecteerd serummonster aan het in hoofdstuk 3 opgestelde 

standaardprotocol. Naast de variatie in biologische en preanalytische factoren, is de 

statistische analyse een ander belangrijk onderwerp van discussie in de internatio-

nale literatuur. De eiwitspectra vormen hoogdimensionale data en brengen hierdoor 

direct enkele praktische bezwaren met zich mee. Gezien het hoge aantal datapunten 

per spectrum is voor een betrouwbare analyse een groot aantal monsters nodig. 

Daarnaast is het voor de opzet van de studie van belang dat de verschillende groepen 

binnen een experiment in dezelfde proporties aanwezig zijn. Echter de belangrijkste 

valkuil in de statistische analyse van de serum eiwitprofi elen is de validatie. Hiervoor 
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is het gebruik van een aparte training en validatie set in een klinische studie van 

groot belang. Het classifi catiemodel wordt berekend in een zogeheten trainingstest 

door te zoeken naar discriminerende eiwitprofi elen die het beste een verschil maken 

tussen de gezonde en de zieke groep. Vervolgens wordt in een validatie set met 

onafhankelijke patiënten en gezonde controles het classifi catiemodel getoetst en de 

sensitiviteit en specifi citeit van dit model berekend. Dit classifi catiemodel is een ei-

witprofi el waarvan de identiteit van de discriminerende eiwitten (pieken) onbekend 

is. Als aanvulling op deze black box benadering kan met behulp van dezelfde mas-

saspectrometer worden overgegaan op identifi catie van de discriminerende eiwitten. 

Er is nog veel onderzoek noodzakelijk alvorens er consensus bereikt kan worden 

over de optimale statistische en bioinformatica benadering van de hoogdimensionale 

data binnen de clinical proteomics studies.

Tot op heden is er slechts een summier aantal klinische studies verschenen die met 

clinical proteomics een maligniteit betrouwbaar hebben opgespoord. Het grootste 

manco tot op heden is dat de resultaten niet in een ander laboratorium bevestigd 

kunnen worden, maar ook dat de validatie van het eigen classifi catiemodel vaak 

te wensen over laat. Om dit en bovengenoemde valkuilen te vermijden heeft onze 

groep een zeer strikt opgezette classifi catie studie uitgevoerd voor de detectie van 

colorectale tumoren. Hoofdstuk 4 beschrijft de resultaten van het onderzoek naar de 

detectie van colorectale tumoren op basis van discriminerende eiwitprofi elen. Hier-

toe werden 66 patiënten met alle ziekte stadia, inclusief stadium IV patiënten met tot 

de lever beperkte metastasen, en 50 anonieme gezonde controles geïncludeerd. De 

monsters werden vervolgens gerandomiseerd, maar in gelijke proporties per groep 

over 3 platen verdeeld en op 3 achtereenvolgende dagen met de massaspectrometer 

gemeten. Dit leverde een zogeheten ‘randomised block design’ op, waarmee wij 

geprobeerd hebben om de classifi catieresultaten zo min mogelijk te beïnvloeden 

met experimentele of batcheffecten. Voor de statistische analyse hebben wij lineaire 

discriminantie gebruikt om een optimale scheiding te krijgen tussen beide groepen. 

In verband met het relatieve kleine aantal monsters dat voldeed aan het standaard 

inclusie en afname protocol, was het gebruik van een onafhankelijke validatieset 

niet mogelijk in deze studie. Daarom hebben wij gebruik gemaakt van een methode 

die maximaal betrouwbare resultaten oplevert binnen de mogelijkheden van een 

interne validatie. Met deze zogeheten dubbele kruisvalidatie van de eiwitprofi elen 

toonden de resultaten een sensitiviteit van 95% en een specifi citeit van 90% voor 

het de detectie van colorectale tumoren. De oppervlakte onder de ROC-curve voor 

deze test bedroeg 97% en toont hiermee de signifi cantie van het onderscheidend 

vermogen van de test aan. Het gebruik van dubbele kruisvalidatie binnen de dataset 

en de grote oppervlakte onder de ROC-curve tonen aan dat het classifi catiemodel 
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op daadwerkelijke informatie in de spectra en niet op toeval berust. De statistische 

achtergronden hiervan worden in hoofdstuk 5 beschreven. 

Dezelfde studie opzet, massaspectrometrie en statistische analyse is gebruikt in 

hoofdstuk 6, waar eiwitprofi elen van patiënten met mammacarcinomen werden 

vergeleken met die van gezonde controles met dezelfde gemiddelde leeftijd. Ook 

deze studie toonde veelbelovende resultaten voor de detectie van mammacarcimo-

nen, met een sensitiviteit van 100% en een specifi citeit van 97%. De discriminerende 

eiwitpieken werden andermaal in de laag moleculaire massa range gevonden, maar 

in andere correlaties dan bij de studie beschreven in hoofdstuk 3. Belangrijk echter 

was wederom de optimaal mogelijke betrouwbare classifi catie en het uitsluiten van 

zoveel mogelijk verstorende factoren. Identifi catie van deze pieken was ten tijde van 

het onderzoek nog niet volledig mogelijk, maar dit zal binnen afzienbare tijd wel 

gerealiseerd worden. 

In hoofdstuk 7 wordt het bewijs geleverd dat discriminerende eiwitprofi elen 

ook in een onafhankelijke validatieset op zeer betrouwbare wijze gebruikt kunnen 

worden voor de detectie van borstkanker. Het is de eerste proteomics studie die in 

een gerandomiseerde en onafhankelijke patiëntengroep (in een validatieset) deze 

veelbelovende resultaten laat zien.

In hoofdstuk 8 wordt een overzicht gegeven over de stand van zaken van cli-

nical proteomics binnen de oncologie en worden de toekomstige bevindingen en 

verwachtingen binnen het veld besproken. Hoewel clinical proteomics pas in de 

kinderschoenen verkeert, lijkt deze methode te kunnen bijdragen aan de urgente 

zoektocht naar nieuwe biomarkers binnen de oncologie. De eerste kinderziektes, de 

reproduceerbaarheid en preanalytische variaties, lijken overwonnen en maken be-

trouwbare classifi catiestudies mogelijk mits er volgens strikte standaardprotocollen 

met een homogene groep patiënten en sera gewerkt wordt. De samenstelling van de 

populatie blijft veel aandacht vragen om een maximale uniformiteit te waarborgen 

en zoveel mogelijk externe co-factoren te vermijden. Er is nog veel werk te ver-

richten aan de statistische benadering van klinische studies op basis van proteomics. 

Een ander punt van aandacht is de identiteit van de discriminerende eiwitten. De 

identiteit van de eiwitten zou kunnen leiden tot een beter begrip van pathomecha-

nisme van het ontstaan van colorectale tumoren, maar ook targets voor nieuwe be-

handelingen kunnen vormen. Er zijn hypothesen dat deze discriminerende eiwitten 

niet specifi ek voor de tumor zelf zijn, maar veelal acute fase eiwitten en afkomstig uit 

de complement- of stollingscascade. Momenteel wordt dit door meerdere groepen 

onderzocht. Dit is immers ook essentieel voor het bepalen van de specifi citeit van 

de eiwitprofi elen per verschillend type solide tumor. Hoewel er in de eerste jaren al 

veelbelovende resultaten zijn geboekt met vroegdetectie van kanker met behulp van 

clinical proteomics, is er nog een lange weg te gaan voordat introductie in de kliniek 
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plaats kan vinden. Dit proefschrift is echter een kleine stap in de juiste richting en 

onderstreept de vele hoopvolle mogelijkheden van translationeel onderzoek.
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