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5
Perturbative stability along the

supersymmetric directions of the
landscape

In this chapter we generalise the study of the perturbative stability of non-
supersymmetric configurations in N = 1 supergravity models with a spectator
sector not involved in supersymmetry breaking. Motivated by the supergravity
description of complex structure moduli in Large Volume Compactifications of type
IIB-superstrings, we concentrate on models where the interactions are consistent
with the supersymmetric truncation of the spectator fields, and we describe their
couplings by a random ensemble of generic supergravity theories. We characterise
the mass spectrum of the spectator fields in terms of the statistical parameters of
the ensemble and the geometry of the scalar manifold. Our results show that the
non-generic couplings between the spectator and the supersymmetry breaking
sectors can stabilise all the tachyons which typically appear in the spectator
sector before including the supersymmetry breaking effects, and we find large
regions of the parameter space where the supersymmetric sector remains stable
with probability close to one. We discuss these results about the stability of the
supersymmetric sector in two physically relevant situations: non-supersymmetric
Minkowski vacua, and slow-roll inflation driven by the supersymmetry breaking
sector. For the class of models we consider, we have reproduced the regimes
in which the KKLT and Large Volume Scenarios stabilise all supersymmetric
moduli. We have also identified a new regime in which the supersymmetric sector
is stabilised at a very robust type of dS minimum without invoking a large mass
hierarchy.
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Perturbative stability along the supersymmetric directions of the
landscape

5.1 Introduction

In the last decade, many promising cosmological models have been derived in
the framework of string theory and supergravity in order to understand the
mechanisms responsible for the present acceleration of the universe, and for
inflation. The construction of those models is far from trivial, in particular due
to the fact that the supergravity description typically involves hundreds of scalar
fields, the moduli. Any cosmological model requires a good understanding of the
effective scalar potential along all directions in field space, since any tachyonic
instability can easily spoil their predictions. Instead of performing an exhaustive
analysis involving all the fields, one can characterise the properties of the effective
potential following a statistical treatment [207–216].

One particular method to characterise the properties of the landscape is to
study random ensembles of generic four dimensional N = 1 supergravity theories
with a large number of fields, n� 1, where the couplings are treated as random
variables [210–212, 217, 218]. This framework is known as random supergravity.
Although a generic supergravity theory cannot capture the specific properties of
the supergravity Lagrangians, these ensembles are expected to describe correctly
the generic features of the landscape. In this framework it has been shown that
the construction of viable cosmological models is very constrained. In particular,
this method has been used to determine the probability of occurrence of dS
minima of the scalar potential which could describe the present day accelerated
expansion. It was proven in [211, 212] that, in the case of generic supergravity
theories, only an exponentially small fraction of the total number of critical
points are non-tachyonic, Pmin ∼ e−n

p

, with p being a number of order one, and
n the number of scalar fields of the supergravity theory. Similarly, the possibility
of constructing viable models of inflation in the string landscape has also been
considered in several works [217, 218], where it was argued that prolonged periods
of inflation are very rare due to the large probability of encountering instabilities
along the inflationary trajectory, and this favours small field inflationary models.
The random supergravity approach is a powerful tool in those situations where
there is very little information available about the effective low energy Lagrangian
under study.

Interestingly enough, in the so-called Large Volume Scenario (LVS), numerical
analyses of specific compactifications show that the probability that a de Sitter
critical point of the potential is tachyon-free is rather close to unity [213–216].
This is already true when the number of fields is small, n ∼ 5, and the probability
increases as the number of fields becomes larger [215]. This is in contrast with
the results of the random supergravity approach.

The underlying reason for this apparent contradiction between the random
supergravity approach and the analysis of the effective potential in LVS, is
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5.1. Introduction

the fact that the random supergravity approach does not take into account
the structure of the effective supergravity Lagrangian, or in other words, the
non-generic structure of the Kähler potential for this case. The main objective
of the present work is to study a random supergravity theory which captures
the essential features of the couplings in these theories. We will prove that
taking into account very general properties of this type of Lagrangians, it is
possible to reconcile the results of these two approaches regarding the existence
of stable dS vacua, and indeed we find that for non-generic couplings that
resemble LVS the probability of finding stable dS vacua is exponentially close
to one. In addition, we will explore the predictions of this random super-
gravity theory regarding the stability of the supersymmetric sector during inflation.

The intuition that the different sectors of the theory — namely complex
structure moduli/dilaton (supersymmetric) sector and the Kähler moduli
(non-supersymmetric) sector — are decoupled from each other is a misconception
of the standard two-step approach to moduli stabilisation and the construction of
stable dS vacua [219–221]. The consistency of using a low energy effective action
for the Kähler moduli obtained by the approximate supersymmetric truncation
of the complex structure and dilaton fields has been extensively checked in the
literature [184–187, 189, 222, 223]. However this does not imply that the two
sectors are decoupled. As we have seen in the previous chapter, the masses of the
truncated sector depend on the dynamical sector.

This point becomes very important when considering the stability of the
supersymmetric sector. It is often assumed that, in order for these fields to
remain non-tachyonic in the full model, it is necessary to stabilise them at
a supersymmetric AdS minimum of the scalar potential before including the
couplings to the non-supersymmetric sector and the supersymmetry breaking
effects. In the present work we will prove that this is not necessarily the case. In
particular, we will study the stability of non-supersymmetric configurations on
generic supergravity theories including only chiral multiplets. For the proof it
will be sufficient to consider the stability along the supersymmetry-preserving
directions of field space. We will show that the condition that the supersymmetric
sector must be stabilised at a minimum of the scalar potential before including
supersymmetry breaking, is not sufficient in general to ensure the stability in
of the full non-supersymmetric configuration, and moreover, we will argue that
there are physically relevant situations, as in LVS, where this condition is not
even necessary. As a consequence, stable non-supersymmetric configurations
will correspond in general to saddle points, or even AdS maxima of the scalar
potential in the supersymmetric limit, that is, before the spontaneous breaking of
supersymmetry is included. This claim has been already confirmed by numerical
analyses elsewhere [216].

Here we will analyse the stability of supersymmetric sectors in N = 1
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supergravity theories using the random supergravity techniques developed in
[210–212]. Since it is not consistent to study a supersymmetric sector in isolation,
that is, neglecting the remaining fields and the effects of supersymmetry breaking,
we need to choose an appropriate framework to be able to implement the
random supergravity approach. In particular, we will concentrate on supergravity
models with couplings compatible with freezing one sector of the theory at
a supersymmetric critical point of the potential, and in particular we will
study models where the couplings are consistent with the exact supersymmetric
truncation of a sector of the fields [177], as we did in the previous chapter. In a
consistent supersymmetric truncation, the solutions to the equations of motion
obtained after truncating the supersymmetric sector are also exact solutions
to the equations of the full model, and moreover, supersymmetry is exactly
preserved in the reduced theory.

We perform the stability analysis of the supersymmetric sector and derive a
set of necessary conditions for the stability of non-supersymmetric configurations
in N = 1 supergravity models with no gauge interactions. This set of constraints
is complementary to the ones studied in [194, 195, 224–227], which ensure the
stability of the scalar potential along the sGoldstino direction, that is, along the
direction of supersymmetry breaking. In these works the necessary condition
was translated into a constraint on the geometry of the Kähler manifold, which
was expressed in terms of the holomorphic sectional curvature at the extremum,
S[X] ≡ −RXX̄XX̄ , and of the square of the Hubble parameter measured in units
of the gravitino mass1, γ = V/3m2

3/2 ' H
2/m2

3/2:

S[X] ≥ −2

3

1

1 + γ
.

