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Chapter 4

Track finding in emulsion

In Chapter 2 the setup of the CHORUS experiment has been introduced, including a
hardware-based method to scan emulsion. This chapter describes the development
of a new approach undertaken at CERN. The principles in this approach were to use
off-the-shelf hardware and to use software as much as possible. This required the
development of track-finding code for the particular case of emulsion images. Elec-
tronic detectors usually yield information in one or two projections; emulsion yields
3-D position information. Electronic detectors typically measure only a few track
points; emulsion tracks typically contain many hits. The difficulty with emulsion is
that these hits are burried in a large number of background hits.

An algorithm that could efficiently find tracks in this high noise environment
was developed. Although originally written for track finding in emulsion, the algo-
rithm and its tools could be used in more general applications and have, therefore,
been implemented as an object-oriented C++ toolkit. Part of this chapter is a
copy of a published paper describing this toolkit [233]. In this chapter, the algo-
rithms and implementations of the track-finding classes and the container classes
developed for fast searching in multi-dimensional spaces are presented. The track-
finding efficiency, estimated using a Monte-Carlo simulating, is also presented. The
expected performance of the algorithm has been investigated. The tracking code
was originally designed to reconstruct all tracks. However, in the scan-back stage of
event location, a track-selector like approach (section 2.9.4) is sufficient and faster.
This was also implemented in software and is described in section 4.5. Finally, the
application to real emulsion data is presented.



114 track finding in emulsion

4.1 Introduction

Automatic emulsion scanning with computer-controlled microscope stages and digital
read-out and processing of emulsion images was pioneered by the the fken laboratory in
Nagoya (Japan). As is described in section 2.9, the Nagoya approach to emulsion scanning
is based on a brute force, hardware based, track-finding system which examines a fixed set
of 16 images. Originally, only a track with known slope could be located automatically.
With the development of ever faster hardware, this restriction disappeared because the
hardware could simply check for many slopes.

When one examines the emulsion-scanning strategies used in chorus in detail (sec-
tion 2.10), three different stages can be distinguished: scan-back, net-scan and eye-scan.
These stages differ in the area and thickness scanned and whether all tracks or only a
single track is being searched for. During scan-back (section 2.10.2), a single track is
looked for and the area scanned is large on the interface sheets but very small on the
target sheets. During net-scan (section 2.10.3), all tracks are reconstructed and the area
is large. In both stages, it is sufficient to examine only a thin slice of one emulsion surface
to find all interesting tracks. The exception is scan-back on the interface sheets where
both surfaces need to be scanned.

The net-scan procedure has a short-coming which becomes apparent for events with a
secondary vertex or kink. Net-scan is comparable to electronic tracking detectors in the
sense that tracks and vertices are reconstructed from a few measurements along the paths
of the tracks. The complete particle track or the actual vertex is not seen. From the
net-scan data alone, it is impossible to tell if a secondary vertex was caused by a decay
or an interaction. The net-scan procedure can also not distinguish between the decay
of a charged or neutral short-lived particle if the decaying particle does not cross the
upstream surface of at least one emulsion plate. These limitations re-introduced human-
eye scanning in the emulsion analysis. The advantage of net-scan is that now only a
small sample of events needs to be scanned at a well known location in the emulsion
and with a partially known topology. During such eye-scanning, one to several plates
are examined through their full thickness and the tracks and vertices of interest (some of
which are already known) are inspected, measured and registered in a computer readable
format. Eye-scan corresponds thus to a scanning stage with small to medium areas but
full thickness.

During the development of the scanning and track-finding hardware in Nagoya, the
optics and the limitation to 16 images have never changed. So even though the scanning
speed has increased several orders of magnitude (including the ccd camera speed), the
optics still limit the field of view to about 150μm× 150 μm and the hardwired 16 image
limit restricts the scanning to emulsion slices of around 100μm thick. Historically of
course, the track-selector was designed for doing scan-back only; it was the increased
scanning speed which led to the development of the net-scan procedure. Net-scan is
probably close to the best that can be done for full automatic event reconstruction given
the limitations of the hardware and a given time frame determining the time that can
be spent on each event.

Within the cern scanning laboratory, the idea took root to redevelop automatic scan-
ning techniques, keeping the ideas that had already been developed while avoiding known
limitations and human eye-scanning as much as possible. The guiding principles in these
developments were to use up-to-date instrumentation and off-the-shelf electronic com-
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ponents wherever possible and implement as much as possible all pattern recognition in
software. Using off-the-shelf components and implementing pattern recognition in soft-
ware, allows one to profit directly from Moore’s law,1 while avoiding the long development
time and relative inflexibility of home-built designated hardware.

The main subject of this chapter is the software developed for track-finding in a set
of emulsion images. Another pattern-recognition problem improved in the cern devel-
opments was the location of reference points on the emulsion plates. This has already
been addressed in section 2.10.1. In the next sections, some of the new instrumentation
developed for the cern scanning laboratory will be briefly described, before returning
to the main subject with a discussion of the characteristics of emulsion data and the
constraints these place on a tracking algorithm.

4.1.1 Microscope optics and stages

Normal microscope optics are designed to render an accurate image of an object to the
smallest detail possible usually using white light. On the contrary, for the reconstruction
and measurement of charged particle tracks in emulsion, the shapes of the grains are
not important; the only relevant parameter for each grain is its position. For emulsion
scanning, the optical system should yield an image of sufficiently high contrast such that
grains can readily be identified and of sufficiently high resolution, both transversely and
axially, such that their position can be accurately determined. The typical grain size in
the chorus emulsion is 0.8 μm. Given a typical dimension of pixels on image sensors
of around 10μm, the transverse resolution dictates a magnification of around 40× to
have about three pixels per grain. The depth of field, the size of the axial region that
is in focus, should be below 2μm such that the z position of individual grains can be
determined with reasonable accuracy. In order to scan large areas, the field of view
should be as large as possible, while the field curvature should be minimal such that
imaged slices in the emulsion are basically flat planes. The free working distance, the
distance between the first lens surface in the system and the object in focus, has to be
more than 1 mm to be able to scan the full-thickness of an emulsion plate.

In the 1970s, Tiyoda designed an objective specifically intended for emulsion work, on
request from and in collaboration with Nagoya University. This 50× oil-immersion lens
represented a compromise between automatic scanning and comfort for eye-scanning. It
was designed with a numerical aperture (na) of 0.85 using green light at 550 nm. A
higher na or shorter wavelength would give a better resolution, but it also decreases the
contrast making grain recognition more difficult for the human eye. Its field of view is
free from distortions up to a diameter of about 200μm, which is about the maximum a
(trained) human can quickly oversee. The practical depth of field for grain recognition
is about 2.6 μm.

A comprehensive study of the optics required for emulsion scanning [234], showed
that a larger field of view could be achieved with a new optical design purely intended
for automatic scanning. In collaboration with industry [235], a new optical system was
developed with as goals a field of view of 500μm diameter and a depth of field of 1.5 μm.
The different refractive index of the various types of emulsion plates required that the

1Moore’s law, posed in 1965, states that the number of transistors on integrated circuits doubles
every 18 months which is accompanied by a similar increase in processor speeds. For various takes on
this not-so-constant law, see http://www.answers.com/topic/moore-s-law.
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optics could be tuned to deal with these differences. These specifications were realized
with an oil-immersion objective with a na of 1.05 using a blue light source at 436 nm
(g-line of a mercury-vapour arc-lamp). It can accommodate a variable refractive index
between the object and the front surface of the objective lens, within the range 1.49 < n <
1.54, by moving a group of lenses inside the objective, which contains a total of eleven
lenses. The magnification is selectable from 28×, 40×, 60×, and 80× by exchanging
an adapter tube. The high na and short wavelength ensure good resolution in both
transverse and axial directions, even at the minimum magnification of 28×. With a
typical one square centimeter image sensor, the actual field of view is 350 μm× 350 μm,
seven times larger than the 150 μm × 120 μm field of view of the Tiyoda lens and ccd
system used in Nagoya. The field curvature is less than 1μm up to the very edge of the
field of view. The practical depth of field for grain recognition is about 1.2 μm, more
than two times better than the Tiyoda objective. A more extensive description of the
optical system can be found in Refs. 215,236.

Figure 4.1: Mega-pixel camera view of a piece of emulsion with the 50× Tiyoda objective
(top, width about 220 μm) and the 40× Jenoptik objective (bottom, width about 280 μm).
The optical axis is located at the right-hand side of the images and indicated by the small black
crosses. The Tiyoda objective suffers from clear radial distortion at longer radial distance
from the optical axis (left-side of image), while the Jenoptik objective shows no such imaging
artefacts. From the images, one can see that the Tiyoda objective has a higher contrast
(due to lower NA, higher magnification, and longer wavelength) making it much easier for the
human eye to spot the grains. The black line and area in the images are camera defects.

Due to the smaller depth of field of the new optics more independent images can
be taken inside an emulsion layer. For the same reason, the z resolution of the grain
positions is also increased. For scanning 100μm thick slices of emulsion, typically 20 to
30 independently imaged planes inside the emulsion are taken, called layers. The larger
field of view reduces the number of views to be taken when scanning large surface areas.
For small areas, the processing can be restricted to the central area of the image. As
there is no hard limit on the number of images that can be taken, the eye-scan stage can
be replaced by simply taking images through the whole depth of the emulsion. With a
3 μm layer spacing, this gives between 100 and 120 images per side of the target emulsion
plates.

Even though the new optics allow more of the emulsion to be viewed per operation,
the amount of data collected in a single view is still only a very tiny fraction of the
total information on a single plate. A single pixel in the view of the microscope covers
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a volume of about 0.35 μm × 0.35 μm × 3 μm of the emulsion. Considering that for
scanning purposes its value can be given by a single bit as simply black or white, each
target plate contains about 250 terabits of data. The 2304 plates in chorus contain thus
570 petabits of data. This corresponds to 344 years of continuous black and white tv
images of 1024×1024 pixels at 50 Hz frame rate. From this amount of data, the need for a
hybrid detector is clear as it is impossible to scan all the emulsion, see section 2.9.1. Even
just scanning the predictions per emulsion module, the grain position data generated by
scan-back and net-scan is several terabytes per module, with a typical burst data rate
of about 2 megabyte per second. These data volumes and rates require some thoughtful
design of computing and storage infrastructure. For example, interface-plate scan-back
and net-scan data is normally processed offline on a cluster of computers, while scan-back
in the target sheets can be handled online.

Another, straightforward, development was the introduction of a bigger microscope
stage with a stroke of 40 cm× 80 cm that accepts one complete emulsion sheet and that
can handle the much heavier objective. Some minor technical upgrades are the use of
an immersion-oil containment device and the introduction of plate holders that facilitate
quick exchange of the plate on the microscope stage. Figure 4.2 is a photograph of one
of the cern microscopes in its latest configuration with the new optics and a new faster
cmos camera.

Figure 4.2: Photograph of an automated scanning microscope system at CERN. The photo-
graph shows several of the components discussed in the main text.
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In the cern scanning setup, the ‘image processing’ and ‘track finding’ units in Fig-
ure 2.17 have been replaced by a digital signal processor (dsp) board and tracking soft-
ware. Modifications have also been made to the ‘offline analysis’ unit in this figure, which
are discussed in section 4.6.2. The dsp applies a digital filter to the images to recognize
the grains. The processed images are then transferred to the control computer. On the
control computer, a fast clustering algorithm reconstructs the grain positions from the
pixels in the processed images. These grain positions are either stored in the database
for later processing or fed directly to track-finding software running online. The tracks
found online are also stored in the database. In the cern setup, the ‘database’ block in
Figure 2.17 is an object-oriented database. The data model is comprised of classes that
store predictions, acquisition parameters, compressed grain data, several types of tracks,
reference points, and alignment data with many references between them. The database
is both read and written by the online scanning program and by the offline analysis tools.
A detailed description of the instrumentation of the cern scanning laboratory can be
found in Ref. 215.

4.1.2 Tracking input characteristics

The track-finding’s job is to reconstruct particle tracks out of the grains in a set of
tomographic images. The input to the track-finding consists of processed grain data
which just contains the 3-dimensional grain positions, referred to as hits. The largest
part of the scanning results consists of 20 to 30 layers, where each layer contains about
4000 hits. The xy-resolution (in the plane of a layer) of the hit coordinates is of the order
of 0.5 μm. The z resolution is defined by the layer spacing and is about 4μm. In this
sense, emulsion data are not much different from a multi-layer 2-d electronic detector,
like silicon pixel layers, although with much better resolution and layer spacing. The
typical emulsion thickness used for tracking is about 100μm in which a track has about
30 high-resolution 3-d hits (for chorus emulsion).

