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A
Conventions and useful formulae for

Kähler manifolds

In this thesis we work in units of c = ~ = 1. Thus, the Plank mass mpl is simply
given by

m−2
pl ≡

G

~c
= G, (A.0.1)

where G is the Newtons’ constant. In general, we will also set the reduced Plank
mass Mp to one:

M−2
p = 8πG = 1, (A.0.2)

except in the cases where it is more convenient to keep it explicitly for the
sake of clarity. Unless specified, the following notation holds throughout the
manuscript: the dot ( ˙ ) denotes derivative with respect to cosmic time t. The
prime ( ′ ) denotes derivative with respect to the argument. Boldface denotes a
three-dimensional vector. The meaning of the main indices and symbols used
along this thesis is summarised in the table A.1.

Here we compute some useful formulae related to the geometry of Kähler
manifolds. First we give the expressions of the Christoffel symbols, Riemann
tensor, and other useful quantities in terms of the Kähler function G and its
derivatives. In A.1 we also give the explicit expressions in the case where there is
a supersymmetric sector and a supersymmetry breaking sector, so we differentiate
between the supersymmetric and the sGoldstino directions. In A.2 we focus on
the case where the Kähler manifold is a direct product of these two sectors, so that
Gtotal = GSUSY +G���SUSY. In A.3 we rewrite these formulas in terms of the Kähler
potential K and the superpotential W , which is especially useful in the case of a
vanishing superpotential, since in that case the Kähler function G is ill defined. In
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Conventions and useful formulae for Kähler manifolds

Symbol Meaning Chapters

µ = 0, 1, 2, 3 Space-time indices, x0 being the time coordinate All
i = 1, 2, 3 Spatial indices All
τ Conformal time 1-3
` Multipole, angular scale 1-3
cs Speed of sound of the adiabatic mode 1-3
s = ċs/csH Rate of change of the speed of sound 1-3
Xi Supersymmetry breaking fields, usually only X 4-5
zi Supersymmetry preserving fields 4
A = (X, i) Index running over all scalar fields 4
b = GAGA − 3 Amount of supersymmetry breaking 4
3γ = GAGA − 3 Amount of supersymmetry breaking 5
λ = 1, . . . ,n Supersymmetric directions 5
m Chiral fermion mass 5
µ Eigenvalue of the Hessian of the potential

(scalar mass)
5

mh Standard deviation of chiral fermion masses
(largest mass in the typical spectrum)

5

Table A.1 – Summary of indices and symbols.

A.4 we focus on relevant quantities for inflation such as the scalar potential and
its derivatives, and in A.5 we take the limit of vanishing superpotential, where
we will see that the physical quantities are well defined in the limit W → 0, as
it should be. The generic expressions for the Christoffel symbols, the Riemann
tensor, and other useful geometrical quantities derived from the Kähler function
G are the following:

Γabc = Gad̄(∂bGcd̄) , (A.0.3)

∂aG
bc̄ = −Gbd̄Gec̄(∂aGed̄) = −Gec̄Γbae , (A.0.4)

∂aΓdbc = Gdē(∂a∂bGcē)− ΓdaeΓ
e
bc , (A.0.5)

∇āΓdbc = ∂āΓdbc = Gdē(∂ā∂bGcē)− ΓebcG
df̄ (∂āGef̄ ) , (A.0.6)

Rab̄cd̄ = Rcb̄ad̄ = Rad̄cb̄ = Ged̄(∂b̄Γ
e
ac) = ∂a∂b̄Gcd̄ − Γeac(∂b̄Ged̄) , (A.0.7)

∇a∇bGc = ∂a∂bGc −Gd̄(∂a∂bGcd̄)− Γdab(∂cGd)− Γdbc(∂aGd)− Γdac(∂bGd)

+Gd(Γ
e
abΓ

d
ce + ΓebcΓ

d
ae + ΓeacΓ

d
be) . (A.0.8)
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A.1. Supersymmetric and sGoldstino directions

A.1 Supersymmetric and sGoldstino directions

Here we specialise to situations where there is a supersymmetric sector embedded
in a theory with supersymmetry breaking, which applies to chapters 4 and 5. Let
us assume that the supersymmetry breaking direction is aligned in the X-field
(sGoldstino) direction, as in sGoldstino inflation, while all the other fields (zi)
preserve supersymmetry. This translates into the conditions:

Gi(X, X̄, z
(0)
i , z̄

(0)

ī
) = 0 , GX(X, X̄, z

(0)
i , z̄

(0)

ī
) 6= 0 (A.1.1)

where (z
(0)
i , z̄

(0)

ī
) is the so-called supersymmetric critical point. This means that

any term containing one single derivative of G with respect to the zi fields will
vanish. We introduce the index notation (A, i), where A runs over all fields (X, zi)
and i runs only over the zi fields. As in chapters 4 and 5, we will consider the
case where supersymmetric sector is truncated. In this section we compute all
the possible elements of the second and third covariant derivatives, Christoffel
symbols and Riemann tensor for the particular case described above. The reader
should keep in mind that all expressions are evaluated in the supersymmetric
critical point.