Here we will derive an analogous set of conditions which ensure the stability along
the remaining directions orthogonal to the sGoldstino, or in other words, the
supersymmetry-preserving directions. This set of constraints depends not only on
the parameter γ and on the geometry of the Kähler manifold, but also on the
spectrum of masses of the chiral fermions mλ and on their derivatives along the
sGoldstino direction ∂mλ/∂X. These constraints can be expressed as a bound
on the curvature of the Kähler manifold at the extremum through the quantity
B[X,λ] = −RXX̄λλ̄, known as the holomorphic bisectional curvature, along the
directions defined by the sGoldstino ξX and the supersymmetric directions ξλ:

3(γ + 1)B[X,λ] ≥ −(mλ ± 1)
(
mλ ± (3γ + 1)

)
∓
√

3(γ + 1)
∂mλ

∂X
.

In addition, we shall discuss examples where this set of constraints is not only
necessary, but also sufficient to ensure the stability along the supersymmetric di-
rections at the critical point, and prove that the type of couplings which allow this

1The correspondence between γ and b in the previous chapter is given by b = 3γ.
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5.2. Aspects of N = 1 supergravity

situation arise naturally when the model is consistent with the supersymmetric
truncation of one sector of the moduli space. Moreover, we will show that field con-
figurations minimising the gravitino mass along the supersymmetric directions are
the best candidates to remain stabilised for arbitrary values of the uplifting γ. This
could already be seen from the stability diagram presented in the previous chapter.

However, without some knowledge about the spectrum of fermion masses
of the supersymmetric sector, these conditions are still not very informative.
Following [209–212], we will adopt a statistical approach under the assumption
that the supersymmetric sector contains a large number of fields. In particular, we
will consider models where the couplings are consistent with the supersymmetric
truncation of one sector of the theory, and we will describe the supersymmetric
sector by a random ensemble of supergravity theories. Proceeding in this way, we
find the mass spectrum of the fermions using random matrix theory techniques,
and we shall derive constraints on the geometry of the Kähler manifold, expressed
as bounds on the bisectional curvature B[X,λ]. These bounds will depend in
general on the statistical parameters defining the random ensemble of supergravity
theories, such as the standard deviation of the fermion masses, which sets the
typical ratio of the mass of the heaviest fermion to the gravitino mass.

In the following, for the sake of simplicity and given the limitations of space, I
present the main ingredients and key arguments that we used in order to get our
results, and further details can be found in the original work [4].

5.2 Aspects of N = 1 supergravity

Already in section 1.4.1 and in chapter 4 we reviewed the basic properties of the
scalar potential and its critical points. The class of supergravity actions we study
in the present work only involve complex scalar fields ξI and their superpartners,
the Weyl fermions χI (chiral multiplets with no gauge interactions). The fields
are labeled with the index I running in I = 1, . . . ,n for n chiral multiplets.

At critical points ξ0 where supersymmetry is spontaneously broken, the gra-
dient of the Kähler function GI |ξ0 defines a direction in field space known as the
sGoldstino direction. The sGoldstino corresponds to the supersymmetric partner
of the would-be Goldstone fermion associated to broken supersymmetry. We will
also describe this direction in terms of the unit vector zX with coordinates

zX,I =
GI√
GKGK

. (5.2.1)

From the supersymmetry transformations (1.4.6) it follows that a homogeneous
bosonic field configuration ξ0 where supersymmetry is unbroken must necessarily
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satisfy the set of necessary conditions

GI |ξ0 = 0, for all I = 1, . . . ,n. (5.2.2)

Actually, it is easy to check that supersymmetric configurations are also critical
points of the scalar potential, see Eqs. (1.4.12) and (1.4.13) in section 1.4.2, and
thus they are called supersymmetric critical points. Due to the form of the scalar
potential (1.4.5), supersymmetric critical points are always AdS:

V |ξ0 = −3eG < 0, (5.2.3)

except in those cases where the superpotential vanishes, for which they are
Minkowski vacua, V |ξ0 = 0.

5.2.1 The structure of the Hessian

For completeness and in order to establish our notation, let us review some aspects
of the mass matrix already explained in section 4.2.1. In order to determine the
stability properties of an extremum of the scalar potential, we need to study the
eigenvalue spectrum of the corresponding Hessian,

H =

(
∇IVJ̄ ∇IVJ
∇ĪVJ̄ ∇ĪVJ

)
, (5.2.4)

which determines the squared-masses of the scalar fields at Minkowski and de
Sitter critical points. In this subsection we will describe the different contributions
of the Hessian and will relate them to the masses of the fermions and to the
geometry of the Kähler manifold.

After using the stationarity conditions (1.4.12), the second covariant derivatives
of the scalar potential at the extremum ξ0 of V read2

∇IVJ̄ = (GIJ̄ −GIGJ̄)V + eG
[
GKL̄(∇KGI)(∇L̄GJ̄) +GIJ̄ −RIJ̄KL̄GKGL̄

]
,

∇IVJ = (∇IGJ −GIGJ)V + eG
[
2∇IGJ +GK∇K∇IGJ

]
. (5.2.5)

In these expressions it is straightforward to identify the mass of the gravitino
m3/2 and the mass matrix of the chiral fermions MIJ :

m3/2 ≡ eG/2, MIJ ≡ eG/2∇IGJ . (5.2.6)

To simplify the notation, in what follows we will measure all the masses and
energies in units of the gravitino mass, thus we perform the rescaling

H → m2
3/2H, and MIJ → m3/2MIJ . (5.2.7)

2To make contact to the notation of [83, 84], note that at any supersymmetric critical point
ξ0 the covariant derivatives and the regular derivatives of G(ξ, ξ̄) coincide.
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Similarly, we will parameterise the expectation value of the scalar potential at an
extremum ξ0 by the quantity:3

γ ≡ V

3m2
3/2

' H2

m2
3/2

, (5.2.8)

which is essentially the square of the Hubble parameter H in units of the gravitino
mass. The structure of the Hessian becomes particularly clear when we choose
the fields ξI so that they have canonical kinetic terms at the critical point, i.e.
GIJ̄ |ξ0 = δIJ̄ . Moreover, we will require that one of the axis of the local frame
points along the sGoldstino direction, i.e. GI ≡ GX δIX , this is the so-called
sGoldstino basis. In these coordinates it is straightforward to show that the
Hessian reads4

H = (M+ )
(
M+ (3γ + 1)

)
+
√

3(γ + 1)∇XM− 3(γ + 1)R− 9γ(γ + 1)PX .
(5.2.9)

Here M and ∇XM are the (rescaled) fermion mass matrix and its derivative
along the sGoldstino direction written in the 2n−vector notation, R is a matrix
built from the components of the Riemann tensor, and PX is the projector along
the sGoldstino direction:

M =

(
0 ∇IGJ

∇ĪGJ̄ 0

)
, R =

(
RXX̄IJ̄ 0

0 RX̄XĪJ

)
, PX =

(
δIXδJ̄X̄ δIXδJX
δĪX̄δJ̄X̄ δĪX̄δJX

)
.