Track reconstruction would be straightforward if the 30 track hits were not hidden
in about 1200 other background hits. A typical volume of chorus emulsion data on
which track finding needs to be performed, contains of the order of 105 grains. Of these,
only about 2500 belong to interesting tracks. The noise consists mainly of randomly
developed grains (fog) and low-energy tracks. Distortion of the emulsion implies that
tracks can only be considered straight on a scale of about 20μm, which complicates the
track finding. Fog and distortion have been explained in section 2.9.2.

4.1.3 Algorithm restrictions and requirements

Due to distortion, the track’s direction changes gradually over a distance of around 20μm.
Position correlations between track hits are therefore only well defined for a sequence of
about 5 to 10 hits. This leads naturally to a track-finding algorithm which looks only
at hits in close proximity to hits already considered as part of a track. The large total
number of hits limits the time a algorithm can spend on investigating each hit. Therefore
fast algorithms are required for retrieval of hits by position and for acceptance calcula-
tions. The close-range relationships and fast look-up can be achieved by constructing a
connection network of links between neighbouring hits. Building this network, however,
still requires finding all hits in the neighbourhood of each hit. To speed up this operation
a set of multi-dimensional search tools were developed. These tools are based on the
extension of a binary-search tree to multi-dimensional space. These tools, implemented
as ordering containers in any dimensional space, are described in section 4.2.
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The track-finding algorithm uses such a 3-d ordering container for creating the links
network of close hits. The network is searched for patterns consistent with particle tracks.
Conceptually, the method is based on selecting the best path of connected hits in a tree of
all track-compatible paths from a certain starting point. The actual implementation fol-
lows more closely a depth-first search algorithm from graph theory [237]. The algorithm
is described in detail in section 4.3.

4.1.4 Toolkit abstraction

The implementation of the algorithm is general enough that it can be used for any
situation where points, not necessarily 3-d, have close-range correlations. Setting up
the links network and searching it do not require any direct knowledge of the hit or
track model. The algorithm only requires yes or no decisions for hit acceptance and a
way of comparing track candidates. In the C++ programming language, these decisions
are easily isolated by calling them as abstract methods of a class representing a track
segment. The track-finding algorithm can therefore be implemented as an object-oriented
toolkit. The user has to implement the concrete class for doing the acceptance and
comparison calculations. In the implementation of the decisions, the calculation time
can be balanced with the tracking input characteristics. This allows one to tune for a
particular background condition or to tune the track-finding efficiency by considering
more paths through the links network.

The toolkit is currently used in two applications: in chorus it is used to reconstruct
tracks in emulsion; in harp [238, 239] it is used to reconstruct bent tracks in the mag-
netic field of a time-projection chamber. These two applications use the same tracking
toolkit, but a different implementation of the hit acceptance class. In chorus, the im-
plementation is tuned to be efficient in an environment with a large number of noise hits.
Because of the redundancy of track hits, high hit-to-track assignment efficiency is not
required and therefore strict cuts are applied to avoid including noise hits. In harp, the
implementation takes into account the track curvature due to the magnetic field.

4.2 Multi-dimensional ordering containers

In general, a tracking algorithm in k -dimensions (abbreviated to k -d) requires a k -d
look-up mechanism to search for other hits in a certain range near a given hit. A simple
and fast algorithm for retrieving elements in a given range in 1-d is described first. In
section 4.2.2, the properties of binary-search trees and their extension to more dimensions
is presented. These trees are used to construct containers for ordering elements in k -
dimensional space. The range look-up algorithm can be extended to k -d space using
these containers. The implementation of the k -d containers is described in section 4.2.4.
In section 4.2.5 a summary of the performance with respect to a simplistic approach is
presented.

4.2.1 Find-in-range algorithm

Finding all elements in a set P of unique2 numerical values which lie within a given
range can be done fast if the elements are sorted. For an ordered set S with elements pi,

2In practice identical values can be included.
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i ∈ [1, n], which has the property that

∀i⇒ pi−1 < pi , (4.1)

it follows that

∀k > 1 ⇒ |pi − pi±1| < |pi − pi±k| , (4.2)

where |pi − pj | represents the distance between elements pi and pj . Equation (4.2) states
that the element with smallest distance to some element pi is one of its neighbours in
the sorted set. To find all elements in a given range can then be done by locating the
first element larger than the lower bound of the range using a binary search, which runs
with an upper limit of log n in time. One then takes the following elements in the set as
long as they are below the upper bound of the range. The time for sorting the set P has
an upper limit of n log n. Because the tracking requires a range search for each hit, the
sorting time amortized over all searches is of the order of log n.

This algorithm cannot be extended directly to more than one dimension, because
the distance operator in equation (4.2) is not valid for vectors. There exist strict weak
ordering operators defined on the set of k -d points that can be used in equation (4.1).
However, none of these will leave equation (4.2) valid if the absolute difference is inter-
preted as a distance. The underlying reason is that there exists no mapping of a k -d space
to a space with less dimensions that also maps distances. To make equation (4.2) valid
for vectors, one would have to order them in a Voronoi tessellation [240–242], where each
point occupies a volume whose borders are determined by the closest points around it.
The time needed by the fastest algorithm to build a Voronoi tessellation is proportional
to n log n for 2-d space and proportional to n�k/2� for k > 2 [243].

4.2.2 Search trees

In a multi-dimensional space another range-finding algorithm is required, because of the
impossibility to satisfy equation (4.2). The sorted sequence of equation (4.1) can be
realized as a binary-search tree [237, 244]. In a binary-search tree, each node contains a
value and has a left and right branch to sub-trees. The left sub-tree contains all smaller
values than that of the parent, the right sub-tree all larger values. A node with no
branches is called a leaf. The value stored in the node is usually associated with other
data and is therefore often called a key. The time for a key search has an upper limit of
h, where h is the height of the tree (number of levels). In balanced trees, the leaves are
at almost equal height h ∝ lg n, with lg n ≡ log2 n. Algorithms exist to build balanced
trees in a time with an upper limit of n lg n. Values can also be efficiently retrieved in
sorted order from a tree by a walk through its nodes.

Although sorting in multiple dimensions is not possible, the concept of splitting a
range can be extended to more dimensions. The equivalent of splitting a 1-d range into
sub-ranges at some key value, is splitting a cube into 23 sub-cubes in 3-d. Each sub-cube
is then the root of a 3-d sub-tree for an octant of the space around the parent’s 3-d
key value. This kind of trees are generally known as k-ary-trees or Kd-trees. Here, the
space covered by a sub-tree for multi-dimensional trees is referred to as a sub-volume,
independently of the dimension of the space.

A balanced k -d tree with n keys has a height proportional to logm n, where m = 2k

is the dimensionality multiplicity. Balancing operations (see Ref. 237) rotate nodes, as
shown in Figure 4.3a, to ensure that the sub-trees of each node are approximately of
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the same height. In 1-d trees this rotation involves three sub-trees. Such a rotation is
needed, at maximum, twice per insert of a key in a tree. The rotations can be done in
constant time because the shaded area in Figure 4.3a that moves over to node 1 in the
rotation, corresponds exactly to the sub-tree γ of the new top-node 2. Rotations in more
than 1-d require a complete restructuring of a large part of the tree and can therefore not
be done in constant time. As can be seen in Figure 4.3b, in two (or more) dimensions, a
rotation involves partial areas of the old top-node 1 which have to be mixed with existing
sub-trees of the new top-node 2. Only the sub-trees α, β, and γ are unaffected by the
rotation.

n
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n+2

1

2α

2

β1
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βγ

γ

n: n+1:

1
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β

γ

(a) (b)

Figure 4.3: (a) Rotating the nodes 1 and 2 in a 1-D tree requires moving the shaded area.
As this area is just the left sub-tree of node 2, the complete sub-tree γ can be set as the right
sub-tree of node 1. The sub-trees indicated by α and β are not affected by the rotation. (b)
In a two-dimensional tree the nodes 1 and 2 cannot be easily exchanged as the shaded area,
which would become sub-areas of node 2, overlap with parts of sub-areas of node 1. Nodes
4, 5, and 6 need to be redivided as would all of their children.

A tree in which the points are inserted in random order has on average a height
with an upper limit of logm n However, in track-finding applications, the hits are usually
sorted (by detector layer, row and column coordinates) and a tree could, in the worst case,
degenerate to a linear sequence which has a look-up time of order n. A simple solution
to avoid this kind of unbalance exists when the range of keys is known beforehand and
the keys are more or less uniformly spread over the range. In this case one can build a
binary tree in which all keys are stored in the leaves and internal nodes split their range
through the middle. A node controls the range it covers and is in one of the following
three states: it is either empty; it holds a key somewhere in its range; or it holds the
branches to the nodes below it which each cover half its range. Because all keys are
stored in the leaves, the key look-up time becomes proportional to logm n which is still
of the same order as for a normal tree.

The principle of inserting keys in this kind of tree is shown in Figure 4.4a. Inserting a
new key starts at the root and it goes down the branches until it reaches an empty or an
occupied node at the bottom of the tree. In the first case, the sub-volume represented by
the empty node gets the new key assigned to it. If an occupied node is encountered, that
node’s range is split into equal size sub-volumes —half segment, quarter area, octant,
etc. — and the current node key is moved to its sub-volume inside the split node. Next,
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2

3
4

5 6

1

(a) (b) (c)
Figure 4.4: Structure of one, two, and three-dimensional fixed-range trees. The algorithm
for inserting new keys into the sparse tree is illustrated for the 1-D case. When inserting a new
key (open square) a decision into which sub-volume the key belongs is made at each level.
If a sub-volume is a leaf and already occupied (black dots), that volume is split and both
the new and the current key are moved to their own sub-volumes. This process is repeated
until an empty leaf is reached. The numbers in (a) indicate the steps taken by the algorithm.
Figures (b) and (c): structure of fixed-range trees for two and three dimensions, respectively.

the new key is placed in its corresponding sub-volume. This process is repeated if the
two keys are close together and end up in the same sub-volume, as shown in Figure 4.4a
at steps 3 and 4. An empty tree consists of just the empty top-node which controls the
total range spanned by the tree.

There are two disadvantages of trees with a fixed range. First, prior knowledge of
the range of keys to be inserted is required. In the type of application described in this
work, this is not a problem. The maximum range of hit coordinates is known a priori
and almost always limited by physical constraints, like the size of the detector. The
second disadvantage is that the amount of memory needed to store a tree can become
prohibitive. There are more internal nodes than keys when the tree is fully developed
down to its smallest spacing between keys. A fully developed k -dimensional tree with
height h (the root of the tree has h = 1), has (mh − 1)/(m− 1) nodes and ends in mh−1

leaves. However, only nodes actually used need to be created. The key-insert algorithm,
described above, only creates those nodes which have occupied sub-volumes.

The algorithm to find elements within a given range (section 4.2.1) requires a binary
search for the lower value of the search range. This search can now be replaced by a tree
search which runs in the same time. The next step is to take ordered elements which
in a 1-d tree can be done by a walk through the tree’s nodes. However, no such walk
exists for multi-dimensional trees and therefore the second part of the algorithm has to
be adapted as well. Finding all elements within a certain range is done by traversing the
tree structure down the branches. Any internal node whose range overlaps the requested
range is searched recursively. Any key in the nodes traversed or in the leaves of the
fixed-range tree lies in a range which overlaps with the search range. A final verification
is needed to check whether that key actually lies inside the search range and, in that
case, to add it to the list of found keys.
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4.2.3 Hash table

A competitor of binary-search trees is a hash table [237,244]. With proper tuning of the
hash function and the number of hash bins, hash tables have constant insert and key
look-up time. In k -d space the total volume can be divided in sub-volumes as a regular
k -d array of bins, each bin containing the points which lie inside it. This is equivalent to
a hashing algorithm with a simple linear hash function to convert key coordinates to bin
numbers. For a range look-up to work with a hash table, the choice of hash function is
in any case limited, because the hash-function has to preserve the order of the elements.
For the key-coordinates to bin mapping applied here, that requirement is fulfilled.