• Second covariant derivatives:

∇XGX = ∂XGX − ΓXXXGX

∇XGi = ∇iGX = 0

∇iGj = ∂iGj − ΓXijGX

(A.1.2)

• Christoffel symbols:

ΓXXX = GXĀ(∂XGXĀ) = GXX̄(∂XGXX̄)

ΓiXX = GiĀ(∂XGXĀ) = 0

ΓXXi = GXĀ(∂XGiĀ) = 0

ΓiXj = GiĀ(∂XGjĀ) = Gik̄(∂XGjk̄)

ΓXij = GXĀ(∂iGjĀ) = GXX̄(∂iGjX̄)

Γkij = GkĀ(∂iGjĀ) = Gkl̄(∂iGjl̄)

(A.1.3)

Note that the Christoffel symbols with a single spectator index vanish.
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Conventions and useful formulae for Kähler manifolds

• Third covariant derivatives:

∇X∇XGX = ∂X∂XGX −GX̄(∂X∂XGXX̄)− 3ΓXXX(∂XGX) + 3GX(ΓXXX)2

∇X∇XGi = ∇X∇iGX = ∇i∇XGX = 0

∇X∇iGj = ∂X∂iGj −GX̄(∂X∂iGjX̄)− ΓkXi(∂jGk)− ΓXij (∂XGX)− ΓkXj(∂iGk)

+GX(ΓkXiΓ
X
jk + ΓXijΓ

X
XX + ΓkXjΓ

X
ik)

∇i∇jGk = ∂i∂jGk −GX̄(∂i∂jGkX̄)− Γlij(∂kGl)− Γljk(∂iGl)− Γlik(∂jGl)

+GX(ΓlijΓ
X
kl + ΓljkΓXil + ΓlikΓXjl )

(A.1.4)

• Riemann tensor:

RXX̄XX̄ = ∂X∂X̄GXX̄ − ΓXXX(∂X̄GXX̄)

RXX̄Xī = RXX̄iX̄ = RXīXX̄ = RiX̄XX̄ = 0

RXX̄ij̄ = RXj̄iX̄ = RiX̄Xj̄ = Rij̄XX̄ = ∂X∂X̄Gij̄ − ΓkXi(∂X̄Gkj̄)

RXījk̄ = RjīXk̄ = RXk̄jī = Rjk̄Xī = ∂X∂īGjk̄ − ΓlXj(∂īGlk̄)

RiX̄jk̄ = RjX̄ik̄ = Rik̄jX̄ = Rjk̄iX̄ = ∂i∂X̄Gjk̄ − Γlij(∂X̄Glk̄)

Rij̄kl̄ = Rkj̄il̄ = Ril̄kj̄ = Rkl̄ij̄ = ∂i∂j̄Gkl̄ − Γmik(∂j̄Gml̄)− ΓXik(∂j̄GXl̄)

(A.1.5)

A.2 Separable Kähler function Gtotal = GSUSY +
G����SUSY

When the Kähler function is of the separable form

G(X, X̄, zi, z̄ī) = g(X, X̄) + g̃(zi, z̄ī) , (A.2.1)

is clear that all mixed derivatives vanish in every point. Furthermore, we impose
the condition (A.1.1) at the supersymmetric critical point. This leads to a
enormous simplification of our equations. We rewrite (A.1.2)-(A.1.5) for this
simple case:

• Second covariant derivatives:

∇XGX = ∂XGX − ΓXXXGX

∇XGi = ∇iGX = 0

∇iGj = ∂iGj

(A.2.2)
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A.3. Geometric quantities in terms of K and W

• Christoffel symbols:

ΓXXX = GXX̄(∂XGXX̄)

ΓiXX = ΓXXi = ΓiXj = ΓXij = 0

Γkij = Gkl̄(∂iGjl̄)

(A.2.3)

• Third covariant derivatives:

∇X∇XGX = ∂X∂XGX −GX̄(∂X∂XGXX̄)− 3ΓXXX(∂XGX) + 3GX(ΓXXX)2

∇X∇XGi = ∇X∇iGj = 0

∇i∇jGk = ∂i∂jGk − Γlij(∂kGl)− Γljk(∂iGl)− Γlik(∂jGl)

(A.2.4)

• Riemann tensor:

RXX̄XX̄ = ∂X∂X̄GXX̄ − ΓXXX(∂X̄GXX̄)

RXX̄Xī = RXX̄iX̄ = RXīXX̄ = RiX̄XX̄ = 0

RXX̄ij̄ = RXj̄iX̄ = RiX̄Xj̄ = Rij̄XX̄ = 0

RXījk̄ = RjīXk̄ = RXk̄jī = Rjk̄Xī = 0

RiX̄jk̄ = RjX̄ik̄ = Rik̄jX̄ = Rjk̄iX̄ = 0

Rij̄kl̄ = Rkj̄il̄ = Ril̄kj̄ = Rkl̄ij̄ = ∂i∂j̄Gkl̄ − Γmik(∂j̄Gml̄)

(A.2.5)

A.3 Geometric quantities in terms of K and W

It can be useful to have the expressions obtained along this thesis in terms of the
Kähler potential K and the superpotential W , especially if we want to analyse
the case where W = 0. Is a critical case in the sense that many quantities diverge,
but not the physical ones, as we will see. Moreover, some models only work in
this case (see [86]), so it convenient to have the expressions displayed above in
terms of K and W , since the Kähler function G is not well defined in that case.