(5.2.10)
For convenience, we will define the following shorthand to refer to the first term
of the Hessian in (5.2.9):

Hγ ≡ (M+ )
(
M+ (3γ + 1)

)
. (5.2.11)

5.3 Necessary conditions for metastability

In this section we will present our approach to characterise the perturbative
stability of a consistently decoupled supersymmetric sector. We will derive a
set of necessary conditions that should be satisfied by any homogeneous field
configuration free of tachyons, and we will discuss some of their implications. As
we shall show, our results can be applied both to the study of the perturbative
stability of critical points of the scalar potential, or to analyse the viability of
inflationary models which include a set of spectator fields not directly involved in
the inflationary dynamics or supersymmetry breaking.

3Recall that b in chapter 4 equals 3γ.
4We also have the freedom to choose the sGoldstino vector to be real, which results into

GX =
√

3(γ + 1).
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For a Minkowski or de Sitter field configuration to be metastable, all the
eigenvalues of the Hessian matrix (5.2.9) have to be positive. Since a generic
expression of the eigenvalues in terms of G and its derivatives is too involved, we
follow a different strategy. In the series of papers [194, 195, 224–227] they made
use of the following observation: if the Hessian is positive definite, so it is its
projection along any vector Z = (z, z̄)T :

〈Z,HZ〉 ≥ 0. (5.3.1)

In particular, the authors of [194, 195, 224–227] studied the condition obtained
from imposing this requirement along the (complex) sGoldstino directions

Z+X =
1√
2

(
zX
zX̄

)
and Z−X =

i√
2

(
zX
−z̄X

)
. (5.3.2)

As was discussed in detail in [194, 195], the corresponding constraint (5.3.1) is
particularly restrictive due to the stationarity conditions, which imply that the
vectors Z±X are eigenvectors of the fermion mass matrix M:

MZ±X = ∓(3γ + 1)Z±X . (5.3.3)

Combining the necessary conditions associated to the vectors Z±X , it is possible
to find a restriction on the geometry of the Kähler manifold which, when expressed
in terms of the sectional curvature S[X] ≡ −RXX̄XX̄ , reads:

S[X] ≥ −2

3

1

1 + γ
. (5.3.4)

In the present section we will derive a set of complementary conditions obtained
when considering the other 2n− 2 real directions orthogonal to the sGoldstino,
that is, those preserving supersymmetry. Thus, in the rest of our analysis the
term PX in (5.2.9) will always be absent.

5.3.1 Metastability conditions

To characterise the eigenvalue spectrum of the Hessian it is convenient to work in
a local frame where the fermion mass matrix M is diagonal, since in this basis
the term Hγ of the Hessian (5.2.9) is also diagonal. Due to the special structure
of M, it is possible to show that it has 2n real eigenvalues arranged in pairs of
the form5,6

MZ±λ = ±mλ Z±λ, with λ = 1, . . . ,n. (5.3.5)

5The details of the diagonalisation can be found in Appendix C.
6Note the change of notation with respect to [3, 83, 84], where the masses of the fermions

were denoted by |xλ| ≡ mλ.
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5.3. Necessary conditions for metastability

The corresponding normalised eigenvectors are given by Z+λ = 1√
2
(zλ, z̄λ)T and

Z−λ = 1√
2
(izλ,−iz̄λ)T , where zλ solves

M z̄λ = mλzλ, (5.3.6)

and we choose mλ ≥ 0. Since M is symmetric, we can always find a set of
orthonormal vectors zλ which satisfy the previous equation. Indeed, after
requiring the fields to have canonical kinetic terms, it is still possible to redefine
them using a unitary transformation of the form ξ̃ = ξ U . Performing these
transformations we can bring the matrix M to a diagonal form M = UDUT ,
where U is unitary and D = diag(mλ), with mλ ∈ R+. This result, known
as Takagi’s factorisation, applies to any complex symmetric matrix, and the
eigenvectors zλ can be read from the columns of the unitary matrix UIλ = zλ,I .
Note that this diagonalisation is also consistent with the choice of the sGoldstino
basis since the vectors Z±X associated to the sGoldstino direction are also
eigenvectors of the matrixM, (5.3.3). The particular eigenvalue mX is related to
the unphysical Goldstone fermion of broken supersymmetry, and thus it does
not have the interpretation of a mass. The rest of the parameters mλ, with
λ = 1, . . . ,n− 1, determine the mass spectrum of the chiral fermions χI .

In general, the contributions to the Hessian proportional to ∇XM and R will
not be diagonal in the basis formed by Z±λ, but their diagonal elements in this
frame

〈Z±λ,∇XMZ±λ〉 = ±∂mλ

∂X
, 〈Z±λRZ±λ〉 = −B[X,λ], (5.3.7)

have a simple physical interpretation. First, it can be shown that the parameters
∂mλ/∂X are the derivatives of the fermion masses along the sGoldstino direction
(see appendix C). Second, the set of n − 1 quantities B[X,λ] ≡ −RXX̄λλ̄ are
the so-called bisectional curvatures along the planes formed by the sGoldstino
direction zX and each of the eigenvectors zλ, which has also been used to
characterise the stability of the inflationary trajectory [86]. The viability of the
studied models translates into constraints on the geometry of the Kähler manifold
through the bisectional curvature.

In order to derive a set of simple necessary constraints, we will use the
projection of the Hessian along all the 2n − 2 supersymmetric Z±λ directions,
µ2
±λ ≡ 〈Z±λ,HZ±λ〉. Collecting the results above we find the following conditions

for Minkowski and dS vacua:

µ2
±λ = (mλ±1)

(
mλ±(3γ+1)

)
±
√

3(γ + 1)
∂mλ

∂X
+3(γ+1)B[X,λ] ≥ 0, (5.3.8)

for all λ = 1, . . . ,n− 1. Similarly to [194, 195, 224–227], one can find a necessary
condition which does not depend on the derivatives of the fermion masses by
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adding together the quantities µ2
+λ and µ2

−λ, which for γ ≥ 0 reads

µ2
+λ + µ2

−λ ≥ 0 =⇒ B[X,λ] ≥ −m
2
λ + 3γ + 1

3(γ + 1)
. (5.3.9)

In the case of AdS critical points, the requirement of stability implies that
all the squared-masses of the scalar fields have to satisfy the Breitenlohner-
Freedman bound [228], and therefore all the previous conditions have to be
modified accordingly. For instance, taking into account that we work in units of
the gravitino mass, the set of conditions (5.3.8) become

µ2
±λ ≥

3

4

V (ξ0)

m2
3/2

=
9

4
γ. (5.3.10)

To understand the implications of the set of constraints (5.3.8) and their depen-
dence on the different parameters of the theory, (the spectrum of fermion masses
and their derivatives, the geometry of the Kähler manifold, and the supersymmetry
breaking scale), we will now discuss them in two different contexts:

• First, we will analyse the metastability of supersymmetric critical points,
where we recover known results. In that situation the parameters µ2

±λ
are the exact eigenvalues of the Hessian, and therefore the corresponding
constraints (5.3.10) are both necessary and sufficient to guarantee the
perturbative stability of the configuration.