Normally in hash-tables the number of bins is larger then the expected number of
keys to be stored in the table, such that the average number of keys per bin is less than
one. In a standard approach, multiple keys in the same bin are often stored as a linked
list. In the type of application here, having more bins than points would slow down a
range-search as many empty bins inside the search volume would have to be examined as
well. The find-in-range algorithm for a hash container requires the selection of keys from
the bins that overlap the search range. For bins completely inside the range all keys can
be taken immediately. For bins overlapping the border of the range, selecting keys is a
linear search, but now for a much smaller number of entries nbin ≈ n/Nbins, with Nbins

the number of bins. A search using a hash table will therefore be faster than a k -d tree
search if clinear × nbin < ctree × logm n, where ctree and clinear are the time constants for
a tree search and a linear search respectively. The number of bins needed for hashing to
be faster than a tree is then given by

Nbins > n · clinear

ctree × logm n
. (4.3)

In this calculation the overhead caused by many empty bins is ignored and the inequality
of equation (4.3) is only an indication. Equation (4.3) grows almost linear with n. The
constant clinear is normally smallest when the keys to compare are stored sequentially
in memory, which is not the case for a linked list. The keys in a bin can be stored
sequentially in memory by ordering an array of keys by bin number. A hash-bin then
points to a sub-range of the ordered array. However, inserting elements is now no longer
a constant time operation, as for standard hash tables. The time taken for the sorting the
keys array by bin number, amortized over n look-ups, is limited to lg n. In the inequality
of equation (4.3), one should also take into account that the requested search-range can
span several bins due to overlap with the bin boundaries, even when the search-range is
smaller than a bin-volume. Therefore, clinear should be replaced by chash = clinear × fm.
The value of the multiplicity factor fm can be anywhere from close to one, if the search
volume is much smaller than the bin volume, to several times 3k, if the search volume is
much bigger.

In conclusion, if enough information about the input data and the search-ranges is
known and the condition of equation (4.3) is fulfilled, this kind of k -d hash table can
be faster than the k -d search tree. A comparison of the relative timing between the
fixed-range binary-tree implementation and a hash table implementation is given in sec-
tion 4.2.5. The k -d hash table is also known as a bucketting container and is used for
example in many of the fast k -d Voronoi-tesselation algorithms [245].



124 track finding in emulsion

4.2.4 Implementation

Both the normal and fixed-range tree have been implemented in C++. Because the types
to store vary, the trees are designed as template classes. The classes follow the C++
Standard Template Library (stl) conventions [246,247] and are implemented as container
adaptors on top of an stl vector class. Like the stl map class, the implementations
differentiate between the objects to store, called elements or values, and the key to sort
those objects with. Keys can have up to eight separate dimensions.3 The classes provide
two interfaces to the user to access the data. One is the standard stl-vector interface for
linear access using iterators and indexing. The other accesses the data as an ordered set
in k dimensions using the keys and are used to find a given key or to look up all elements
in a given k -d volume. Figure 4.5 gives a unified modelling language (uml) diagram of
the classes and methods.

Like the stl containers, the k -space container classes have different behaviour but
(almost) identical interfaces. Which type of container to use depends on the type of
application. The k -d tree class is called map as it behaves identical to the stl map class.
The times taken for both the insert and find operations on this class have an upper
limit of logm n. Different from the 1-d stl map, which is normally implemented using a
balanced red–black tree, the worst–case timing for these operations for the k -space map
is order n. The map fixed range class guarantees an insert and find time proportional
to logm n, but can only be used if the range of keys is known beforehand. Hash tables are
not implemented in the standard template library. A simple hash container in k -d space
has been implemented. If the range and the number of keys as well as the typical volume
of a search range is known beforehand, then the hash container class can be faster than
the map classes as explained in section 4.2.3.

In the stl ordered-container classes, the ordering operator is given as a template
parameter. For the multi-dimensional containers, this ordering operator is replaced by a
key-traits class. The methods of this class are used for all key operations. A default key-
traits implementation is provided that works for simple key classes (identical coordinate
types accessible via index operator). The k -space containers have been optimized for
speed. This optimization implies that there is no checking of the input parameters or
key values.

Map containers

The map classes have four template parameters: the type of the elements to store, repre-
sented by class value t; the type to sort on, represented by key t; the dimension of the
space (which gives the number of used coordinates in key t); and a key-traits class which
lets the map compare and modify key objects, represented by key traits t. All opera-
tions the map performs on key objects are handled by static methods in key traits t.
The map classes therefore require no knowledge of the coordinates of key t. The only
requirement on the key t class is that its objects can be constructed with the copy-
constructor (using C++ placement-new); no default constructor or assignment operator
for key t is required. The only requirement for the value t class is that it must be
storable in an stl vector.

3The maximum dimension of keys can easily be extended to more than 8.
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Figure 4.5: UML diagram of the k-space container classes and the node and helper classes.
The value t class represents the elements stored in the container, the key t class represents
the multi-dimensional points which are the keys on which the ordering is based.

The structured vector base class inherits all methods from the stl vector class
from which it derives. However, values can only be inserted from one of the derived
k -space container classes. Elements are inserted in the containers using the insert and
push back methods. They add a copy of the value to the underlying vector and update
the tree’s node structure for the associated key by calling the insert method on the
root node. In general all methods using the underlying tree structure forward the call to
the root node where the actual recursion over the tree’s nodes is done. Often, the key is
a sub-class (as indicated in Figure 4.5) or member of the value t class. In this case, a
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set of values can be inserted in the maps in one operation by extracting the key of each
value using the extract key method of key traits t. The push back method follows
the algorithm described in section 4.2.2 with one additional step. For the standard tree
structure, at every node where the comparison of the new key and the node’s key yields
zero (equivalent to the new key is not less-than), the two keys are checked for equality.
For the fixed-range tree, this equality check is done once and only if the key descends
to an occupied leaf. If the keys are equal, the new element is either discarded or an
exception is raised, depending on how the container object was configured.

The find method can be used to retrieve the value associated with the specified key.
The find range method retrieves all elements for which the keys lie within a volume
specified by the inclusive lower boundary and the exclusive upper boundary. It returns
an array with the indices of the elements within the search range. These indices can then
be used to retrieve the values through the vector interface of the map.

Map node and leaf class

The private classes volume and fixed volume represent both the nodes and leaves of
the tree. The maps allocate blocks of these objects, using the block allocator helper
object. In the standard map, volume contains the key, an index to the associated
value in the map’s underlying vector, and a set of 2k child-node pointers stored in the
subVolumes[] array. The subVolumes[] array is indexed using a bit-coded comparison
of key coordinates. For the map fixed range class, the node and leaf are objects of
class fixed volume. An internal node just holds a set of child-node pointers and the
data member center contains the key value for the center of the volume spanned by
the node. In a leaf node, indicated by the isLeaf data member, the center member is
the key associated with the value and the corresponding index is stored in place of the
child pointers. All methods in volume and fixed volume call themselves recursively
on all existing sub-volumes that contain part of the requested search key or range. For
efficiency reasons, the insert method is actually implemented as a loop.

Key traits

The key traits t template argument contains a set of static methods required for the
key operations of the map implementations. The map class uses only the key comparison
methods: compare keys, equal keys and in range. The compare keys method returns
an integer with the results of individual coordinate comparisons shifted into the corre-
sponding return bits. The methods equal keys and in range, on the other hand, return
a boolean which is the logical and of all coordinate compares.

For the map fixed range class, one needs to calculate ranges and centers of the keys.
The range given to a fixed-range map’s constructor is first passed through the key-traits
setup boundaries method. This makes it possible for a traits implementation to, for
example, adjust integer-type boundaries to be a power of two or to set string boundaries
to the first character of the strings. The map calculates centers of nodes by adding or
subtracting half the parent-node’s range from each coordinate. The half-ranges for each
level are calculated using the key-traits half key method and are cached by the map.
The center key for a sub-volume is obtained by adding the half-range of the current level
to the parent’s center correcting the sign for each coordinate. The signs are defined by
the corresponding bit in the value returned by the compare keys method.
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A default implementation for the key traits t template member is provided by the
map key traits default class. This class is also set as the default template argument.
The default implementation will work for key t classes with simple numerical coordi-
nates. It requires access to the key t coordinates using the index operator[]. Most of
its method are implemented as template-meta-programs that iterate the operation over
all used key coordinates [248–250]. The default implementation of extract key is just a
C++ static cast of value t to key t which works if value t is indeed derived from
key t. This method is only used when a key and its associated value are combined in a
single object as in the push back(value t) and insert methods of the maps.

If the coordinates in the key class are not accessible, are not numeric (e.g. strings), or
require more complicated operations for the calculations of the centers in a fixed-range
map, the user must provide a specific implementation for the key traits t class. One
can either derive from the default traits class and override the methods that need to be
changed or implement all methods in the specific traits class.

Hash container

The hash class has the same template parameters as the map classes, but its default
key-traits class is different. The key traits t class takes the role of the hash func-
tion in standard 1-d hash tables and is responsible for the mapping of keys to bin
numbers. The bin indices method in the key traits t class is the actual hash func-
tion that maps key t coordinates to a k -d array of bin numbers. In order to use the
find range method, the hash function should preserve the order of the keys which re-
quires an ordering of the key’s coordinates. If only the find method is used, no restric-
tions are imposed on the hash function.The default implementation of the hash key-traits
is hash key traits default. The bin indices method in this default divides the range
of each key’s coordinate in equal sized bins.

The hash class requires a slightly different setup before being used, because, in this
implementation, the hash structure can only be built once the number of bins to use
is specified. For this, the build hash methods are used. These methods assign a bin
number to all inserted keys using the bin indices method of the key traits t class.
The key and the bin number, associated with an element, are stored in an array of the
helper class key and bin. The k -d bin numbers are collapsed into a single value b = b ·d,
where b is the k -d vector with bin numbers given by the hash function to each coordinate
and dj = Πj

i=1ni−1 with ni the number of bins for each dimension and n0 = 1. The array
of key and bin objects can then be sorted according to the bin value, such that all keys
in the same hash bin are stored sequentially in memory. The find range method in
class hash uses a recursive template-meta program to loop over the k -d range of bins
that overlap the search volume and in each bin performs a linear search of the keys to
select the ones inside its search range.

4.2.5 Timing performance

Because the map fixed range class requires no tuning and has an guaranteed time be-
haviour, it is used as the default range look-up container for the tracking algorithm.
In this section, its range look-up time is compared to a very simplistic linear-search al-
gorithm. This simplistic algorithm is still useful, because the timing for an optimized
hash-table can be calculated from the linear search time.
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Figure 4.6: Time needed to find neighbours for all points versus the number of points: (a)
using a simple linear search; the dashed curve indicates the expected n2 time behaviour; (b)
using a 3-D fixed-range map. The vertical line indicates the point range spanned by figure (a).
Results in figure (c) are obtained from (b) after dividing the data by the expected n · log8 n
behaviour. The dependence on the search volume is indicated by the different symbols. The
length of the sides of the cubic search volume is: � = 1, ♦ = 24, � = 25, and � = 26.
corresponds to a cube with sides of 214. For (a), the result is independent of the search
volume.

The time it takes to traverse the fixed-range tree in a search of the map is proportional
to logm n. In the link-building step of the tracking algorithm (see section 4.3.1), all points
close to a given point need to be found. This operation is done for each point, which leads
to an additional factor n (the number of points) in the total time needed for the link-
building step. Figure 4.6b shows the timing results for a 3-d fixed range map containing
randomly distributed points on a 1.8 GHz cpu.4 In Figure 4.6a, the time needed when
using a straightforward linear search algorithm is given. A fit to the data (dashed line)
with t = clinear · n2 yields clinear = 13.5 ns. The search time for the map depends on
the size of the search volume, indicated by different symbols. This can also be seen in
Figure 4.6c which shows the same search time after dividing the data by the theoretical
n-dependence of n · log8 n. The tree’s search-time coefficient ctree depends slightly on
n because a larger search volume (or equivalently a higher point density) leads to more

4all values in this paper are for a 32 bits amd Athlon 2500+ cpu at 1.8 GHz.
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points inside the search volume. In that case, the probability increases that the search
volume spans multiple nodes in the tree, which all have to be searched. From Figure 4.6c
one can determine that a single search in the tree scales as t = ctree(v) · log8 n, where ctree

depends slightly on the size of the search volume v and is about 170 ns for the smallest
search volume.