We introduce the Kähler covariant derivative DaW ≡ Wa + KaW . Notice
that we are not specifying any sectors, so lower case letters run over all possible
values. When we distinguish between supersymmetric and non-supersymmetric
sectors, as in section A.1, we will reintroduce the notation with capital letters
A = (X, i). The Kähler function, first derivatives, and metric are given by:
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Conventions and useful formulae for Kähler manifolds

G = K + ln |W |2 , eG = eK |W |2 (A.3.1)

Ga = Ka +
1

W
Wa =

1

W
DaW , Gb̄ = Kb̄ +

1

W̄
W̄b̄ =

1

W̄
Db̄W̄ (A.3.2)

Gab̄ = Kab̄ , G
ab̄ = Kab̄ (A.3.3)

Gb̄ = Gab̄Ga = Kab̄

(
Ka +

1

W
Wa

)
(A.3.4)

Using the previous equations, we can already rewrite the scalar potential:

V = eK
(
Kab̄DaWDb̄W̄ − 3|W |2

)
= eK

(
Kab̄ (Wa +KaW )

(
W̄b̄ +Kb̄W̄

)
− 3|W |2

)
(A.3.5)

The Christoffel symbols and higher derivatives of the Kähler function read:

Γabc = Kad̄Kbcd̄ (A.3.6)

∂aGb = Gab = Kab +
1

W
Wab −

1

W 2
WaWb (A.3.7)

Gabc = Kabc +
1

W
Wabc −

1

W 2
(WabWc +WacWb +WbcWa)

+
2

W 3
WaWbWc (A.3.8)

Using the above expressions we can compute the second and third covariant
derivatives, given by:

∇aGb = Kab +
1

W
Wab −

1

W 2
WaWb −Kcd̄Kabd̄

(
Kc +

1

W
Wc

)
(A.3.9)

∇a∇bGc = Kabc +
1

W
Wabc −

1

W 2
(WabWc +WacWb +WbcWa) +

2

W 3
WaWbWc

−Ked̄Kabcd̄

(
Ke +

1

W
We

)
−KdēKabē

(
Kcd +

1

W
Wcd −

1

W 2
WcWd

)
−KdēKbcē

(
Kad +

1

W
Wad −

1

W 2
WaWd

)
−KdēKcaē

(
Kbd +

1

W
Wbd −

1

W 2
WbWd

)
+

(
Kd +

1

W
Wd

)
Kef̄Kdḡ

(
Kabf̄Kceḡ +Kbcf̄Kaeḡ +Kcaf̄Kbeḡ

)
(A.3.10)

Last, the Riemann tensor is simply written as:

Rab̄cd̄ = Kab̄cd̄ −Kef̄Kacf̄Kb̄d̄e . (A.3.11)
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A.4. Physical quantities relevant for inflation

A.4 Physical quantities relevant for inflation

In this section we compute several quantities that are relevant for the inflationary
dynamics, such as the scalar potential and the elements of the mass matrix. In
this section we will use the index notation A = (X, i), where X represents the
sGoldstino and i runs over the spectator fields zi. First we will write explicitly
the scalar potential and its first and second derivatives, and then we evaluate
the scalar potential and its first derivative at the supersymmetric critical point,
where the spectator sector satisfies Gi(X, z

i
0) = 0. These expressions can be

used to calculate, for instance, the ‘potential’ slow-roll parameters, and get an
estimate of the viability and amount of inflation for a given model. One can also
study the stability of a given model as we did in chapters 4 and 5 by using the
elements of the mass matrix. In any case, it is convenient to have the explicit
expressions for cases where the superpotential vanishes at one or more points of
the inflationary trajectory. The generic lengthy expressions for the scalar potential
and its derivatives are the following:

V = eK
(
KAB̄ (WA +KAW )

(
W̄B̄ +KB̄W̄

)
− 3|W |2

)
, (A.4.1)

VA = eK
(
KA +

1

W
WA

)(
KBC̄ (WB +KBW )

(
W̄C̄ +KC̄W̄

)
− 2|W |2

)
+ eKKBC̄

(
KC̄W̄ + W̄C̄

) (
WKAB +WAB

− 1

W
WAWB −KDĒKABĒ (KDW +WD)

)
, (A.4.2)

∇A∇B̄V =

[
KAB̄ −

(
KA +

1

W
WA

)(
KB̄ +

1

W̄
W̄B̄

)]
V

+

(
KA +

1

W
WA

)
VB̄ +

(
KB̄ +

1

W̄
W̄B̄

)
VA + eK |W |2KCD̄

×
[
KAC +

1

W
WAC −

1

W 2
WAWC −KEF̄KACF̄

(
KE +

1

W
WE

)]
×
[
KB̄D̄ +

1

W̄
W̄B̄D̄ −

1

W̄ 2
W̄B̄W̄D̄ −KEF̄KB̄D̄E

(
KF̄ +

1

W̄
W̄F̄

)]
+ eK |W |2

[(
−KAB̄CD̄ +KEF̄KACF̄KB̄D̄E

)
KCH̄KID̄

×
(
KH̄ +

1

W̄
W̄H̄

)(
KI +

1

W
WI

)
+KAB̄

]
,
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Conventions and useful formulae for Kähler manifolds