• Second, we will discuss non-supersymmetric configurations, focusing on the
perturbative stability of the fields preserving supersymmetry. This analysis
is both applicable to the case when the field configuration represents a non-
supersymmetric vacuum or when it is responsible for driving an inflationary
phase. In the latter case, the perturbative stability of all the fields not
related to the inflaton or the sGoldstino is a requirement for the viability
of the model, since the presence of any large tachyonic instability would
spoil the slow-roll conditions. Additionally, the masses of the non-inflating
fields must remain larger than the Hubble parameter in order to avoid large
isocurvature fluctuations, which are ruled out by the observations. Even if
they remain sufficiently massive, if these fields deviate from geodesics, they
might leave imprints in the CMB temperature spectra [1, 103].

Let us emphasise that in general the conditions (5.3.8,5.3.9) are necessary but
cannot guarantee the perturbative stability along the supersymmetric directions
of a non-supersymmetric configuration. However, as we shall discuss in later
sections, there are interesting situations where these conditions become both
necessary and sufficient. For instance, whenever the term Hγ dominates over
the rest of contributions to the Hessian, since then the quantities µ2

±λ can be
identified as the eigenvalues of the Hessian to first order in perturbation theory.
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5.3. Necessary conditions for metastability

We shall leave the discussion of these cases for section 5.4.

For simplicity, in the following analyses we will assume that all the parameters
involved in the constraints (5.3.8) are independent from each other and can be
varied freely. More complicated situations are possible, for example when two or
more of the parameters have a functional dependence on each other, but we will
not consider them here.

5.3.2 Supersymmetric vacua and uplifting to dS

As we discussed above, supersymmetric critical points are AdS as long as the
superpotential is non-zero, W 6= 0, and in particular they satisfy γ = −1.
Therefore, the Hessian (5.2.9) is simply given by:

H = (M+ )(M−2 ) =⇒ µ2
±λ = (mλ±1)(mλ∓2) =

(
mλ ∓ 1

2

)2− 9
4 ≥ −

9

4
.

(5.3.11)
This implies that the Hessian is also diagonal in the basis that diagonalises M,
and therefore the parameters µ2

±λ can be identified with the complete set of
eigenvalues of H. Then the set of conditions (5.3.10) are necessary and sufficient,
and in addition they can be applied to all directions Z±λ, with λ = 1, . . . ,n, since
there is no sGoldstino at supersymmetric critical points. From the eigenvalues
(5.3.11) one can see what type of extremum the supersymmetric critical point ξ0
is, namely:

mλ > 2 for all λ ⇒ local AdS minimum,

mλ < 1 for all λ ⇒ local AdS maximum, (5.3.12)

and any other combination corresponds to AdS saddle points (mλ = 1, 2 give flat
directions). However, supersymmetric critical points are always perturbatively
stable regardless of the possible negative curvature of the potential, since they
are AdS and the Breitenlohner-Freedman bound (5.3.10) is always satisfied, as
can be seen from eq. (5.3.11).

As discussed in the introduction, supersymmetric vacua play an important
role in the construction of de Sitter vacua in cosmological models. It is possible
to engineer a dS vacuum by the uplifting of a supersymmetric AdS vacuum ξ0 to
dS, which consists in introducing a physical mechanism to break supersymmetry.
Ideally, these mechanisms add a positive definite correction to the scalar potential
δ Vuplift, possibly field-dependent, so that the vacuum expectation value of V
becomes positive at ξI0 ,

V = Vsusy|ξ0 + δVuplift|ξ0 ≥ 0, (5.3.13)

while the supersymmetric configuration is still a metastable critical point of
the potential. In general, the supersymmetric field configuration ξ0 is not a
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critical point of the uplifting term δVuplift, and thus the critical points of the final
potential typically shift away from ξ0, or disappear completely. That is why in
general one should ensure that the original supersymmetric critical point ξ0 is a
minimum, demanding all chiral fermions to have masses larger than twice the
gravitino mass, cf. (5.3.12).

One of the aims of this work is to study the metastability of a supersymmetric
sector embedded in a larger model where supersymmetry is already broken. As
we shall see in section 5.6, in that case the constraint we just discussed is no
longer necessary. In particular we will prove that a stable configuration of the
embedded supersymmetric sector may correspond to any type of AdS critical
point (even a saddle point or maximum) in the supersymmetric limit γ → −1.
In other words, the embedding of the supersymmetric sector in a larger model
may turn an AdS maximum or a saddle point in the supersymmetric limit to
a metastable configuration after supersymmetry breaking by other sector. The
coupling between the embedded supersymmetric sector and the fields breaking
supersymmetry can be seen as a non-generic type of F-term uplifting mechanism,
like those studied in [83, 84].

5.3.3 Non-supersymmetric configurations

In the present subsection we will analyse the set of constraints (5.3.8) in the case
when the field configuration is non-supersymmetric. As we mention above, we
shall consider both the case where the configuration is an extremum of the scalar
potential, and where the vacuum energy of the fields is driving an inflationary
phase. In order to proceed we analyse the different contributions to the Hessian
separately: first we will discuss the term depending on the fermion mass matrixHγ ,
and then we will characterise the effect of including the contributions associated
to the derivatives of the fermions masses ∇XM, and the curvature of the Kähler
manifold, R.

Dependence on the fermion masses, H = Hγ
We begin with the simplest case where Hγ is the only non-zero contribution to
the Hessian:

∇XM = R = 0 =⇒ H = Hγ = (M+ )
(
M+ (3γ + 1)

)
. (5.3.14)

Then, as in the case of supersymmetric critical points, the Hessian is diagonal in
the basis of eigenvectors Z±λ of the fermion mass matrix, and the quantities µ2

±λ
can be identified with the eigenvalues of H, which read:

µ2
±λ = (mλ ± 1)

(
mλ ± (3γ + 1)

)
=
(
mλ ± 1

2 (3γ + 2)
)2 − 9

4γ
2. (5.3.15)

Therefore, the stability of the configurations along the supersymmetric directions
is entirely determined by the fermion mass spectrum mλ and the parameter γ.
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Figure 5.1 – Stability diagram for a Hessian of the form (5.3.14), with ∂XM =
R = 0. In this case the conditions (5.3.8) are both necessary and sufficient, and
the shaded area represents the region of parameter space where they are satisfied.
Configurations which minimise the gravitino mass m2

3/2 = eG (mλ < 1) remain
stable for arbitrary large values of the parameter γ � 1.

Since all the eigenvalues of the Hessian are bounded below by − 9
4γ

2 it follows that,
when the configuration is an AdS critical point, γ ∈ [−1, 0), these eigenvalues
always satisfy the Breitenlohner-Freedman bound (5.3.10), and thus it is always
stable. However, if the configuration is either Minkowski or de Sitter (γ ≥ 0),
stability demands

µ2
±λ ≥ 0 =⇒ mλ < 1 or mλ > 3γ + 1 for all λ. (5.3.16)

Thus, in Minkowski vacua (γ = 0) the supersymmetric sector is always metastable,
possibly with flat directions if one or more of the fermion masses equals the
gravitino mass, mλ = 1. An interesting consequence for de Sitter configurations
(either a vacuum or at a point of the inflationary trajectory) is that, if all fermion
masses are smaller than the gravitino mass, i.e. mλ < 1, the supersymmetric
sector remains tachyon-free for arbitrary large values of the cosmological constant.
Conversely, if the fermion spectrum contains any mass larger than m3/2, the
critical point will always become unstable for sufficiently large values of the
Hubble parameter. These results are illustrated in Fig. 5.1, which shows the
stability diagram of a non-supersymmetric configuration along a direction
orthogonal to the sGoldstino. The horizontal axis is related to the mass of the
corresponding fermionic partner mλ, and the quantity on the vertical axis is
the parameter γ. In the diagram, the perturbatively stable configurations are
represented by the grey shaded area.