The one-time overhead to build the underlying tree structure of the map should also
be considered. To create the tree, each point in the map has to be inserted in a tree
containing the already inserted points. For each insert, the tree has to be traversed to
find the place where to insert the new point. The total time needed for n points is thus
proportional to

∑n
i=1 logm i ∝ ln(n!). In Figure 4.7, the tree building time is shown as a

function of the number of points for a 3-d fixed-range map. A fit yields a building time
of tbuild = 46.5 ln(n!) ns. As ln(n!) is difficult to calculate for large n, an approximation
using an upper limit for ln(n!) is tbuild = −26.6 + 46.9 · 10−6 n ln(n) ms, valid for the
range of points in Figure 4.7.
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a fixed-range map as function
of the number of 3-D points
to insert. The dashed line
is a fit to the data yielding
tbuild = 46.5 ln(n!) ns.

From the results found above, one can calculate the required number of bins for a
hashing container using equation (4.3). For typical volumes and search-ranges involved
in the track finding for emulsion data of the chorus experiment, the search-range bin
multiplicity fm ≈ 33 × 0.6. Substituting the values found above for n = 75000 gives
nbin ≈ 4 and Nbins ≈ 17900. Using 215 hash bins, the k -space hash container is a factor
1.21 (for search box size = 1) to 1.55 (box size = 64) faster than the fixed-range map
used by default. The dependence on the size of the search range shows that tuning of
the number of bins is important.

4.3 Track-finding algorithm

As described in the introduction, the track-finding algorithm has been designed for an
environment with a large number of hits and for tracks which can only be considered as
straight lines on the scale of a few hits. The hits of a track show therefore only local
correlations. The large number of background hits rules out tracking algorithms that
do complex calculations or examine a large fraction of all possible combinations of hits.
In the following, a collection of hits that are part of a possible track is referred to as a
segment. A fully-grown segment is called a track candidate. In the implementation of
the algorithm, a custom-made class is required to make all decisions about accepting hits
in a segment. This class, containing all the hit and track acceptance criteria, is known
as the criterion.
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4.3.1 Concept

Linked hits network

The algorithm first builds up the network of links. A criterion defines a cuboid volume,
relative to the position of a hit, to be searched for other hits. The k -d map containing
all hits is used to find the neighbouring hits in this volume for every hit. The map’s
find range method dictates the use of a cuboid region. In an application, however, the
link acceptance region for track hits is not necessarily rectangular. For example, the hit
acceptance region based on the extension of a segment with constant uncertainties for
both position and direction has the shape of a topped-cone. The algorithm therefore
applies a criterion to select acceptable links from all the links formed by the base hit and
the hits found in the acceptance volume around it. The implementation of this criterion
allows the user to define any arbitrary acceptance volume. The track-finding algorithm is
in general isotropic, but can be restricted according to the experimental conditions. Any
restrictions that are applied when building the links network also limit the tracks that
can be found. For example, an angular restriction in the link-acceptance region limits
the solid angle of the tracks that can be found.

The hits and links correspond to the vertices and edges of a large graph. If only
forward links are accepted, this connection graph is a directed acyclic graph. The con-
nection graph links each hit to the other hits which may belong to the same track. As a
result, the look-up of all possible hits that might be added to a segment is very efficient.

Segment growing

The graph of linked hits, built in the previous step, is searched with a modified depth-
first algorithm [237] for paths compatible with tracks. All hits are taken as possible
starting points for segments. A criterion is applied to select the hits that should be used
as starting points. All links attached to a selected starting hit form the initial set of
segments containing just two hits. Each segment is then expanded recursively by adding
hits linked from the last hit in the segment. For this, a criterion decides which new
hits are accepted. In an application, this criterion should accept hits that correspond to
a topology consistent with its particular track model. The growing of a segment stops
when none of the links from the last hit are accepted. The segment then becomes a track
candidate. A segment splits into multiple new segments whenever there is more than one
accepted hit. Each new segment is also followed until it stops. To do this, the algorithm
backtracks to previous hits that have multiple accepted links and then follows these.
The algorithm behaves therefore as a depth-first graph search, except that stepping to
already visited vertices (hits) is not disabled.

Each track candidate, formed this way for a selected starting hit, traces a path through
the links network. All the track candidates share the same starting hit, indicated by S
in Figure 4.8. No hit is ever exclusive to a single segment or track candidate. In fact,
many track candidates are identical, apart from a single hit. In Figure 4.8, the grow-
ing procedure can be imagined as moving from left to right through the links network,
creating track candidates for every path that is compatible with a given track model.

The algorithm selects the best track candidate from all track candidates for each
starting point. The result of the comparison between track candidates is decided by
another criterion. Comparisons are only meaningful if similar entities are compared, like
track candidates or segments spanning the same range of hits. Because the algorithm
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Figure 4.8: Topological representation of the recursive segment growing tree. The black
dots represent the hits. The links between hits are indicated by the numbered lines. The
numbering restarts at each hit. The starting point of the track search is indicated by S. The
thick line is the final track candidate. Dashed links indicate links that are rejected by the
hit-acceptance criterion using the preceding segment. Decisions which branch to retain have
to be taken in points A, B, C, and S.

behaves as a depth-first search, comparisons are only made between track candidates
which are complete segments. In practice, selecting the best track candidate is done on
the fly whenever there are several accepted links for a segment. A first track candidate is
created by following either the first or the best accepted link at every step. Backtracking
along these hits, that track candidate can be compared with others following the other
branches. At each hit that has more than one accepted link, the other accepted links
are grown as well. The track candidate with the current best branch can be compared
with a track candidate taking a new branch. Only the best of the two is kept at every
step. Effectively, this amounts to a branch decision at each hit. In Figure 4.8, this
branch-pruning procedure can be imagined as keeping the track candidate with the best
right-hand side from the decision point and moving right-to-left back to the starting
point S. The example in Figure 4.8 corresponds to the case in which the track candidate
with the most hits is considered the best track. If two (or more) track candidates contain
the same number of hits, the one that corresponds best to a straight line is chosen.

For every starting point after segment growing, there is therefore one remaining track
candidate. A final criterion is used to pass a judgement about its validity as a possible
track. If accepted, the track candidate is stored in a list of found tracks. After processing
all starting points, one is left with a list of possibly overlapping tracks. The track
candidates from different starting points can share hits. A criterion is used to decide
which of the overlapping track candidates to keep.

Limiting combinatorics

The link-following algorithm, as described above, considers all possible combinations of
linked hits in the network and therefore always finds the best track candidate. A determi-
nation of the tracking time (section 4.3.3) shows that the algorithm scales approximately
as

∑kmax
k (cl n)k, where kmax is determined by the typical segment length and the volume

fraction cl = vl/V is the size of the link acceptance region vl divided by the total volume
V . The product cl n corresponds to the expectation value for the number of links per hit.
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As long as this value is reasonably low for track-unrelated hits, the tracking time remains
polynomial in the number of hits n. Unfortunately, the link-following algorithm can suf-
fer from an inverse combinatorics problem. On a track, the number of possible segments
could be very large, such that the tracking time becomes too long for all practical pur-
poses. The problem is that the acceptance criteria for links and hits have to accomodate
for hit-finding inefficiency. In the chorus experiment, the hit finding efficiency in each
emulsion image is about 86 %. The segment-growing algorithm must therefore be able
to cross one or more layers with no hit on a track. The link-acceptance region must thus
span several layers. In that case, hits belonging to the same track can have both direct
and indirect links pointing to them. A hit that can be reached following two or more
short links, can also be reached by a single link. Links numbered 1 and 2 which connect
hit C to A in Figure 4.8 are an example. Due to these longer links, the basic algorithm
follows the same set of links at the tail of a track very often. The segments created in
these steps are usually identical apart for one hit. In case a hit on a track can be reached
either directly or via one intermediate hit (the link acceptance region spans two layers)
and assuming that a track has hits on all layers, a hit i is visited from its predecessor
and from the hit before that. In this case, the number of visits HV (i) to hit i on a track
is given by:

HV2(i) = HV2(i− 1) + HV2(i− 2) . (4.4)

The subscript 2 indicates that the next two layers can be reached via links. The first two
hits are only visited once, independently of the number of layers links can span, so that

HV (1) = HV (2) = 1 . (4.5)

Equations (4.4) and (4.5) correspond to the definition of the Fibonacci series. The total
number of hits visited, THV (N), for a track with N hits is then given by:

THV2(N) =
N∑

i=1

HV2(i) = HV2(N + 2)− 1 . (4.6)

This sum can become quickly large. For a track with N = 25 hits, the total combinatorics
of the algorithm is THV2(25) = 196, 417. The result will be even higher when links
spanning two or more intermediate hits also exist. The sum in equation (4.4) then gets
extended with more previous terms (known as the tribonacci and tetranacci series [251]).
For links connecting the next four layers THV4(25) = 3, 919, 944.

In a standard depth-first search of a graph [237], the above problem of large com-
binatorics doesn’t occur because vertices (hits) are marked as visited. If a search path
reaches a visited vertex it stops. The same strategy cannot be applied in a segment-
growing procedure because the first visit to a hit does not necessary correspond to the
best path. A similar strategy can be used, however, if the correct path can be identified.
One can then mark the hits on that path and disable future visits. One case in which the
correct path is known is when a complete path is found and taken as a track candidate,
but then it is too late as all the combinations have already been tried. However, because
of the recursive nature of the segment-growing algorithm, this solution can be applied by
marking the hits at the tail of a segment when the number of hits in the tail exceeds a
given value t. The value t is chosen such that a tail containing more than t hits is proba-
bly the correct tail of the segment. The tail mark is only valid for a single starting point,
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so it does not affect segments grown from other starting points. With this tail marking,
the total number of hits visited is now limited to THV ′2(N, t) = N − t + THV2(t). In
the example above with N = 25 and using t = 7 one obtains THV ′2(25, 7) = 51. With a
link acceptance region spanning 4 layers one finds THV ′4(25, 7) = 78.

Unfortunately this marking strategy creates a dependence on the order in which the
links are followed. The set of hits which will be included in a track is now affected by
the link order. All possible paths at the tail of some segment are examined, but when
the algorithm backtracks to earlier hits, continuations of other paths are blocked by the
earlier segment that included sufficient hits. The optimization of the beginning of the
segments is thus effectively disabled. To control which hits are included from the start
of a segment, the links have to be followed in a certain order. There are two solutions
to this problem. The first solution is called initial link ordering. When building the
links network, the accepted links are sorted according to a value defined by a criterion.
This value determines the order in which links are followed during segment growing. For
example, it can favour short links such that the first segment built contains the largest
number of hits. The second solution is called followed link ordering. In this solution,
the segments are sorted each time a hit is added according to how good the new hit fits
in the segment. If there is more than one accepted link, the best new segment is grown
first. This solution yields better results as the most likely segment continuation is tried
first. However, the first solution sorts the links only once and should therefore be faster.
A simulation showed that the time gained in following the best link first compensates for
the time spent in sorting the accepted links (section 4.4).

The tail marking solves the combinatorial problem in the link-following algorithm. A
related problem exists with the starting points. Each hit is tried as starting point for a
segment and therefore the same track is found again for all hits on a track. To avoid this,
the hits in an already found and accepted track candidate can be marked. Hits marked
in this way can then be skipped. Again, the restriction creates an ordering dependence,
now on the order in which starting points are processed. Therefore, a criterion is used
to sort the hits a priori to determine the starting order.

4.3.2 Implementation

The implementation is organised as a source-code libary containing the tracking toolkit.
The user must provide the hit, track, and criterion classes for a specific application.
Specific optimizations for each environment are dealt with by the corresponding criterion
implementation. The user must also put code in its application program that feeds the
hits to the track-finding procedure and converts the found track candidates to tracks.
A simple Monte-Carlo simulation program, used to assess the efficiency of the tracking
algorithm, can act as a template for such a main program. This program is described in
section 4.4.

Two header files specify which input hit class, coordinate class, and criterion class to
use. The criterion type specification has as default the abstract base class VCriterion.
By replacing this default with a concrete class, the overhead of calling virtual functions
can be eliminated. Using he abstract VCriterion instead, a criterion can be selected at
run-time. A test showed that the time overhead for calling abstract methods is less than
one percent (see Figure 4.11b). Another header file defines a set of compile-time flags.
These flags specify which of the link ordering options, described before, to use. A class
diagram of the implementation is shown in Figure 4.9.
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+ HandleOverlappingSegment()
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1: all links: GrowSegment()
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all links:
  1: AcceptAndAdd()
  2: GrowSegment()
  3: Compare & keep best
return best
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hitTree

Figure 4.9: Class diagram (UML) of the classes involved in the tracking. All classes are in the
‘Tracking’ namespace. At compile time the user must provide the dimension of the hits, the
input hit class (CHit), the coordinates class (HitCoords), and the traits for working with
objects of this last class (CoordTraits). The last two classes correspond to the template
parameters key t and key traits t, respectively, of the k-D fixed-range map (section 4.2.4).
The HitCoords class corresponds to the position of a hit and it is a data member of the
internal hit class (Tracking::Chit). An array of these internal hits forms a segment and
is the type of object included in a criterion object to make acceptance decisions. The user
must supply concrete implementations of the criterion class, indicated by CriterionType1
and CriterionType2 and their corresponding track-walk implementations TrackWalkType1
and TrackWalkType2.