∇A∇BV =

[
KAB +

1

W
WAB −

1

W 2
WAWB −KEF̄KABF̄

(
KE +

1

W
WE

)
−
(
KA +

1

W
WA

)(
KB +

1

W
WB

)]
V

+

(
KA +

1

W
WA

)
VB +

(
KB +

1

W
WB

)
VA + 2eK |W |2

×
[
KAB +

1

W
WAB −

1

W 2
WAWB −KEF̄KABF̄

(
KE +

1

W
WE

)]
+ eK |W |2KCD̄

(
KD̄ +

1

W̄
W̄D̄

)
×

[
KABC +

1

W
WABC −

1

W 2
(WABWC +WACWB +WBCWA)

+
2

W 3
WAWBWC −KED̄KABCD̄

(
KE +

1

W
WE

)
−KDĒKABĒ

(
KCD +

1

W
WCD −

1

W 2
WCWD

)
−KDĒKBCĒ

(
KAD +

1

W
WAD −

1

W 2
WAWD

)
−KDĒKCAĒ

(
KBD +

1

W
WBD −

1

W 2
WBWD

)
+

(
KD +

1

W
WD

)
×KEF̄KDḠ (KABF̄KCEḠ +KBCF̄KAEḠ +KCAF̄KBEḠ)

]

When there is a spectator sector sitting on a supersymmetric critical point

z
(0)
i , this configuration is also a critical point of the scalar potential, Vi

∣∣
0

= 0, as
it has been extensively reviewed along this thesis. However, this is not the case
for the supersymmetry breaking sector. As we have done previously, considering
the supersymmetry breaking aligned with the sGoldstino direction X, the scalar
potential and its first derivative in the sGoldstino direction will be:

V
∣∣
0

= eK
(
KXX̄ (WX +KXW )

(
W̄X̄ +KX̄W̄

)
− 3|W |2

)
(A.4.3)

VX
∣∣
0

= eK
(
KX +

1

W
WX

)(
KXX̄ (WX +KXW )

(
W̄X̄ +KX̄W̄

)
− 2|W |2

)
,

+ eKKXX̄
(
KX̄W̄ + W̄X̄

)(
WKXX +WXX −

1

W
WXWX

−KXX̄KXXX̄ (KXW +WX)

)
. (A.4.4)
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A.5. Vanishing superpotential

A.5 Vanishing superpotential

Now we will take the limit W → 0. This does not make sense in sGoldstino
inflation, since in that limit we would also have WX = 0, which implies that the
field X preserves supersymmetry. Hence, we cannot have sGoldstino inflation
when W = 0. But this limit might be very interesting to analyse models for
which the superpotential vanishes during inflation. Notice that once we fix
the superpotential, we are fixing (some of) the fields. If the superpotentials of
different sectors are combined by multiplication, the dynamical sector can be
used to stabilise the inflationary trajectory, and this is precisely the functional
freedom claimed in [86]. We assume that supersymmetry is broken in at least one
of the sectors, which is necessary in order to achieve inflation or stable dS vacua.

Then, in the special case of W → 0 the divergent terms of the expressions in
section A.4 cancel with each other. The expressions for the scalar potential and
its first derivative in this case read:

V
W→0−−−−→ eKKAB̄WAW̄B̄ , (A.5.1)

VA
W→0−−−−→ eKKBC̄W̄C̄

[
WAKB +KAWB +WAB −KDĒKABĒWD

]
. (A.5.2)
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B
Small spectral index for inflection

point inflation

In this appendix we derive the spectral index and power spectrum for inflection
point inflation, following the work of Refs. [197, 198]. To a very good approxima-
tion the inflationary observables only depend on the η-parameter at the extremum
and on the number of efolds.

Expanding the potential around the inflection point gives:

V = V0(1 + 1/2η0φ
2 + C3φ

3 + C4φ
4 + ...), (B.0.1)

with η, C3 < 0 so that the field rolls towards the minimum at positive φ values.
Inflation ends when the C3 term becomes important, and ε ≈ 1, which occurs for
field values φ2

f ∼
√

2/(3|C3|). We can calculate the number of efolds

N ≈
∫ φN

φf

V

V ′
=

1

η
log

[
φ

3C3φ+ η

]φN
φf

, (B.0.2)

where we used V ≈ V0 above. The above expression can be inverted to obtain
the value of the inflaton field N efolds before the end of inflation φN :

φN =
eNη0η0/C3

−3(eNη0 − 1)− η0/(φfC3)
≈ eNη0η0

−3C3(eNη0 − 1)
, (B.0.3)

where in the second step we used η0/(φf |C3|)� 1. This is a good approximation
as η0 � 1 is fine-tuned, whereas C3, and thus φf , is naturally of order one1. Note