This simple example already illustrates the claim made in the previous sub-
section: in general, the condition mλ > 2 necessary for a supersymmetric critical
point to be a minimum, is neither necessary or sufficient when the supersymmet-
ric sector is embedded in a larger model. The special structure of the Hessian
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Figure 5.2 – Stability diagram associated to the spectrum given by equation (5.3.8).
Coloured areas show, for different choices of parameters, the regions where the
stability conditions are satisfied, while in the white area we would have tachyons.
LEFT: ∂mλ/∂X = 0.2, with B[X,λ] = 0 (grey area) and B[X,λ] = 0.3 (light blue
area). RIGHT: ∂mλ/∂X = −0.2, with B[X,λ] = 0 (grey area), and B[X,λ] = 0.3
(light blue area). The dashed line represents the constraints in the case B[X,λ] =
∂mλ/∂X = 0, showed in figure 5.1.

discussed in this example arises naturally in models of F-term uplifting where
some heavy moduli are truncated while preserving supersymmetry [83, 84]. In
the context of inflation this type of couplings have also been considered in [3], see
chapter 4. We discuss more about this class of models in sections 5.4 and 5.6.

Dependence on the fermion mass derivatives and the curvature

In general, when the terms ∂XM and R are taken into account, the Hessian will
not be diagonal in the basis formed by the vectors Z±λ, and the set of necessary
conditions (5.3.8) will not be sufficient to ensure the stability of the critical point.

Let us first focus on the contribution coming from the term in the Hessian
proportional to the derivative of the fermions mass matrix ∇XM, while keeping
the curvature term set to zero R = 0. In Fig. 5.2, focusing on the grey regions, we
have represented the region of parameter space satisfying the stability conditions
(5.3.8) for a particular direction in field space zλ (shaded grey area) setting two
different constant values of the fermion mass derivatives, ∂mλ/∂X = 0.2 (left
plot) and ∂mλ/∂X = −0.2 (right plot), and with a zero bisectional curvature
B[X,λ] = 0. Since these conditions are in general necessary but not sufficient,
a field configuration located in the grey shaded region is not necessarily stable,
but those out of the shaded area will definitely contain one or more tachyonic
directions in the spectrum. Note that when the derivatives of the fermion masses

122



5.3. Necessary conditions for metastability

satisfy

∂mλ

∂X

∣∣∣
opt

= − 3γ + 2√
3(γ + 1)

mλ, (5.3.17)

the two parameters µ2
±λ become equal, and both constraints (5.3.8) reduce to

the less restrictive condition (5.3.9). Therefore, in the case of dS and Minkowski
configurations (γ ≥ 0), as the derivatives of the fermion masses approach this
optimum value, the stability constraints on the fermion masses mλ and the
parameter γ become milder, as observed in the diagrams.

The effect of having a non-zero R is simpler to analyse. The set of
necessary conditions (5.3.8) clearly favour positive values for the bisectional
curvature B[X,λ] > 0. We can check that this is indeed the case in the
plots of Fig. 5.2, where we have displayed the region of parameter space
satisfying the stability conditions (5.3.8) for two different constant values of the
bisectional curvature, B[X,λ] = 0 (grey area), and B[X,λ] = 0.3 (light blue area).

When the Hubble scale is large compared to any of the fermion masses,
H � m3/2 and H � mλm3/2

7, the bisectional curvatures play a fundamental
role determining the stability of the inflationary trajectory. In that limit (keeping
∂mλ/∂X fixed) the range of fermionic masses where the field configuration is free
of tachyons is

0 ≤ mλ . 1 +B[X,λ]. (5.3.18)

Then, when the bisectional curvature is zero, we recover the limit discussed above
and only configurations where the largest mass of the chiral fermions satisfies
mλ|max < 1, remain stable for arbitrarily large values of γ. However, positive
values improve the stability, as shown by the light blue regions of Fig. 5.2, and
negative values of the bisectional curvature shrink the range of fermion masses
compatible with stable dS configurations. Actually, when B[X,λ] < −1, the field
associated to the direction zλ always becomes tachyonic for sufficiently large
values of the Hubble parameter, γ � 1, and therefore the corresponding field
configuration is necessarily unstable.

These constraints are of interest both for the construction of de Sitter vacua
with small cosmological constant γ ≈ 0 (as in the present vacuum), and for
models of inflation, to study the stability of the supersymmetric sector along the
inflationary trajectory. The study of the viability of inflationary models using the
presented constraints deserves further consideration and we will report on it in a
future publication. We will now start with the stability analysis of consistently
decoupled sectors, focusing on those models were they only act as spectators both
in supersymmetry breaking and inflation.

7Recall that we measure the chiral fermion masses mλ in units of the gravitino mass, m3/2.
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5.4 Modeling the supersymmetric sector

Having presented the main tool for our analysis, that is, the set of constraints
(5.3.8), we now turn to the problem at hand: the study of the perturbative
stability of a decoupled supersymmetric sector, such as the complex structure
moduli in the KKLT constructions, and Large Volume Scenarios of Type IIB flux
compactifications [219–221]. Motivated by these scenarios, where stabilisation
of the complex structure moduli can be studied using a statistical treatment
[209–212], we will focus on theories where the supersymmetric sector contains a
large number of fields, and we will characterise the couplings using a statistical
description. On the one hand, we will require the interactions of the model to
be consistent with the exact supersymmetric truncation of the decoupled sector
(section 5.4.1), and on the other hand we will assume that the couplings of the
supersymmetric sector are generic and can be treated as random variables. In
particular we will characterise the spectrum of fermion masses of the supersym-
metric sector mλ, and their derivatives, ∂mλ/∂X, using standard techniques from
random matrix theory (section 5.4.2).

5.4.1 Supersymmetric decoupling

As discussed previously and extensively in this thesis, integrating out a heavy
sector in a consistent way is only possible in certain situations. The type
of couplings between the integrated and surviving sectors which allow for
the reduced theory to be approximately supersymmetric have been discussed
extensively in the literature [82, 186, 187, 189].

The simplest way of satisfying these conditions is to require the couplings
to be consistent with the supersymmetric truncation of the heavy sector [177].
In a consistent truncation of a given theory, the solutions of the reduced
theory are exact solutions of the full theory. This type of constructions are
interesting for our purposes because they enable us to study the perturbative
stability of the truncated sector on its own. In addition, the truncated fields will
remain on geodesic trajectories. In this sense we can say that the truncated
sector is supersymmetrically decoupled from the fields in the reduced theory.
Interestingly, it has been shown [188, 229] that the large volume limit of type IIB
flux compactifications are a particular realisation of this class of models, and
moreover, in that case the conditions (5.3.8) are not only necessary, but also
sufficient to ensure the stability of the supersymmetric sector.