The tracking classes use an internal hit class which points to a user-defined hit object.
The user-defined hits are not directly used by the tracking code; the pointer can be used
in the main program to locate hits assigned to tracks. The input to the tracking code
consists only of the hit coordinates represented by class HitCoords. In the tracking code,
only the map’s key traits t operates on this type of objects which is represented by
the CoordsTraits class (see section 4.2.4). The coordinate class can be replaced, at
compile time, by any coordinate class chosen by the criterion implementer, as long as
a corresponding CoordsTraits and the dimension is defined as well. For most simple
coordinate classes, the map’s default traits class can probably be used.
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The class VCriterion encapsulates the segment class CSegment, which holds a fixed-
size array of pointers to hits to avoid time-consuming heap allocations. Removing an
automatic heap allocation in the inner segment-growing code in a previous version, re-
duced the tracking time by about a factor three. The assignment operator in CSegment is
optimized to only copy the used part of the array. All criteria, mentioned in section 4.3.1,
appear as abstract methods in VCriterion.

The actual segment building and bookkeeping of track candidates is performed by an
object of class CSegmentBuilder. The structure of its recursive GrowSegment method is
shown in pseudo-code in Figure 4.10. The actual code contains several optimizations to
avoid loop overhead, to undo tail marking and to reuse discarded segment objects. The
method starts with a pointer to the current segment. The procedure will replace this
pointer with the new segment it has built from the given one.

The lines 6-12 in Figure 4.10 iterate over all links of the last hit in the current segment.
The criterion is asked to add the destination hit of each link to a copy of the input segment
in line 10. If this hit is accepted, the extended segment is stored in a buffer in line 11.
The followed-link-ordering solution to the tail recursion problem (section 4.3.1) changes
the type of this buffer from a fifo to a priority queue. The priority queu is implemented
using a binary heap. If no hit was accepted, the segment has reached its end and the
method returns in line 14. If there are accepted links, the current segment is replaced
with the top of the buffer contained stored segments in lines 18 and 19. If there is
more than one accepted link, the first segment is recursively grown in line 22. If the
tail from the current hit to the end of this now complete segment contains more hits
than the tail-mark limit, the tail is marked. The iteration in lines 25-33 pops the other
stored segments one-by-one from the buffer and grows each one using a recursive call to
GrowSegment. If one of these fully-grown segments is better than the current one, they
are swapped in lines 29 to 32, which also update any tail marking. The worse segment is
immediately discarded at line 33. At the end of the iteration, any tail mark is removed
in line 35 before the method returns. The infinite loop in line 3 and the if-statement in
line 21 handle the case that only one link is accepted. In that case a recursive call can
be avoided and the current segment is simply replaced by the one accepted and the loop
repeats.

The GrowSegment method creates and discards many criterion objects. Using the
C++ new and delete calls for individually allocating these objects is not efficient. In-
stead, the template class TBufferManager is used which allocates a pool of objects.
Individual objects can quickly be taken from and returned to this pool. The pool works
as a lifo which has the additional advantage of improving data cache efficiency.

Found tracks are represented by criterion objects that pass the criterion’s method
FinalAccept. They are kept by the segment building class. In the end, the list of
criterion objects retained are the tracks found by the procedure. The main program,
which knows the exact type of the criterion object, can access this list and process the
tracks further. Standard operations would include fitting a track model through the hits
and adding possible missed hits close to the fitted track. For this, the map containing all
hits can be used and it is therefore accessible via CSegmentBuilder. An implementation
of such code is available as the Phase2Merge method in CSegmentBuilder. This method
uses the abstract interface class VTrackWalk to walk along the track contained in a
criterion object. The criterions instantiate the corresponding concrete implementation of
the track-walk interface. The Phase2Merge implementation looks for hits within a certain
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1 void GrowSegment(VCriterion*& pCurSegment)
2 VCriterion* pNewSegment = 0

3 loop: // Loop if only one link is accepted ⇒ no recursive call needed!

4 // — STORE NEW CRITIONS FOR ACCEPTED LINKS —

5 AcceptedLinkBuffer acceptedLinks // Type is link-ordering dependent

6 iterate: pCurSegment→lastHit→links ⇒
7 if: pNewSegment == 0 ⇒
8 pNewSegment = criterionPool.NewObject()
9 *pNewSegment = *pCurSegment
10 if: pNewSegment→AcceptAndAdd(link→toHit) ⇒
11 acceptedLinks.push(pNewSegment)
12 pNewSegment = 0
13 nrAccepted = acceptedLinks.size()
14 if: nrAccepted == 0 ⇒ done. // NO LINK ACCEPTED ⇒ DONE

15
16 // — START ITERATION ACCEPTED LINKS WITH FIRST ONE —

17 currentLength = pCurSegment→nrHits // to calculate tail length new segments

18 criterionPool.DeleteObject(pCurSegment)
19 pCurSegment = acceptedLinks.pop()
20 // — MORE ACCEPTED LINKS ⇒ LOOP AND KEEP ONLY BEST —
21 if: nrAccepted > 1 ⇒
22 GrowSegment(pCurSegment) // RECURSIVE CALL

23 if: pCurSegment→nrHits - curLength > tailMarkLength ⇒
24 MarkSegmentTail(pCurSegment)
25 while: acceptedLinks.not empty() ⇒
26 pNewSegment = acceptedLinks.pop()
27 GrowSegment(pNewSegment) // RECURSIVE CALL

28 if: *pNewSegment > *pCurSegment ⇒
29 UndoSegmentTailMark(pCurSegment)
30 swap(pNewSegment, pCurSegment)
31 if: pCurSegment→nrHits - curLength > tailMarkLength ⇒
32 MarkSegmentTail(pCurSegment)

33 criterionPool.DeleteObject(pNewSegment) // Delete discarded segment

34 // — UNDO TAIL MARK BEFORE RETURNING —
35 UndoSegmentTailMark(pCurSegment)
36 done.
37 else: ⇒
38 // continue grow segment infinite loop for 1 accepted link

Figure 4.10: Pseudo-code of the recursive segment growing code. The indentation marks
blocks of code to be executed in a loop or if-statement.
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distance of the (extension of) path of the track candidate. These hits are then added to
the track candidate. The Phase2Merge method also checks if several track candidates
share the same hits. The implementation of the criterion’s HandleOverlappingSegments
method decides if these track candidates should be merged. Running the merge step after
looking for hits in the extensions of track candidates reduces the number of split tracks.
Tracks can split into several found track candidates due to gaps of several missing hits
on a track path.

4.3.3 Tracking time

In this section a determination of the running time of the tracking algorithm is given.
The time needed to do track finding depends of course on the complexity of the crite-
rion implementation and on the tracking environment. In this section, the cylindrical
acceptance criterion implementation, described in section 4.4.2, is used. The results have
been obtained using the Monte-Carlo simulation program described in section 4.4. The
simulation includes noise and realistic track hit distributions. The setup generates 80
tracks in a volume of 512 μm × 512 μm × 100 μm with 25 evenly-spaced z-layers. The
default tracking and criterion parameters include a link-span maximum of three layers,
a tail-mark limit of t = 7, and both link-ordering options enabled (section 4.3.1). When
followed link ordering is enabled, the initial link ordering option is used to determine
the order in which seeds are created from each starting hit. The segment builder was
configured to call the cylindrical-acceptance criterion’s methods directly. Naturally, the
results are processor dependent.

Coordinate type

In Figure 4.11, the tracking time versus the number of hits is given as function of the
coordinate type. It can be seen from Figure 4.11a that building the fixed-range map and
the links network is slightly faster when using a 16 bits integer as the coordinate type.
This is mainly due to the four times larger size of a 64 bits floating-point number. The
segment growing time is shown in Figure 4.11b. The segment growing is fastest when
using floating point types for the coordinates. This is probably due to scheduling of
instructions in the floating-point unit, which leaves the processor free to execute other
instructions.
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Figure 4.11: Tracking time as a function of the number of hits for different types of hit
coordinates. Figure (a) gives the total time needed to sort the hits, build the fixed-range
map, and build the links network. Figure (b) shows the segment-search time. The basic
coordinate type for the different symbols is: • = double (64 bits); ◦= double and virtual
criterion methods; � = float (32 bits); and � = integer (16 bits).
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Link ordering and tail marking length

As described in section 4.3.1, ordering the links helps in finding the best segments and is
necessary when tail marking is enabled. Figure 4.12 shows how the tracking time depends
on the tail recursion limiting parameter and the link ordering options. These parameters
influence also the efficiency and one has therefore to optimize. The optimization depends
on the particular environment where the tracking is applied. A simple test showed that
using a priority queue to sort the accepted links takes on average about 160 ns instead
of 60 ns for a non-sorting ring buffer. This time is more than compensated for by finding
better segments first, as can been seen from Figure 4.12. The time dependence can be
fitted with a constant term and a function of the tail-marking length t. A good fit is
obtained with the function c0 + c1t + c2F (t), where F (t) is the tth Fibonacci number.
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(t) = 64.2 + 5.68 t + 1.54 F(t) ms
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Figure 4.12: Segment search time for 50,000 hits as function of the recursion-limiting tail–
marking parameter. Upper curve, ♦ symbol: links are ordered after being accepted for
segment extension. Middle curve, • symbol, links are sorted at build time. Lower curve, 

symbol: links are sorted at build time and after being accepted for segment extension. Note
that each point in this figure has a different tracking efficiency. The dashed lines and legend
in the figure are fits (see text) as function of the tail-marking parameter t.

Final segment length

In the following, a derivation of the running time of the segment-growing algorithm
is presented. Reasonable estimates can be made in the case of uniformly distributed
background hits and a criterion which uses fixed-size hit-acceptance volumes v�. In this
case the expected number of accepted links per hit can be derived. The probability that a
hit falls in the link acceptance volume v� is then given by v�/V , with V the total volume.
The probability P (k) that a volume v� contains k hits if n hits are distributed in V is
given by the binomial distribution:

P (k) =
(

n
k

) (v�

V

)k (
1− v�

V

)n−k

. (4.7)

The last factor in equation (4.7) can be written as en·ln(1−v�/V ). For v�/V � 1, the
logarithm can be approximated to first order as −v�/V . With the definition of the
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volume fraction c� = −v�/V , the last factor in equation (4.7) is approximately equal to
e−c� n. As n/V is just the density ρ, c� n is just the average number of hits in the volume
v�. Using some approximations valid for large n, equation (4.7) turns into the Poisson
distribution with mean c� n:

P (k; c� n) = (c� n)k
e−c� n/k!

⇒ P (0) = e−c� n

P (> 0) = 1− e−c� n

< k > = c� n .

(4.8)

The parameters c� and n in the definition of P are dropped in the following equations
unless they are different.

The track-finding algorithm uses all hits which have links as starting points for grow-
ing segments. If the criterion rejects a fixed fraction 1 − c0 as starting points then the
number of starting points n0 is given, according to equation (4.8), by

n0 = c0 n (1− e−c� n) . (4.9)

The procedure yields one track candidate for each starting point by keeping the best of
all segments grown from that starting point. The number of track candidates of a certain
length sk(n) as function of n is shown in Figure 4.13. The sum over all k for some fixed
n satisfies equation (4.9) with c0 = 0.72 which is the expected value for this setup where
7 out of 25 layers not used. For increasing k, the curve sk(n) peaks at higher n as the
probability to get k hits in a segment first increases with n before the probability to
include the (k + 1)th hit becomes dominant.
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Figure 4.13: Number of track candidates of a given size versus the number of background
hits. Each size peaks at a different number of hits as the probability to include k hits in a
segment grows with n until the probability to include a k + 1th hit becomes higher. The
curve for segments with more than 7 hits (tail-mark length) is scaled by a factor 1/4 (scale
on right-hand side).