1To be precise, C3 = O(1) for φ0 ∼ 1. For minima at smaller field values generically C3

increases, as a sharper turnover of the potential is needed. We do not find valid solutions for
minima for φ0 � 1 much larger, as then other local minima at smaller field values appear.
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Small spectral index for inflection point inflation

that in this limit, the number of efolds is independent of the end of inflation, as
φf has dropped out of the equation. As a result the inflationary observables are
insensitive to the precise coefficients of the higher order terms in (B.0.1). The
spectral index is

ns ≈ 1 + 2η ≈ 1 + 2η0 + 12C3φN ≈ 1− 2η0
(eη0N + 1)

(eη0N − 1)
, (B.0.4)

where we used that ε � η. For N < 50− 60 one finds ns < 0.92− 0.93 for the
whole range of |η0| . 10−2. The power spectrum is

Pζ =
V

150π2ε
=

3C2
3e−4Nη0(eNη0 − 1)4V0

25π2η4
0

(B.0.5)

with Pζ = 4× 10−10 measured by WMAP.
For the first example (4.3.12) in the text η0 = 0 and C3 = −2.39. For η0 = 0,

the expressions simplify to

ns − 1 = − 4

N
, Pζ =

3C2
3N

4V0

25π2
, (for η0 = 0). (B.0.6)

Choosing N = 50 this gives ns = 0.92 and V0 = 9× 10−16. The second example
(4.3.13) has C3 = −3.69, and gives the same spectral index and similar V0 =
4 × 10−16. The gravitino mass today is related to the inflationary scale via
m3/2 = eK/2W |min ∼ 102

√
V0 ∼ 10−7, far above the electroweak scale.
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C
Mass spectrum for quasi-separable

Kähler functions

In this appendix we derive in full detail the result in (5.3.8), which refers to the
eigenvalues of the mass matrix for Kähler functions with small coupling between
the heavy and light sectors. On our way, we will also derive the result (5.3.15)
for separable Kähler functions. We will briefly review eigenvalue perturbation
theory and afterwards we will use this to calculate the perturbed eigenvalues for
a Kähler function with a small mixing between sectors.

Perturbation theory

Consider a n × n square matrix H = H0 + δH, where the elements of δH are
much smaller than those of H0. Let us denote by λ0,i the eigenvalues of H0,
where i = 1, . . . , n. The eigenvectors corresponding to those eigenvalues form a
orthonormal basis with which one can build the matrix A that diagonalises H0,
that is, A†H0A = diag(λ0,1, . . . , λ0,n).

Then, to first order in perturbation theory, the eigenvalues of the full matrix
H will be given by

λi =
(
A†HA

)
ii

= λ0,i +
(
A†δHA

)
ii
, i = 1, . . . , n . (C.0.1)

In other words, the perturbation over the ‘bare’ eigenvalues is given by the
diagonal elements of the matrix perturbation in the basis that diagonalises the
‘bare’ matrix.

Perturbed eigenvalues

Let us consider a Kähler function with a small interaction term:

G(H, H̄, L, L̄) = A(H, H̄) +B(L, L̄) + εGint(H, H̄, L, L̄) , (C.0.2)
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Mass spectrum for quasi-separable Kähler functions

where the heavy fields Hα are consistently truncated at the supersymmetric
critical point such that1

Aα|H0 = Gint,α|H0 = 0 . (C.0.3)

We take the Hessian matrix in section 5.6.3, given by

H =

(
∇α∇β̄V ∇ᾱ∇β̄V
∇α∇βV ∇ᾱ∇βV

)
, (C.0.4)

where the elements are

∇α∇βV |H0,L0
= eG

[
(3γ + 2)∇αGβ +Gi∇i(∇αGβ)

]
, (C.0.5)

∇α∇β̄V |H0,L0 = eG
[
δαβ̄ (3γ + 1) + δγσ̄ (∇γGα)

(
∇σ̄Gβ̄

)
−Rij̄αβ̄ GiGj̄

]
.

We define the following quantities

Mαβ ≡ ∇αGβ = Mβα , (C.0.6)

Yαβ ≡ Gi∇i (∇αGβ) = Yβα , (C.0.7)

Ωαβ ≡ −Rij̄αβ̄ GiGj̄ = Ω∗βα . (C.0.8)

One can recast the mass matrix H in terms of the quantities above as follows:

H = H0 + δH (C.0.9)

=

(
eG[(3γ+1)I+MM∗] eG(3γ+2)M∗

eG(3γ+2)M eG[(3γ+1)I+M∗M ]

)
+

(
eGΩ eGY ∗

eGY eGΩT

)
,

where the terms in δH are at least O(ε). It is possible to perform a transformation
of the fields such that

M → M̃ = UMU t , (C.0.10)

where U is a unitary matrix. Thanks to the symmetry properties of M , we can
easily see that MM∗ is hermitian and hence it can be diagonalised by a unitary
transformation. In fact, given the transformation of M , it follows that

M̃M̃∗ = U(MM∗)U† = diag
(
|λ1|2 In1

, . . . , |λp|2 Inp
)

= M̃∗M̃ , (C.0.11)

where np is the degeneracy of the pth eigenvalue. A direct consequence of the above

is that [M̃, M̃M̃∗] = 0, which means that M̃ is block diagonal in the subspaces of
dimension np. We will denote each of those matrices by M̃p, satisfying

M̃pM̃
∗
p = |λp|2 Inp . (C.0.12)

1Since we want to impose this condition for any value of ε, both functions A and Gint must
satisfy this requirement.
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Now, since M̃p is complex and symmetric, we can always rewrite it using Takagi’s

factorisation, i.e. M̃p = VpDpV
t
p , where Vp is unitary and Dp is diagonal and

contains the non-negative square roots of the eigenvalues of M̃pM̃
†
p . Therefore,

we may write M̃p = VpV
t
p |λp|.