Let us consider a heavy supersymmetric sector with fields Hα and a light
supersymmetry-breaking sector with fields Li. We have seen that in order for
the truncated fields to preserve supersymmetry regardless of the configuration
of the surviving sector Li, the Kähler function has to satisfy the following set of
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constraints:

Gα(H0, H̄0, L, L̄) = 0 for all Li and α = 1 . . .nh. (5.4.1)

Since the equations (5.4.1) must hold for any value of the light fields Li, the
couplings between the two sectors are very constrained. Taking derivatives with
respect to the coordinates Li and Lī we find the following implications:

Giα(H0, H̄0, L, L̄) = 0, Rij̄kᾱ = 0, (5.4.2)

Miα|H0
= 0, ∇XMiα|H0

= 0. (5.4.3)

The previous conditions imply that the Hessian itself must be block diagonal in
the two sectors:

H = Hh ⊕Hl. (5.4.4)

Therefore, as we anticipated at the beginning of the section, if the couplings
are compatible with the consistent truncation the supersymmetric sector, it
is consistent to study the perturbative stability of the supersymmetric sector
independently of the sector surviving the truncation, i.e. it is sufficient to consider
the block of the Hessian Hh:

Hh = (Mh + )
(
Mh + (3γ + 1)

)
+
√

3(γ + 1)∇XMh − 3(γ + 1)Rh. (5.4.5)

In the following, we consider models with a supersymmetrically decoupled sector
in the sense described above, focusing on the stability of the configuration defining
the truncation, Hα

0 , along the supersymmetric directions Hα.

5.4.2 Statistical description

Since the fine details of this subsection are not essential for the understanding of
our results, we will review the main facts and concepts, and refer to the reader
to the original work [4] for further details. In order to study the perturbative
stability of the supersymmetrically decoupled sector, we need to characterise the
eigenvalue spectrum of the fermion mass matrix Mh and the properties of its
derivative ∇XMh. At a generic point of the reduced theory, where Hα = Hα

0 ,
these matrices read

Mh =

(
0 Mαβ

M̄ᾱβ̄ 0,

)
, ∇XMh =

(
0 ∇XMαβ

∇X̄M̄ᾱβ̄ 0

)
, (5.4.6)

where the tensors Mαβ = ∇αGβ and ∇XMαβ = ∇X(∇αGβ) will depend in
general on the configuration Hα

0 and on the light fields Li. In realistic scenarios
with a large number of fields, it is more practical to follow the methods proposed
by Denef and Douglas [209, 210] and later developed in [211, 212], who use a
statistical approach. Indeed, treating the components of the tensors Mαβ and
∇XMαβ as random variables, makes possible to characterise the properties of the
matrices (5.4.6) using random matrix theory techniques (see [230]).
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Probability distribution of the couplings

Following [211, 212], we assume that the random variables Mαβ = Mβα are
characterised by a unique probability distribution Ω, with zero mean and standard
deviation σ for α 6= β and

√
2σ for α = β:

Mαβ ∈ Ω(0, σ) if α < β, and Mαα ∈ Ω(0,
√

2σ). (5.4.7)

Note that the corresponding joint probability distribution is invariant under
supersymmetry and Kähler transformations, and diffeomorphisms on the Kähler
manifold. In the limit where the size of the matrices is very large, i.e. large
number of Hα fields, the results we will now present do not depend on any higher
moments of the distribution Ω.

The quantities in the Hessian (5.4.5) associated to the supersymmetry
breaking sector, i.e. γ and the gravitino mass m3/2, will be regarded as
parameters and studied in a case by case basis. Moreover, following the works
in [207–210] we also assume that the geometry of the Kähler manifold is also
determined by the parent theory. Note that these quantities depend on the
configuration Hα

0 and on the light fields Li, and therefore our predictions about
the stability of the supersymmetric sector will depend on the distribution of the
couplings, the geometry of the moduli space, and the supersymmetry breaking
scale.

In the following, we bring a few results of random matrix theory to characterise
the spectrum of masses of the fermions mλ and their derivatives along the
sGoldstino direction ∂mλ/∂X. We then incorporate them to the analysis of
the perturbative stability of the supersymmetric sector through the constraints
(5.3.8).

The Altland-Zimbauer CI-ensemble

The set of hermitian matrices with the same structure as (5.4.6), and random
complex entries drawn from a probability distribution with the properties given
in (5.4.7), form the so-called Altland-Zimbauer or CI-ensemble. Taking the
distribution Ω to be gaussian, the joint probability density for the fermion masses
mλ is given by

f(m1, . . . ,mnh) = C exp

(
− 1

2σ2

nh∑
λ=1

mλ +

nh∑
λ<ν

ln|mν −mλ|+
nh∑
λ=1

lnmλ

)
.

(5.4.8)
The spectrum of eigenvalues is characterised by the spectral density ρ(m) dm,
which gives the average number of fermions with mass in the interval [m,m+dm).
When nh →∞ the spectral density is closely related to the Wigner’s semicircle
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Figure 5.3 – Typical spectrum of fermion masses for mh = 5 and nh = 100. LEFT:
The spectral density of the fermion mass matrix M resembles Wigner’s semicircle
law to leading order in 1/n. RIGHT: The Marčenko-Pastur law gives the typical
distribution for the square of the fermion masses m2.

law (SC) and reads:8

ρSC(m) =
4nh
πm2

h

√
m2
h −m2, ρMP(m2) =

2nh
πm2

hm

√
m2
h −m2, (5.4.9)

for m ≤ mh, and zero otherwise; where m2
h = 4nhσ

2. For later convenience
we have also written the distribution of the square of the fermion masses
ρMP(m2) dm2, which is a particular case of the so-called Marčenko-Pastur law
(MP) [231]. The fact that the spectral density (5.4.9) has a compact support
in the large nh limit does not imply that the probability of finding eigenvalues
out from the specified range is zero. The previous expression only gives the
typical spectrum of a large matrix from the CI-ensemble, but other atypical
spectra are possible, with the cost of a suppressed probability (see appendix D).
In fact, the chance of finding a mass fluctuation outside the boundaries (0,mh) is
determined by the Tracy-Widom distribution [232], which predicts an exponential

suppression of the form e−an
2
h .

The matrix ∇XM has similar symmetries and structure as M, so we will
assume that it can also be identified as an element from the CI-ensemble, but with
a standard deviation σd. In the following, we analyse in detail the perturbative
stability of the supersymmetrically truncated sector combining the constraints
(5.3.8) with the statistical characterisation of the fermion mass spectrum just
discussed.

8Actually the spectral density of the CI-ensemble presents a characteristic cleft of width 1/nh
near m = 0, where it behaves as ρχ(m) ∼ m, but we will neglect it as it becomes a subleading
effects in the large nh limit.
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5.5 Statistics of supersymmetric vacua

Our starting point in this section are the results of section 5.3.2 regarding the
character of AdS supersymmetric critical points. We now incorporate the statisti-
cal properties of the fermionic mass spectrum given by random matrix theory as
discussed in the previous section, and we will review the results obtained in [212],
stating that the probability of obtaining a tachyon-free vacuum after uplifting a
supersymmetric AdS minimum to a stable dS is exponentially suppressed. In sec-
tion 5.6 we will explore more general settings where the dS vacuum is constructed
without requiring one sector of the fields to be stabilised at an AdS minimum,
and show that the probability of the vacuum being tachyon-free can still be made
of order one for certain values of the parameters which determine the distribution
of the couplings and the geometry of the moduli space.