The probability to get a segment with two hits is given by the probability to have
at least one link from the starting point and no links from any of the second hits. If
the volume fraction for accepting a third hit is c3 and there are k second hits, then the
probability that none of these k hits accepts a third hit is given by P (0; c3 n)k provided
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that volumes do not overlap. The number of segments which include exactly two hits is
then:

P (1 → 2) =
∑∞

k=1 P (k) k e−k c3 n

= c� n e−(c3+c�−c�e−c3 n)n .
(4.10)

The volumes are very likely to overlap and therefore not independent. In practice, the
formula sk(n) = c0 nk e−n(c1−c2 exp[−c3 n]), which has the same form as equation (4.10)
but groups coefficients, fits the curves of Figure 4.13 reasonably well.

Segment search timing

For a uniform background, the number of links per hit should simply be given by ρ v� =
c� n, which is consistent with the expectation value of the Poisson distribution. If the time
spent in the criterion’s acceptance calculation is dominant, then the time for tracking n
hits can be estimated as follows. For the n starting hits, the algorithm creates segment
seeds with a fraction a2 of the c� n linked hits. The fraction a2 is less than one if marked
hits (segment growing is actually a depth-first search) or hits already on other tracks are
excluded. For each of these seeds of size two, there are c� n new links to check of which
a fraction a3 yields segments of size three. In total there are then a2a3 × c2

�n
3 segments

of size three. For each of these segments there are again c� n linked hits, and so on. The
number of acceptance calculations is then given by:

Naccept =
∑kmax

k=2 c−1
�

(∏k
j=2 aj

)
(c� n)k

=
∑kmax

k=2 (ckn)k
.

(4.11)

In the second equation, all coefficients for the term with nk are absorbed in a single
constant ck. The upper limit kmax of the sum is determined by the point where the
number of accepted hits decreases rapidly. From equation (4.11) one can deduce that if
ckn > 1 for all k, the algorithm’s running time and the number of segments will diverge,
because for all segments there will always be more than one hit to extend it with. In
practice this boundary condition is higher due to the effect of tail marking.

Figure 4.14 shows the segment-search time for n background hits with no tracks. The
tracking time increases rapidly for n > 105, which is also the point where the number
of segments with more than 7 hits increases rapidly, as can be seen in Figure 4.13.
Equation (4.11) suggests that the tracking-time can be fitted by a polynomial of order
kmax. A 5th degree polynomial seems indeed to fit the tracking time reasonably well.
The residuals show that the fit is less good above 125,000 hits where the tail-marking
effect becomes important and where exclusion of already assigned track hits lowers the
number of starting points.

4.4 Tracking efficiency for simulated data

In order to estimate the performance of the tracking algorithm, a simple Monte-Carlo
simulation program has been used. In this, track and background hits are generated that
can be used by the tracking code. The simulation is a simple model of the real chorus
emulsion data and does not include any physical models of particle propagation and hit
formation in emulsion, emulsion distortion, or emulsion scanning. The track and noise
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Figure 4.14: Tracking time as function of number of background hits. The dashed line is
the result of a fit to the points with the function

∑k=5
k=1(ckn)k:

time(n) = (n/826)1 − (n/2581)2 + (n/5731)3 − (n/11511)4 + (n/20675)5.

hit-generators use parameters determined from measured tracks and scanned emulsion.
Without distortion, tracks are perfectly straight and easily found. A simple distortion
model was therefore introduced to test the tracking in real conditions.

The program uses the hit generators described in the next section. It uses an instance
of CSegmentBuilder and (one of) its associated criteria (see section 4.4.2) to do the
tracking. The actual analysis is done by one or more analysis classes that can be plugged
into the simulation program. The analysis classes use a general framework for creating,
filling and saving histograms or n-tuples to disk. The histograms or n-tuples can be
displayed or further analyzed using Mathematica [252]. The results of two analyses are
presented in section 4.4.4. The first analysis yields statistics of tracking time and the
number of fake and found tracks. In the second analysis, tracking and hit-assignment
efficiencies are quantified. Other analysis plug-ins were used to histogram the differences
between the track parameters of the Monte-Carlo and the reconstructed tracks or to
write all tracks to n-tuples for more detailed studies.

4.4.1 Hit generators

The generators use an occupation grid for generating hits. Each bit in the grid represents
a small volume in 3-d space. The grid is used to avoid generating multiple hits with
similar coordinates and takes into account that hits cannot overlap in the emulsion. The
hits, like in real data, can still be spaced arbitrarily close, because the position of a
hit inside a grid cell is random. The occupation-grid’s cell size reflects the scanning
microscope’s resolving power for neighbouring grains (xy). The spacing in depth (z) is
set either to a fixed layer spacing or to the microscope’s depth of field, depending on
whether the generators are setup for fixed layers or for real 3-d hit positions. When
hits are generated for fixed z-layers, the generated 3-d hit positions are projected onto
the layer. For hits on a track, the slope of the track is thus not taken into account, in
accordance with the grains seen by the microscope. Any grain detected in the depth of
field of the microscope is assigned a z-coordinate at the center of that layer.
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Background generator

The background generator is rather straightforward. It generates uniformly distributed
random positions for a requested number of hits. The hits are marked as background to
distinguish them from hits belonging to tracks. Track-correlated background hits (like
delta-rays) can be important in the real data. However, this is not simulated.

Track generators

The track generator is chosen at run-time. The simplest track generator creates straight
tracks. An extended version, used in the results presented in section 4.4.4, distorts the
tracks using a simple distortion model explained below. The basic track generator is set
up with the following parameters: fixed layers or free 3-d coordinates; a variable number
of tracks originating from a common vertex; the range in z where tracks can start and
end; a minimum track length in case a track leaves the volume; and a distribution for
the track slope (θ) with respect to the z-axis. Another set of parameters determines
the distribution of hits along a track: the hit residual, defined as the sigma of a normal
distribution modelling the perpendicular distance to the track; the probability of having
a hit on a layer in the case of discrete layers, or the parameters of a Poisson distribution
for free hit positions. In the chorus experiment, the number of hits per unit track
length for a fixed number of layers is accurately described by a binomial distribution.
This binomial distribution is the cumulative effect of, among others: intrinsic emulsion
sensitivity, blind spots in the emulsion, microscope depth of field, layer spacing, image
filtering, and grain detection. The use of a constant hit probability per layer is justified
because it also leads to a binomial distribution for a fixed number of layers. When using
free hit positions, the response of a uniform emulsion to a traversing particle is modelled.
The model uses a fixed probability per unit length of having a developed emulsion grain.
This also leads to a Poisson distribution for the number of grains on a fixed length of
track.

For the distorted-track generator, only the most common form of distortion is mod-
elled. One end of the tracks (at z = 0) is shifted by a random distance δ from its original
starting point. The shift δ(z) is a quadratic function of z, such that the original track’s
direction is preserved at z = 0, dδ(z)/dz = 0|z=0, and the track’s position at the other
end is fixed, δ(zmax) = 0.

In the results presented here, no vertices were generated. Hits close to the vertex
can usually be assigned to multiple tracks, an effect which requires a study by itself,
but is not relevant to the track-finding efficiency discussed here. The other settings were
chosen to reflect the typical chorus emulsion scanning values: 25 fixed layers of 4μm
thickness; tracks enter from the bottom at z = 0 and exit via the top or sides of the
volume; minimum track length for detection is 14 layers; and a ±300 mrad wide uniform
distribution of track slopes. The hit residual is set to 0.38 μm and the probability of
detecting a hit on a layer is set to 75 %, lower than that of the real data which has 86 %
hit efficieny per layer. The goal of this study is to estimate the track-finding efficiency
for recognizable tracks, therefore tracks which have not enough hits to pass the final
acceptance criteria of the criterion class (see section 4.4.2) are discarded. Distortion
parameters were set according to a normal distribition with a mean shift of 0μm and a
sigma of 5 μm for all tracks in a single set. Each track has an additional random shift
with a sigma of 0.63 μm, 1.7 times the assumed track residual.
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The track hits are merged with the generated background. In order to compare recon-
structed tracks on a hit-by-hit basis with the generated tracks, the track to which each
hit belongs is recorded. In the analysis of reconstructed tracks, the Monte-Carlo track
with the largest number of hits in a reconstructed track is considered to be the matching
Monte-Carlo track. A reconstructed track with only background hits is considered a fake
track.

4.4.2 Acceptance criteria

As discussed in section 4.3, the criterion implementation has to make all decisions whether
to accept hits in a segment or not. As it is called very often, its execution must be fast.
Using vectors for the track’s parameters, one can avoid time-consuming calculations
involving trigonometric functions. The points p on a straight line, parametrized by a
single parameter λ, can be represented by:

p(λ) = b + λr , (4.12)

with a base vector b and a direction vector r. In this model there are two free parameters,
b can be any point on the line and the length of r is not fixed. Using vector products
(dot and cross-products), all calculations for distances and angles consist of fast mul-
tiplications and additions as shown in Figure 4.15. The division is optimized out as a
multiplication with 1/r · r. This vector model has as advantage that it is applicable in
any dimension and that it is isotropic (no prefered direction).
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r '

t = q − b

d = t− t·r
r·r · r

Figure 4.15: Straight track representation using vec-
tors in 3-D, but applicable in any dimension. The
vector equation for calculating d from the straight–
line parameters, b and r, and the position of the hit,
q, are shown in the figure.

As discussed in section 4.1.3, tracks can be considered straight only for short sections
of their path. To get the local direction for the prediction, the criterion uses only the
last k of n hits in a segment. The criterion uses two running averages:

Slow =
∑n−k/2

i=n−k+1 pi , and
Sup =

∑n
i=n−k/2+1 pi ,

(4.13)

with pi the position of the ith hit. The direction is estimated using the difference of the
upper and lower half of the end of the segment: r = Sup−Slow. The base vector is calcu-
lated from the average position of the last k hits in the segment: b = k−1

(
Slow + Sup

)
.

The running averages can be updated quickly for each hit added to the segment by sim-
ply subtracting the hit that has been dropped and adding the new hit. If a segment has
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fewer than k hits the sums in equation (4.13) run over �n/2. If n is odd, the middle hit
is not used for the direction estimate but is added to determine the average position b.

In the design of a hit-acceptance criterion there are typically two quantities that
determine how well a hit matches a prediction obtained from previous hits, namely the
transverse distance to the prediction

(∣∣d∣∣) and the accuracy of the prediction. Two
criteria were implemented. The first uses a cylindrical acceptance region for new hits
using only the transverse distance. The second takes the uncertainty of the direction
into account by defining an acceptance region with the shape of a topped-cone. The cut
on

∣∣d∣∣ is then a linear function of the extrapolation length of the prediction λ = |r ′| / |r|
(see Figure 4.15).

If all hits have the same position uncertainty, a prediction obtained with fewer hits
has a larger uncertainty. Assuming the direction vector of the tracks runs mainly in the
positive z-direction, the track slope with respect to the z-axis is given by:

tan θz = Δxy/Δz

=
(∑

up xyi −
∑

low xyi

)
/

(∑
up zi −

∑
low zi

)
,

(4.14)

where the sums run over n/2 hits. If the uncertainty in the xy-coordinate σxy is indepen-
dent of the uncertainty for the z-coordinate σz, propagation of errors in equation (4.14)
yields:

σ(tan θz) =
2√
nΔz

√
σ2

xy + σ2
z tan2 θz . (4.15)

Assuming that the hits are evenly spaced by the fixed layers, zi = i · Δl with Δl the
layer spacing, the sums for Δz in equation (4.14) give Δz = n ·Δl/2. This leads to the
following dependence of σ(tan θz) on n:

σ(tan θz) =
4

n
√

n

σxy

Δl

√
1 +

tan2 θz

12

(
Δl

σxy

)2

, (4.16)

using σz = Δl/
√

12 as the uncertainty for hits distributed uniformly within the thickness
of a layer. The uncertainty for the prediction’s direction decreases therefore as n−3/2.
Both criteria take this effect into account by letting the cut applied to

∣∣d∣∣ vary with n
as long as n < k.

The criteria are tuned by histogramming
∣∣d∣∣ as function of λ and n for segments

created directly from the Monte-Carlo tracks. The cuts are determined by requiring a
certain fraction of these distributions to be contained. In the results given in section 4.4.4,
a containment of 95 % was used. The number of hits k used to generate the predictions
was set to 6. The value k must be chosen such that the direction of the last piece of the
segment is determined sufficiently accurate with respect to the position resolution of the
hits, provided that other effects (distortion, magnetic field) do not affect the resolution.
The cone-opening angles thus found are as expected from equation (4.16).