Given this, let us transform the fields once more, in such a way that the
resulting transformation of M̃p is the following:

M̃p →M ′p = V †p M̃pV
∗
p = |λp| Inp . (C.0.13)

After this, the unperturbed mass matrix H0 has been rewritten in a new basis as
H′0 and it has four blocks of size n1 + · · ·+ np each, which are diagonal:

H′0 = eG



[(3γ+1)+|λ1|2]In1
0 (3γ+2)|λ1|In1

0
. . .

. . .

0 [(3γ+1)+|λp|2]Inp 0 (3γ+2)|λp|Inp
(3γ+2)|λ1|In1

0 [(3γ+1)+|λ1|2]In1
0

. . .
. . .

0 (3γ+2)|λp|Inp 0 [(3γ+1)+|λp|2]Inp


.

(C.0.14)
We can always solve the eigenvalue problem by rearranging rows and columns
to make the mass matrix block diagonal, with blocks of dimension 2n1, . . . , 2np
given by the matrices

H′(p)0 = eG
(

(|λp|2+3γ+1)Inp (3γ+2)|λp| Inp
(3γ+2)|λp| Inp (|λp|2+3γ+1)Inp

)
; H′0 =


H′(1)

0 0
. . .

0 H′(p)0

 .

(C.0.15)
Although the previous step is not strictly necessary, it makes the eigenvalue
problem more visual to solve it for each subspace. We easily find the eigenvalues,
which have degeneracy np each, and are given by:

m2
p± = eG

[
|λp|2 + (3γ + 1)± |λp|(3γ + 2)

]
= eG

[(
|λp| ± 1

2 (3γ + 2)
)2 − 9

4γ
2
]
.

(C.0.16)
This is the result displayed in (5.3.15). The eigenvectors are easily found through
the equation:(

∓(3γ+2)|λp| Inp (3γ+2)|λp| Inp
(3γ+2)|λp| Inp ∓(3γ+2)|λp| Inp

)(
~a
~b

)
=

(
0
0

)
⇒ ~u± =

1√
2|~a|

(
~a
±~a

)
.

(C.0.17)
Since they are np times degenerate, we can choose np linearly independent vectors
with a 1 in the pth position and 0 in all the others. The matrix of change of basis
is then:

Ap =
1√
2

(
Inp Inp
Inp −Inp

)
⇒ A†pH′

(p)
0 Ap = diag

(
m2
p+Inp ,m2

p−Inp
)
. (C.0.18)
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We can repeat the process for every block, which leads to our final result for the
unperturbed mass matrix:

A =

A1 0
. . .

0 Ap

 ⇒ A†H′0A =


m2

1+In1
0

m2
1−In1

. . .

m2
p+Inp

0 m2
p−Inp

 .

(C.0.19)
We retrieve the results of [3, 83, 84]. Now we just have to express the perturbed
matrix δH′ in the basis that diagonalises H′0. In order to do that, we first have
to undo the rearranging of rows and columns we did to get to (C.0.15) (which
was only done to facilitate the discussion). Instead of rearranging, it is easy to
realise that the matrix that diagonalises H′0 (C.0.14) is

A =
1√
2

(
In1+···+np In1+···+np
In1+···+np −In1+···+np

)
⇒ (C.0.20)

⇒ A†H′0A = diag
(
m2

1+In1 , . . . ,m
2
p+Inp ,m2

1−In1 , . . . ,m
2
p−Inp

)
.(C.0.21)

Therefore, the leading order correction to the eigenvalues (C.0.16) due to δH in
(C.0.9) is given by the diagonal elements of the matrix

A†δHA =
1

2

(
eG
[(

Ω + ΩT
)

+ (Y + Y ∗)
]

eG
[(

Ω− ΩT
)

+ (Y − Y ∗)
]

eG
[(

Ω− ΩT
)
− (Y − Y ∗)

]
eG
[(

Ω + ΩT
)
− (Y + Y ∗)

] ) ,

(C.0.22)
where Ω and Y have been already transformed according to (C.0.10) and (C.0.13).
To first order in perturbation theory, the eigenvalues then read

m2
p± + δm2

p± = eG
{
|λp|2 + (3γ + 1) + ωp ± [|λp|(3γ + 2) + yp]

}
, (C.0.23)

where ωp ≡ Ωpp = −Rij̄pp̄GiGj̄ and yp ≡ Re(Ypp) = Re(Gi∇i (∇pGp)). This
result was derived in [3] for the simplest case of one light field and one heavy
field2. We emphasise that the quantities yp and ωp are O(ε) plus subleading
corrections.