5.5.1 Eigenvalue spectrum of the Hessian

Supersymmetric AdS critical points are extrema of the Kähler function, and thus
also of the gravitino mass (5.2.6). Moreover, at an AdS supersymmetric critical
point, the Hessian of the scalar potential is closely related to the Hessian of the
gravitino mass squared m2

3/2 = eG, which we shall denote by G. After rescaling G
as in (5.2.7), and taking into account that the fields are canonically normalised,
it can be shown that

G = +M =⇒ H = G
(
G − 3

)
. (5.5.1)

As was pointed out in [83, 84], this relation implies a one-to-one correspondence
between the supersymmetric AdS maxima and the minima of the gravitino mass,
which holds in full generality when gauge interactions are included [84]. To see
this point, note that G is also diagonal in the basis of Z±λ and the eigenvalues
are given by

g±λ = 1±mλ . (5.5.2)

Thus, the gravitino mass is minimised in field configurations where all the fermion
masses satisfy mλ < 1, which corresponds precisely to supersymmetric AdS
maxima (5.3.12).

Given the relation between H and the Hessian of the gravitino mass, G, let us
start characterising the dependence of the spectral density of G on the parameter
mh which determines the distribution of the fermion masses. It is easy to see
that for mh < 1, the fermion mass distribution is bounded to values smaller
than the gravitino mass, and the eigenvalues of G in (5.5.2) are positive, so those
critical points correspond to minima of the gravitino mass. For mh > 1 we have
saddle points, and in the limit of very large standard deviations only half of the
eigenvalues of G are positive.
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Figure 5.4 – LEFT: the two branches when inverting eq. (5.3.11). Note that
for mλ < 1, that is, fermion masses smaller than the gravitino mass, we are in
a supersymmetric AdS maximum. CENTER: probability distribution function in
(5.5.4) for mh = 0.1, where all modes are BF-allowed tachyons. RIGHT: probability
distribution function in (5.5.4) for mh = 3. In the plots the spectral densities are
normalised to unity.

One can perform a similar analysis of the Hessian, which is given in terms of
G in (5.5.1). Then one can realise that for mh < 1 the typical supersymmetric
critical point is an AdS maximum, and as mh becomes larger, the number of
negative eigenvalues approaches zero asymptotically. It is interesting to note that
saddle points are the dominant type of critical point for most values of mh, and
moreover, there is no finite value of the standard deviation of the fermions where
the typical critical point is a supersymmetric minimum.

Let us now calculate the scalar mass spectrum for a typical supersymmetric
critical point. The expression (5.3.11) relating the eigenvalues of the Hessian H
to the fermion masses can be used in combination with the Marčenko-Pastur
law (5.4.9) to determine the typical spectral density of H. First, expressing the
square of the fermion masses in terms of the eigenvalues of the Hessian µ2, cf. eq.
(5.3.11), we find a multiple-valued function with two branches, which we denote
by m2

±(µ2), and are displayed in Fig. 5.4. Then, the contribution from each of
the branches to the spectral density of H reads simply:

ρMP

(
m2
±
) ∣∣∣∣∣dm2

±
dµ2

∣∣∣∣∣ = Θ(m2
h −m2

±)
2

πm2
h

√
m2
h −m2

±

µ2 + 9
4

, (5.5.3)

where m2
± should be understood as functions of µ2, and the Heaviside theta

functions Θ are a reflection of the support of the Marčenko-Pastur distribution for
each of the branches. The total eigenvalue density function, given the spectrum
of the Hessian, can then be written as [212]:

ρ(µ2)dµ2 =

[
ρMP

(
m2

+

) ∣∣∣∣∣dm2
+

dµ2

∣∣∣∣∣+ ρMP

(
m2
−
) ∣∣∣∣∣dm2

−
dµ2

∣∣∣∣∣
]
dµ2 . (5.5.4)
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Illustrative examples of the distribution (5.5.4) are given in figure 5.4. In
those plots we see that this spectrum interpolates between a shifted Wigner
semicircle law for mh → 0, corresponding to AdS maxima, and a shifted version
of the Marčenko-Pastur distribution for spectrum for mh � 1, corresponding to
supersymmetric critical points which are typically AdS saddle points.

5.5.2 Uplifting a supersymmetric sector

As we discussed in section 5.3.2, generic uplifting mechanisms require the existence
of a supersymmetric minimum for the uplifted critical point to be stable. The fact
that there is no region of parameter space where supersymmetric AdS minima are
the typical critical point does not imply that they do not exist. Supersymmetric
minima require an atypical fluctuation of the smallest fermion mass, m1 ≥ 2,
cf. eq. (5.3.12). Although in [209] it is argued that metastability is a relatively
mild constraint, the probability of such fluctuation is exponentially suppressed
[212, 233]:

P(m1 > 2) ∼ e
− 8n2

m2
h . (5.5.5)

This result implies that when mh . n, the vacua obtained using standard
uplifting mechanisms will typically lead to tachyonic instabilities. For instance, if
the number of fields of the supersymmetric sector is of the order of hundreds
n ∼ 100, this regime corresponds to configurations where all the chiral fermions
are lighter than about a hundred times the mass of the gravitino, mλ . 100 in
our units. Nevertheless, as argued in [212], when the masses of the fermions are
typically much larger that the gravitino, mh � n, the AdS vacua are typically
tachyon-free and thus they are good candidates to construct stable dS vacua
using an uplifting mechanism.

As we will now discuss in detail, the results of studying the stability of a
supersymmetric sector in isolation no longer hold when it is embedded in a larger
model where supersymmetry is already broken. Indeed, the couplings between
supersymmetric and non-supersymmetric sectors can stabilise the tachyons which
appear when the supersymmetric sector is considered alone. The possibility of such
an effect was discussed in detail in the context of F−term uplifting mechanisms
consistent with the supersymmetric truncation of the supersymmetric sector,
[83, 84].

5.6 Stability of non-supersymmetric configura-
tions

As explained in section 5.3.3, moving away from the supersymmetric limit γ = −1
introduces a rich phenomenology, but more importantly, it is essential to describe
inflation and the present vacuum, both needing a stable dS configuration. In this
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section we study the probability that uplifting AdS critical points results into sta-
ble dS critical points by making use of random matrix theory techniques explained
in section 5.4.2. We will argue that the presence of a supersymmetric sector
imposes restrictions on the type of couplings that can give rise to these stable
configurations. These restrictions appear as bounds on the geometry of the field
target manifold. Furthermore, we will derive the supersymmetric mass spectrum
for well motivated scenarios in which the heavy sector of the theory is con-
sistently truncated in a supersymmetric way, as described in detail in section 5.4.1.

Already in section 5.3.3 we found necessary conditions for the metastability
of non-supersymmetric configurations, and we have seen that not only the
projection of the Hessian along the sGoldstino direction imposes constraints
[194, 224–226], but also the presence of a supersymmetric sector might help or
not in the stability of uplifted dS configurations, as shown in Figs. 5.2 and 5.6.
We shall also see that these constraints can be applied not only to dS vacua, but
also to inflation, where additional conditions must be satisfied [3, 195, 234].