The track-walk algorithm used in both criteria first calculates track positions on all
internal layers between its first and last hit, before extrapolating. Any additional hits
compatible with the track are used to recalculate track parameters for the next step. The
implementation of the HandleOverlappingSegments method in the criterion is based on
a comparison of the track parameters. Only if two track candidates have similar position
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and direction are they compared on a hit by hit basis. If the two track candidates share
most of their hits, only the best of the two is kept. Two track candidates are merged if
they share a significant part of their hits.

4.4.3 Efficiency criteria

The main objective of the simulation is the determination of the tracking efficiency:
how many of the generated tracks are reconstructed. The efficiency depends on the
parameters of the track-finding algorithm. These parameters also influence the tracking
time. The simulation is used to choose the trade-off between efficiency and tracking time.
The reconstruction efficiency ε is given by the ratio of the number of found tracks and
generated tracks. The Gaussian approximation of the binomial distribution for large N
is used to determine the uncertainty on the calculated efficiency from σε =

√
ε(1− ε)/N ,

with N the number of generated tracks. For small N and when ε approaches its limits
0 and 1, the Gaussian approximation is no longer valid.

Other quantities can be studied in the simulation, for example: reconstructed versus
real track parameters, number of background hits assigned accidentally to real tracks,
hit residuals for reconstructed tracks, etc. The results presented here include the hit-
to-track assignment efficiency and the number of background hits accidentally included.
The hit-to-track assignment efficiency is given by the ratio of the generated track hits
assigned to a reconstructed track and the total number of hits in the simulated track.

4.4.4 Results and discussion

The tracking code has been applied to simulated track and background hits in 27 different
configurations for the two criteria implementations. Each configuration has been run 125
times with different sets of 80 tracks and a different background of 50,000 hits every five
runs. As already discussed in section 4.3.1, the combination of initial link ordering and
followed link ordering gives the best results and is also the fastest. The largest effects of
disabling one or both of the link-ordering options are to lower the hit-to-track assignment
efficiency and to increase tracking time.

Table 4.1 gives the results with both options enabled as function of the tail-marking
length and the number of layers that links can span. The ‘found tracks/run’ entries list
the average and rms of the number of found tracks that are genuine. It can be higher
than the number of generated tracks because a single track can be found several times, for
example when it gets split in several pieces. The average multiplicity for split tracks (so
excluding the ones found only once) is given in the row marked ‘multiplicity’. The third
part of the table lists the results as they are after running the tracking algorithm on the
input data. The phase-ii hit-look-up code (section 4.3.2), contains a simple algorithm to
merge overlapping or split tracks. The results after application of this step are reported
in the fourth part at the bottom of the table.

The reconstruction efficiency is derived from the total number of tracks not found from
the 10,000 generated tracks. From the table it can be seen that to increase the track-
reconstruction efficiency, one has to increase the number of layers that links can span.
For three layers, the reconstruction efficiency is already close to 100 %. The tracks that
are not found are mainly due to a combination of several gaps with missing hits and a
background hit in or near the gap that pulls the segment away from the actual track.
From the table it can be seen that the more layers that links can span, the higher the
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average multiplicity becomes. At first glance, the opposite is expected as the tracking
can bridge longer gaps with no hits. The reason for the higher multiplicity is that
overlapping tracks are allowed by the algorithm. If links span more layers, more small
segments are found that consist of background hits. Some of these background segments
are then connected to a real track and acquire enough hits for final acceptance as a track
candidate. With increasing size of the link-acceptance region, the total number of links
and therefore the tracking time increases. The number of track hits included in a track
candidate (‘hit-assignment efficiency’) also increases with a bigger acceptance region.
However, the amount of background hits within the link-acceptance region increases
proportional to the region’s size, which leads to more fake tracks. Both for three and
four acceptance layers, the tracking efficiency is about 99.5 %. Except for the tracking
time due to the number of links, there is only a small 2 % difference in hit-assignment
efficiency between three and four acceptance layers. The lower hit-assignment efficiency
is because track segments are shorter and therefore less well determined when a smaller
number of layers can be spanned by links.

The tail-marking length does not affect the reconstruction or hit-assignment efficiency
very much, but does have a large effect on the tracking time. A tail-marking length t = 7
is 25 % slower than t = 3 but yields slightly better determined track parameters (not
shown), while t = 11 increases tracking time by a factor of 2 with almost no gain. The
reason for the small effect of this parameter is the link-ordering applied during segment
growing. If followed link ordering is disabled, this parameter becomes more important.

The last part of the table shows the efficiencies after picking up additional hits close
to the reconstructed tracks and merging overlapping track candidates. Adding close
hits improves the hit-assignment efficiency to almost 100 %, at the cost of a bit more
included background. The description at the end of section 4.4.2 explaines how the
criterion decides to remove or merge overlapping track candidates. The merging of track
candidates leads, however, to a small (≈ 0.2 %) loss in the number of found tracks. A
closer investigation showed that the few real tracks that are lost actually get merged with
another close-by real track.

Another set of simulation runs showed that the reconstruction efficiency remains at
almost 100 % for all background levels between 50,000 and 250,000 hits (highest value
tried). The number of fake tracks, though, increases from about 13 per run at 50,000
background hits to 26,500 per run at 250,000 background hits. Therefore, one should
either restrict the hit acceptance criteria or remove the fake tracks by examining the χ2

of the hit residuals for higher background levels.

Table 4.2 reports the results for the cone-shaped acceptance criterion. Due to a square
root in its acceptance calculations it turns out to be a factor 1.6 slower for the largest
number of links (4 accepted layers). Because its hit-acceptance region is more restricted,
this criterion creates about a factor 3 fewer fake tracks and also includes slightly fewer
background hits in the tracks. The cone-shaped acceptance criterion rejects hits on the
tails of the hit-residual distribution (

∣∣d∣∣ > 3σhit), whereas the cylindrical acceptance
region is largely oversized (5.5σhit for short prediction extensions) and accepts these
outliers. As a result, the efficiency using the cone-shaped acceptance criterion is slightly
smaller (0.2 %). The hit-assignment efficiency is reduced by 2% in the results from the
segment-growing procedure, but 0.2 % higher after close hit look-up. This increase is due
to a better determination of the track parameters because there are fewer background
hits included.
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4.5 The track trigger

The tracking algorithm and its implementation is by design completely isotropic and
was developed to find all tracks in a set of emulsion images. As was discussed in the
introduction (section 4.1), during scan-back of the target sheets only a small volume
of about 50μm × 50 μm × 100 μm of emulsion on the upstream surface of a plate is
scanned. The only question concerning this volume is whether a track with the predicted
slope is present or not. The tracking algorithm, described in this chapter, does not use
this additional information. On the contrary, the track selector hardware, described in
section 2.9.4, is exquisitely tuned for this job. A similar approach as the track selector
applies in hardware can also be implemented in software. The slope information of the
predicted track is then used to speed up the track-finding algorithm. The basic idea
is that the direction of the track prediction defines positions for acceptable grains on
subsequent layers. A similar summing algorithm, as applied in hardware to the pixels of
the images by the track selector, is now applied to the grains. The sum serves as a track
trigger. The trigger defines a small region of interest in which the full tracking algorithm
is then applied. The tracking step verifies the existence of a track, assigns grains to it,
and calculates the track parameters.

4.5.1 Concept

The steps taken in the track-trigger algorithm are depicted in Figure 4.16. All grains are
given an initial sum value of one. Starting with the first layer, the algorithm iterates over
all grains in a layer. It looks up all grains in the next layer within a certain acceptance
region. The position of this region is given by the grain position in the previous layer
shifted by the direction of the track prediction. The angular acceptance determines the
dimensions of the acceptance region. The sum values of all found grains are set to the
sum value of the grain in the previous layer incremented by one. However, this is only
done if that value is higher than the current value of a found grain. Such a case happens
at area e in Figure 4.16. If there are no grains in the acceptance region, a virtual grain is
created at the predicted position without incrementing the sum value. This is necessary
because a track does not need to have a grain on each layer. To maintain the angular
acceptance, the acceptance area in the next layer for these virtual grains is enlarged
(see area d in Figure 4.16). The whole procedure is then repeated for the next layers.
Throughout this procedure, the information on the position of grains in preceding layers
is discarded. As a result, small curvatures due to distortion can be accommodated.

After summing all layers this way, the grains on the last layer with a sum value above
threshold indicate the position of a possible track candidate. The tracking algorithm is
then applied on the grains inside a rhombohedral volume. The position of the grain in
the last layer that triggered the volume is the center of the top rectangle. The lengths
of the sides are given by the angular acceptance. The slope of the volume is given by
the predicted-track slope. Because this volume contains only a small number of grains,
typically 30 to 100 of which about 20 belong to the track, the tracking procedure runs
very fast.

4.5.2 Implementation

The implementation of the track-trigger algorithm is straightforward. The grains for
each layer are stored in 2-d fixed-range maps. Iterating over all grains in a layer, the
look-up of grains in the acceptance region in the next layer is done using these maps.
Virtual grains are stored in a temporary linear array. The procedure is then repeated
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Figure 4.16: Illustration of the grain-summing procedure for the track trigger. For each
grain, the predicted-track slope and the angular acceptance define a region in the next layer.
The sum value (indicated next to the grains) for the one (A) or more (B) grains in that
region is incremented. If no grains are present in the predicted region (C), a virtual grain
(open circles) is created at the predicted position. To keep the same angular acceptance, the
acceptance region for virtual grains is increased (D). If a grain falls in multiple acceptance
regions, the highest value is used for the new sum value (E).

for the next layer. Processing of each layer starts with the virtual grains first. This way,
the same array can be reused for storing any new virtual grains, because each virtual
grain can create at maximum one new one. If a grain’s sum value is too low to pass the
trigger threshold taking into account the remaining number of layers, it is immediately
discarded.

After processing the one but last layer, the sum values of the virtual grains for the
last layer and of all grains on the last layer are compared against a threshold. If the sum
value is above threshold, an object is created to hold all the grains in the rhombohedral
acceptance volume and the parameters of a possible track. The maps for each layer are
used to find the grains inside this volume and insert them in object. Finally, the track-
finding algorithm is run over each object. If a track is found which matches the prediction,
the track parameters are included in the object, otherwise the object is deleted.

4.6 Application in CHORUS emulsion scanning

The tracking code described in this chapter has been applied to the emulsion data taken
by the chorus experiment at cern. The tracking code could have been applied directly
online, but in most cases it is not sufficiently fast on the microscope control systems.
Typically, a tomographic image set of 25 images of 300μm×300 μm is acquired every two
seconds. The tracking time for such an image set on the online computer5 is somewhere
between several seconds to half a minute, depending on the grain density. Applying
the track-finding algorithm online would therefore introduce considerable overhead and
would leave the microscope idle. Two solutions have been adopted to eliminate this
overhead.

First, for scanning areas that consists of one or more full microscope views, the
scanning system writes the grain data to an object-oriented database. In the emulsion

5Dual-processor 500 MHz Pentium-III.
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scanning at cern, the grain data is stored for all scan-back on the interface sheets, for
all net-scan, and for full vertex-reconstruction data. These grain data are then processed
offline, while the data taking of the emulsion continues online. For processing the grain
data offline, a main program was developed. This program reads the grain data from
the database, applies the tracking algorithm, and writes the found tracks to the same
database. The track data consist of the track parameters and the grains in the small
volume around it. The parameters used by the tracking algorithm are also stored in the
database. In normal operation, many instances of this program run on a computer farm,
consisting of standard PCs running the Linux operating system. Each instance processes
a different event and the distribution of the events is controlled by an external program.
This program communicates with the tracking programs via the network using a message
dispatching server [253].

The second solution is to increase the track-finding speed by using the angular in-
formation available in scan-back. The track trigger (section 4.5) is used for scan-back
in the target sheets, where an area of only 60μm× 60 μm is scanned. The track-finding
efficiency during scan-back of the target sheets is also less important, because two consec-
utive missed plates are required for scan-back to stop for a prediction (see section 2.10.2).
Therefore, in the tuning of the track-trigger procedure, efficiency can be traded in for
speed. Typical tracking time using the track trigger on target sheet data is about 0.5
seconds. The tracks found online during target-sheet scan-back are also written to the
database. The grain data around the track is stored as well.