The matrix Y is proportional to the derivative of the fermion mass matrix
along the sGoldstino direction. Thus, in the basis that diagonalises M , it is
possible to show that Ỹ ≡ V †Y V ∗ has the following form:

Ỹ = V (Gi∂iX)V t = Gi∂iD +Gi
(
V †∂iV D −DV t∂iV

∗) , (C.0.24)

where the unitary matrix V and the diagonal matrix D are the ones appearing
in the Takagi’s factorisation of M = V DV t. Due to the unitarity of V the

2The notation in [3] is slightly different, it corresponds to γ → b/3.
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matrix V †∂iV is anti-hermitian, and therefore its diagonal elements have to be
purely imaginary (V †∂iV )pp = iθp, with θp ∈ R. Then, in this basis, the diagonal
elements of Y read

Ỹpp = Gi (∂i|λp|+ i2|λp|θp) , =⇒ yp = Gi∂i|λp|, (C.0.25)

implying that the perturbation yp is just proportional to the derivative of the
eigenvalues of the matrix M along the sGoldstino direction. In order to reduce
the dependence on |λp| of the perturbation parameters appearing in the Hessian,
it is convenient to write it in terms of ỹp ≡ yp/|λp|, which gives

ỹp = Gi∂i log(|λp|). (C.0.26)
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D
Random matrix theory: atypical
minima and fluctuated spectra

In this appendix we review the expressions for the probability of occurrence of
atypical fluctuations of the fermionic mass spectra, and in particular we will
discuss the probability distribution of the lightest and largest fermion masses.
As we have discussed in the main text, the CI-ensemble describes the statistical
properties of the fermion mass matrix Mh for a generic supersymmetric sector.
The CI-ensemble is closely related to the set of Wishart ensemble [212] for which
there are many results in the literature regarding fluctuated spectra. For this
reason we will first discuss known results for the Wishart ensemble, and then
we will translate them into properties of the fermion mass spectrum in a generic
supersymmetric sector.

D.1 Typical spectral density in the Wishart and
CI-ensembles

The Wishart ensemble is composed of matrices of the form W = AA†, where A is
an n× m real or complex matrix, (with m ≥ n), whose entries are independent
and identically distributed (i.i.d.) random variables drawn from a statistical
distribution with zero mean and variance σ2: AIJ ∈ Ω(0, σ). When Ω = N(0, σ) is
a normal distribution, the joint probability distribution for the ordered eigenvalues
λ1 ≤ λ2, . . . ,≤ λn is [237]:

f(λ1, . . . , λn) = C exp

(
−β

2

(
1

σ2

n∑
a=1

λa − 2

n∑
a<b

ln|λb − λa| − ξ
n∑
a=1

lnλa

))
,

(D.1.1)
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where ξ = m−n+1−2/β, and β = 1, 2 for real and complex matrices, respectively.
The eigenvalue density function for the eigenvalues ofW is given by the Marčenko-
Pastur law [231],

ρMP(λ) dλ =
1

2πσ2λ

√
(λ+ − λ)(λ− λ−) dλ , (D.1.2)

with support λ ∈ [λ−, λ+], where

λ± = nσ2(1±√η)2 , and η = m/n ≥ 1. (D.1.3)

The joint probability distribution for the eigenvalues of a matrix from the
CI-ensemble was given in eq. (5.4.8). As was pointed out in [212], the p.d.f. of the
eigenvalues of a Wishart matrix (D.1.1) reduces to (5.4.8) for β = 1 and m = n+1
after doing the identification λa ↔ m2

λ. Moreover, as we are interested in results
to leading leading order in 1/n, it will be sufficient to discuss square Wishart
matrices n ≈ m. Thus, since the fermion mass matrix of a generic supergravity
theory can be identified with an element of the CI ensemble, the typical spectral
density of the fermion masses mλ is also given by the Marčenko-Pastur law (D.1.2)
with λ = m2. Defining mh ≡ 2

√
nσ, we have that to leading order in 1/n the

fermion mass density function reads:

ρMP(m2)dm2 =
2n

πm2
hm

√
m2
h −m2 dm2, (D.1.4)

which has support in m2 ∈
[
0,m2

h

]
. In the limit n→∞ the bounds of the support

coincide with the expectation value of the smallest and largest fermionic masses
squared, m2

1 and m2
n respectively [238]:

E[m2
1] = 0, E[m2

n] ≈ m2
h. (D.1.5)

D.2 Probability distributions of the limiting
eigenvalues

Let us first discuss the probability distribution of the largest eigenvalue λn of a
real, almost square Wishart matrix, β = 1, m ≈ n. The probability distribution
of large O(σ2n) fluctuations of λn far to the right and left of its mean value λ+

was calculated in [239] and [240], respectively, and are given by:

t > λ+ : lim
n→∞

P(λn ≤ t) ≈ 1−
(√
x+ 1 +

√
x
)2n

e−2n
√
x(x+1),

t < λ+ : lim
n→∞

P(λn ≤ t) ≈
(
x+ 1√

e

) n2

2

e−
n2

4 (1−x)2 , (D.2.1)

where x ≡ (t − λ+)/λ+. For large but finite values of n, the maximum value
of a Wishart matrix, λn, typically fluctuates over a region of size O(σ2 n−1/3),
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and the corresponding probability distribution for these small fluctuations can be
approximated by the Tracy-Widom distribution F1(x) [232, 238, 239]:

P(λn ≤ t) ≈ F1

(
η

1
12n

1
3 (t− λ+)