The tracking results stored in the database are available for further analysis. Because
much of the grain data is stored in the database, many options are available for analysis.
One can, for example, refit tracks, rerun track finding, or look for hot pixels in the data
and eliminate fake tracks based on the grain positions. A typical analysis task needed
for chorus is the matching of predictions to found tracks and the generation of new
scanning predictions for the upstream emulsion plate. Because of the new approach to
the scanning of the interface sheets, a more efficient candidate matching procedure could
be applied which is described in section 4.6.2. The matching involves determination of
the precise alignment for which a new strategy has been developed. This local-alignment
strategy is discussed in section 4.6.3.

4.6.1 Tracking configuration

The main difficulty in applying the tracking code to real emulsion data lies in the large
variability of the actual data. Emulsion differs from plate to plate and even within one
plate. Effects like shrinkage and distortion, grain size, and fog density can change from
one microscope view to another (section 2.9.2). The physical grain size and the fog
density depend on the development process. Some of these variations arise from the
scanning conditions, like transparency of the emulsion layer or optics tuning. Shrinkage
and distortions are unavoidably different for each plate and depend also on the relative
water content of the plate when scanned. Part of this variability is already dealt with
while scanning, for example by changing the illumination or exposure time, and part, like
contrast and grain size, is dealt with by the grain recognition algorithm (section 4.1.1).
As the input to the tracking code has large variations in the number of grains per view,
it is difficult to predict the tracking time required, which excluded running the tracking
online. The variation in distortion and shrinkage implies that the hit-acceptance criteria
have to be insensitive to these parameters.
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To deal with these variations, the criterion class implemented for emulsion tracking
uses simple but fast acceptance calculations, relatively large acceptance criteria, and a
small number of consecutive hits for making the prediction. The acceptance criterion has
been designed based on real emulsion data. The criterion implementation is identical to
the cylindrical criterion described in section 4.4.2. To accomodate the distortions, only
the last six grains in a segment are used to define the track prediction. A track segment
of six consecutive grains has a typical length of about 20μm and is therefore unlikely
to be affected much by distortions. The acceptance radii for additional grains depend
on the number of grains already in the segment and are set as follows: 1.6 μm for a 2
grain segment, 1.4 μm for 3 grains and 1.2 μm for 4 or more grains. Although this last
value is large with respect to the track residual (5σ), the grain density in the emulsion
is sufficiently low that not too many background grains are picked up.

The other settings of the criterion and tracking code were determined by the char-
acteristics of the events in chorus. Event-related tracks lie in a forward cone (relative
to the direction of the incident beam) with 400 mrad half-opening angle. As the layer-
to-layer uncertainty of the grain positions corresponds to about 100 mrad, the link ac-
ceptance region is therefore limited to a forward cone with 500 mrad half-opening angle.
The grain-detection efficiency per layer has an average value of about 86 %. In order to
have high tracking efficiency, the link-acceptance region has been set to span four layers.
The tail-marking length parameter was set to 7 hits. The track-walk code used in the
close-hit look-up procedure, picks up all grains in a radius of 1.5 μm around the track
candidate, but only grains closer than 0.6 μm are used in a new track fit. Track candi-
dates which pass a final selection criterion based on the number of grains on the track
and the grain density are then handed of to the application using the tracking code.

4.6.2 Prediction matching on the interface sheets

During scan-back, the candidates for a prediction are selected using a χ2-probability cut,
P

(
χ2

)
> p, based on four quantites: Δx, Δy, ΔθX , ΔθY . The exact cut value p is

chosen depending on the amount of background present. A procedure that derives the
real efficiency from the number of multiple candidates shows a clear plateau below some
value for p. A value slightly below the onset of this plateau is then used for the cut
value p. The covariance matrix needed to calculate P

(
χ2

)
is derived from the data. In

a first approximation, the covariance matrix is taken to be diagonal and defined by the
sigmas extracted from Gaussian fits to the distributions of the residuals. In an iterated
procedure, the covariance matrix is used to select candidates and then recalculated from
the correlations between predictions and candidates.

Originally in scan-back on the changeable and special sheet, the matching required
four segments to be found that are matched with the base measurement of both emul-
sion sheets, indicated by the check marks in Figure 2.20. The base measurement is
required for an accurate slope measurement to reduce pick-up of accidental background
(section 2.4.2). With this selection, the efficiency for matching a track to the prediction
includes a factor

ε4
f ε

2
base , (4.17)

where εf is the probability of finding a track segment on one side of the emulsion and εbase

the efficiency of connecting two segments over the plastic base. Inefficiencies lowering
the value of ef are very costly due to the power of four of εf .
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In the scanning approach used at cern, the changeable sheet and special sheet are
scanned independently. As the tracking algorithm does not look for the scan-back pre-
diction in particular, many tracks are reconstructed on both sides of the plastic base.
These additional tracks make some extra options for matching the found tracks to the
prediction available. With sufficient tracks found on both emulsion layers and matched
over the base, the distortion and shrinkage of the emulsion layers can be corrected using
the base-slope measurements. This reduces the uncertainty in the measured direction of
track segments found in each emulsion layer to about 4mrad. These single-sided track
segments can then be matched independently to a prediction. At cern, this has been
used to match candidates requiring only three out of four segments. A prediction has
to match at least one track with a base measurement on either the changeable or special
sheet. In addition, that matching track, extended to the other plate, must have either
a matching base track or one matching segment on one emulsion side. The efficiency
for matching predictions to track segments in the changeable and special sheets then
contains the factor:

ε4
f ε

2
base + 4ε3

f (1− εf)εbase . (4.18)

Assuming εbase to be 1 and setting conservatively ε = 0.95 for the cern system, the
value of equation (4.18) is 98.6 %. This should be compared to equation (4.17) which
yields 92.2 % for the quoted track-selector efficiency of εf = 0.98.

There is however a complication in the distortion and shrinkage correction procedure.
The distortion varies from one small piece of emulsion to the next. The typical scale over
which the distortion changes is about a centimeter, but sometimes it can change rapidly
within less than 100μm. If such an abrupt change happens within the area scanned
for a prediction, a global distortion correction for the whole area cannot be applied.
To overcome this problem, a local distortion correction is applied instead. First the
shrinkage factor, which changes over much larger scales than distortion, is determined
from all tracks in the scanned area. The distortion for every segment is then determined
from about 20 nearby tracks with a base measurement. The base slope of these tracks is
used to estimate the local distortion at the position of the segment under consideration.
A 2-d map is used to look up the nearby tracks. This map contains the positions of all
tracks with a base measurement.

4.6.3 Local-alignment procedure

A similar problem with local variations was also found to exist in the alignment of the
interface sheets. Although the interface sheets are quite rigid, a global alignment, calcu-
lated from minimizing the distances between all found predictions and their candidates,
showed residuals which depend on the position and slope. Further investigation showed
that these variations were probably due to deformation of the interface sheets at bound-
aries of the honeycomb support structure on which they were mounted.

These kind of local deformations were corrected for by applying a local-alignment
correction. This is done efficiently using again a 2-d map. The map contains a set of
track prediction and candidate pairs, indexed by position. A local-alignment correction
can then be applied to any track prediction. This correction is calculated from a number
of prediction-candidate pairs (usually about 50, depending on the track density) in the
vicinity of the prediction being corrected. Because the alignment correction is local
(typically several square centimeters), it takes into account the remaining deformations
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of the sheets. This local-alignment procedure improves the overall resolution and reduces
the variation in the residuals. By reducing position and slope dependent residuals, it
also reduces the unknown bias in the candidate selection based on a χ2 probability cut
(section 4.6.2) from the position and slope depedence of the covariance matrix.

4.6.4 Tracking results

Some of the results obtained with the tracking code applied to emulsion data are shown in
the following. In Figure 4.17 the slope distributions of all tracks found on a special sheet
are shown. The peak from beam muons at θx = 42mrad is clearly visible. The typical
track density on the special sheet is more than a factor two lower than that for the target
sheets as they are exposed during only seven months before development. The target
sheets are exposed for two times this period. In addition, background is accumulated
during the five months that they are stored underground between two runs. From this
figure, the necessary accuracy for making predictions can be deduced (section 2.4.2).

The result of running the track reconstruction on a set of images containing a neutrino-
interaction vertex is shown in Figure 4.18. The emulsion slice containing the interaction
vertex is displayed in Figure 4.18a and shows the typical star of black tracks due to the
break-up of the nucleus. The tracks of interest are almost perpendicular to this picture
and are only visible as single dots. The tracks reconstructed in the full image set are
overlaid in the image. The interaction vertex can be distinguished from the four tracks
that point to the same location. Some unrelated tracks can been seen as well. Close
to the vertex, the four vertex tracks are not reconstructed, because they disappear in
the black region caused by the nuclear break-up. A 3-d representation of the tracks and
grains attributed to these tracks close to the vertex is given in Figure 4.18b. One track
is only reconstructed further away from the vertex and not visible in this close-up of the
vertex.

Figure 4.17: [top opposite page] Track density as function of track direction in a single
special sheet of one of the corner modules of the emulsion stack. Data is based on 1.42
million tracks in 6156 scanned events with a total scanned area of 130 cm2. Three peaks
of particle directions are clearly visible. The highest peak is from beam-related muons at
θx ≈ 40 mrad, θy ≈ 0 mrad. The two other peaks with θx ≈ −100 mrad are due to
background from beams in the adjacent experimental hall.

Figure 4.18: [bottom opposite page] A neutrino interaction vertex in the emulsion. (a) The
emulsion layer containing the vertex is shown inside the emulsion player program which allows
to view a movie of the tomographic image set. The black tracks are the result of the nuclear
breakup. Overlaid on the image are all reconstructed tracks. The four coloured tracks come
from the vertex, pink tracks are event unrelated tracks. (b) Shows a close-up of the vertex
in 3-D, where one track is not visible anymore as it is only reconstructed further away from
the vertex.
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4.7 Conclusion and discussion
The multi-dimensional container classes have proved useful in other applications. For
instance, to determine the initial alignment of target sheets, one has to connect tracks
from track maps on one plate to the other plate (see section 2.10.1). With several
thousand tracks per track map, the look-up of a possible match becomes time consuming,
because trying to match each track with all the other tracks has quadratic complexity.
Using a 4-d map, the look-up for matching tracks can be done fast. Furthermore, the
look-up automatically matches both position and slope of the track within a limited 4-d
volume, as the map is indexed by both the position and slope of the tracks. The slope
matching reduces the number of fake matches. The maximum number of matches as
function of the position offset determines the alignment. Trying out a grid of position
offsets yields an initial estimate for the alignment. The set of matched tracks with this
offset are then used to fit a refined alignment which also includes possible small rotations
and a longitudinal shift.

If one examines the track-finding algorithm, it is clear that the principles on which the
track finding is based require the following two conditions:

1. hits that belong together have close-range relationships,
2. a set of hits defines a volume that is defined by the close-range relationships of

condition 1.
If examined in a more abstract way, condition 1 is actually not a strict requirement of
the algorithm. The track-finding algorithm, described in section 4.3.1, can be used in
any situation where a volume can be defined in which other hits of a track can lie with
respect to some track hit. As long as that volume is small with respect to the total
volume and the volume is continuous in its coordinates, the k -space containers can be
used to build up a hit-connection graph. The notion of hits and tracks can also be
replaced by other abstractions. The algorithm and its implementation as a C++ toolkit
can be used in any environment where nodes in a graph need to be connected according
to some acceptance and rejection criteria. As long as the above conditions are fulfilled,
the tracking framework can be applied for such cases in any dimensional space.

Separating the acceptance criteria, which involve the actual hit and track model,
from the track-finding algorithm has allowed to create a flexible toolkit. As discussed in
section 4.3.2, all environment-specific characteristics — like geometry, track propagation,
and magnetic fields — are handled by the criterion class implementation which the user
has to provide. The toolkit can therefore easily be adapted to other applications. For
example, the code has been used to combine five-dimensional track segments (3-d position
and 2-d slope) from multiple emulsion sheets into single tracks.

For many track-finding applications, more specific algorithms, for example Kalman
filtering [254, 255]), could be more efficient and faster. In general, tracking algorithms
need to look up hits in regions of space and the k -space containers can be used to do
this efficiently. The track-finding algorithm, described in this chapter, performs very well
when applied to the chorus emulsion data. It has been shown that the tracking finds
almost all tracks despite the high background. Its application has enabled improvements
in the vertex-location efficiency in scan-back. If applied to data taken over the full
thickness of the emulsion, it can also reconstruct all tracks and vertices in an event.
This could be used to reduce the need for human confirmation of secondary vertices
after the net-scan procedure. The algorithm has also been applied successfully to the
reconstruction of tracks in the harp time-projection chamber.