σ
2
3λ

2
3
+

)
≈ F1

(
2

2
3n

2
3

(t− λ+)

λ+

)
, (D.2.2)

where we have used the leading order approximation η = 1 and λ+ ≈ 4nσ2 for
large n in the last step. For the asymptotic values of the probability (D.2.2), see
[241] and references therein. In particular, to leading order in 1/n, the cumulative
probability distribution for the largest eigenvalue λn is:

t > λ+ : lim
n→∞

Pn(λn ≤ t) ≈ 1− e−
4
3n x

3
2

8
√
π nx

3
2

− e−
8
3n x

3
2

64πnx
3
2

,

t < λ+ : lim
n→∞

Pn(λn ≤ t) ≈ τ1
e−

1
6 |x|

3n2

2
1
24n

1
24 |x| 1

16

, (D.2.3)

where τ1 ≡ 2−11/48 e
1
2 ζ
′(−1), and ζ ′(−1) = −0.16542 . . . is the derivative of the

Riemann zeta function evaluated at −1. It is easy to check that, to leading order
in O(1/n), the probability distributions in (D.2.1) match the tail behaviour of the
Tracy-Widom distributions in the limit t→ λ+, which describes small fluctuations.

The probability distribution of the smallest eigenvalue λ1 of a real square
Wishart matrix was derived in [233]. To leading order in 1/n it is given by:

lim
n→∞

P(λ1 ≥ t) ≈
λ+

4n2
e
− 2n2

λ+
t
. (D.2.4)

D.3 Probability of atypical field configurations

In chapter 5, where we study the stability of a consistently truncated super-
symmetric sector in models with a separable Kähler function, we estimated the
probability of occurrence of critical points with light scalar fields, i.e. with a mass
µ2|min ≤ α2, in the regime mh < 1 − α. We argued that, due to the relation
between scalar and fermion masses, this would require the largest fermion mass
fermion to be above its expectation value mn ≥ 1 − α > mh. Using the first
equation in (D.2.1), and taking into account the relation between the Wishart
and CI-ensembles, we find

1− α > mh : lim
n→∞

P(mn ≥ 1− α) ≈
(√
x+ 1 +

√
x
)2n

e−2n
√
x(x+1), (D.3.1)

with x = (1 − α)2/m2
h − 1. The Tracy-Widom distribution gives an accurate

description in the limit mh → (1 − α)−, where the deviations of mn from its
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expectation value are small.

Now we turn to the stability of the truncated sector, when the sector surviving
the truncation is driving a period of inflation, and the Kähler function is also
separable in the two sectors. In general, in the regime where the mass scale
mh is larger than the gravitino mass (mh > 1), the typical spectrum contains
tachyons (see right plot in Fig. 5.5). However, as illustrated by (5.6.7), there is
an exponentially suppressed probability that the fermionic spectrum fluctuates in
such a way that the scalar spectrum is free of tachyons. There are two possible
types of configurations which are non-tachyonic: when the fermion masses are
confined to mλ < 1, or to mλ > 3γ + 1, for all λ. It is interesting to check, for
a configuration with a Hubble parameter given in terms of γ, in what regime of
parameters one of these types of critical points becomes more abundant than the
other. The probability that the fermion masses are bounded below as mλ ≥ 3γ+1,
can be calculated from (D.2.4):

lim
n→∞

P
(
m1 ≥ 3γ + 1

)
≈ m2

h

4n2
e
− 2n2

m2
h

(3γ+1)2

. (D.3.2)

On the other hand, the probability that the fermion masses are bounded above
by mn = 1, also to leading order in 1/n, can be derived from the second equation
in (D.2.1):

lim
n→∞

P
(
mn ≤ 1

)
≈ e−n

2/4

mn2

h

e
− n2

4

(
2− 1

m2
h

)2

. (D.3.3)

From the above expressions it can be seen that a fluctuation to a minimum of the
Kähler function, where all mλ < 1 (D.3.2), becomes more likely than a fluctuation
to large fermionic masses (D.3.3) when the following condition is satisfied:

(2 +n2) logmh− 2 log(2n)− 2n2

m2
h

(1 + 3γ)2 +
n2

4
+

n2

4

(
2− 1

m2
h

)2

< 0 . (D.3.4)

In the regime n� mh � 1 and with γ comparable to mh the expression above
simplifies to

γ2 ≥ m2
h

18
(logmh + 5

4 ) , (D.3.5)

which can be rewritten in terms of the Hubble parameter as follows:

H2 &
mhm3/2

3
√

2

√
logmh +

5

4
. (D.3.6)

We can see that regardless of the value of the mass scale of the supersymmetric
sector mh, there is always a value of the Hubble parameter (D.3.6) above which
the largest fraction of stable critical points corresponds to a minimum of the
Kähler function. This is particularly important for cosmological models which
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D.3. Probability of atypical field configurations

involve a large inflationary scale H and a low supersymmetry breaking scale. This
result depends strongly on the value of the mass scale of the supersymmetric
sector mh which, as we discussed in section 5.4.2, should also be regarded as
a random variable depending on the value of the gravitino mass m3/2, and its
statistical properties should be derived from a realistic characterisation of the
String Theory Landscape.
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