5.6.1 Separable Kähler function

The simplest class of theories consistent with the supersymmetric truncation of
the heavy sector at a configuration Hα

0 are characterised by separable Kähler
functions of the form [82–85]

G(H, H̄, L, L̄) = Gh(H, H̄) +Gl(L, L̄), with ∂αGh|H0 = 0. (5.6.1)

In these theories the Kähler manifold has a cross-product structure K = Kh ⊗Kl,
and the reduced manifold, Kl, is clearly a totally geodesic submanifold. When
the Kähler manifold has this cross-product structure, the stability analysis is
particularly simple, since all the bisectional curvatures of the heavy sector are
zero B[X,λ] = −RXX̄αᾱ = 0, as well as the matrix ∇XMh, and thus the Hessian
matrix has the structure discussed in section 5.3.3. Written in terms of the Hessian
of the gravitino mass G, it reads:

Hh = G
(
G + 3γ

)
. (5.6.2)

The scalar mass eigenvalues are given by (5.3.15). Proceeding as in the
previous section, we can also calculate the eigenvalue density function for the
scalar masses after the uplifting. First, by inverting (5.3.15) we can find an
expression for the fermion masses m2 in terms of the eigenvalues of the Hessian
µ2. The two branches read:

m2
±(µ) =

[
1
2 (3γ + 2)±

√
µ2 + 9

4γ
2

]2

,

∣∣∣∣∣dm2
±

dµ2

∣∣∣∣∣ =
|m±|√
µ2 + 9

4γ
2
. (5.6.3)
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As in the previous section, we use the Marčenko-Pastur law (5.4.9) and substitute
it in (5.5.4) to find the eigenvalue density function of the scalar masses. Illustrative
examples of the mass distribution are given in Fig. 5.5.

Stability of non-supersymmetric Minkowski vacua

For de Sitter vacua with a small cosmological constant γ ≈ 0, the Hessian of the
supersymmetric sector has a very simple expression

Hh = G2 =⇒ µ2
±λ = (mλ ± 1)2, (5.6.4)

from which is clear that the supersymmetric sector is always stable, with possible
zero-modes whenever the function G has a flat direction, i.e. for each fermionic
mass satisfying, mλ = 1. In the case mh < 1, the spectral density of the scalar
masses resembles the Wigner’s semicircle law, and the maximum fermion mass is
always smaller than the gravitino mass mλ|max < 1. Therefore, typical critical
points do not present zero-modes and, moreover, the spectrum of masses of the
scalar fields presents a gap, that is, the masses are bounded below by a positive
value

µ2|min = (mh − 1)2 < 1. (5.6.5)

Note that in this type of models the lightest scalar field of the supersymmetric
sector is lighter than the gravitino. When mh > 1 the spectral density has a
closer shape to the Marčenko-Pastur law, and the spectrum typically contains
zero-modes.

This case is particularly interesting since it corresponds to Type IIB flux
compactifications at tree level, before including loop and non-perturbative correc-
tions. In that case we can identify the (supersymmetric) H−sector with the set
of complex structure and dilaton fields, while the (non-supersymmetric) L−sector
would correspond to the set of Kähler moduli. In particular, due to the no-scale

structure of the Kähler sector one has G(L)|ij̄G
(L)
i G

(L)

j̄
= 3, and therefore, when

the complex structure and dilaton fields are fixed at a supersymmetric critical
point of the potential, we have γ = 0, that is, a non-supersymmetric Minkowski
vacuum, which is precisely the case at hand.

Stability of the supersymmetric sector during inflation

During inflation we have γ > 0, the size depending on the particular inflationary
model under consideration. For instance, for inflationary models based on the
standard KKLT construction, the stability of the volume modulus requires the
Hubble parameter to be at most of order of the gravitino mass, γ . 1 [235],
however there are modifications of this framework which allow for values of the
Hubble parameter much larger than the gravitino mass γ � 1 [236].
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Figure 5.5 – Probability density function ρ(µ2) for the mass spectrum after an
uplifting consistent with the supersymmetric truncation of the moduli sector. The
masses are measured in units of the gravitino mass. LEFT: When the standard
deviation of fermionic masses is small, i.e. mh ≤ m3/2, the typical configuration of
the truncated sector contains no tachyons (in the plot mh = 0.6, γ = 1.1). RIGHT:
When the standard deviation of fermionic masses satisfies mh ≥ m3/2, the typical
mass spectrum of truncated fields Hα

0 contains tachyons, and it is thus unstable (in
the plot mh = 3.2, γ = 1.1).

It can be seen from (5.3.16) that only for configurations with all the fermion
masses smaller than the gravitino mass, the scalar spectrum is free of tachyons.
If the standard deviation of fermion masses is larger than the gravitino mass, the
spectrum will necessarily contain tachyons (except for exponentially suppressed
configurations that we describe below). Recall that those configurations correspond
to AdS maxima in the supersymmetric limit γ → −1. The typical mass spectrum
for mh < 1 is displayed in the left plot of fig. 5.5. It can be seen that the mass of
the lightest scalar field in those configurations is bounded below by

µλ|2min = (mh − 1)
(
mh − (3γ + 1)

)
. (5.6.6)

This is quite interesting, since it implies that the corresponding mass gap
becomes wider the higher the value of the Hubble parameter, implying
that for γ � 1 it becomes very unlikely that one of these configurations
becomes tachyonic during inflation. Nevertheless, in this limit the typical
mass of the lightest scalar field is still of order of the Hubble parameter
H (that is, µ2 ∼ γ), implying that there might be situations where is not
possible to neglect fluctuations of the fields of the truncated sector during inflation.

In those cases when mh > 1, the fermion with the largest mass is typically
heavier than the gravitino and the configuration of the supersymmetric sector
Hα

0 is unstable, see right plot in fig. 5.5. Let us point out the difference with
respect to the results in AdS of the previous section: here the Wigner-type spectra
correspond to minima, while the Marčenko-Pastur type always contain tachyonic
directions, as opposed to the behaviour for supersymmetric vacua. When mh > 1,
there might still be an exponentially suppressed fraction of configurations H0
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Figure 5.6 – Stability diagram of a field configuration Hα
0 of the supersymmetric

sector for a general Kähler function satisfying (5.4.1). The grey area is the region
where the necessary conditions for stability (5.3.8) are satisfied. The vertical lines
correspond to two different values of the mass scale of the truncated sector with
mh = 0.4 (blue dotted), mh = 2.7 (red dashed), and the horizontal line to γ = 0.3.
In both diagrams ∂mλ/∂X = 0.1, while the maximum value of the bisectional
curvatures is set to B = 0.2 (left plot) and B = −0.2 (right plot).

where the H−sector remains stable. Indeed, it follows from (5.3.16) that atypical
configurations where either the heaviest fermion is lighter than the the gravitino
mλ|max < 1, or the mass of the lightest fermion satisfies mλ|min > 3γ + 1, remain
tachyon-free. The probability of those fluctuated spectra can be estimated to
leading order in 1/nh and they read (see appendix D):

P
(
mλ|min > 3γ + 1

)
∼ e
− 2(3γ+1)2

m2
h

n2
h

, P
(
mλ|max < 1

)
∼ e−

1
6 |x|

3n2
h , (5.6.7)

where x ≡ −1 +m−2
h . Note that, in general, the Hubble parameter (and thus γ)

will vary during inflation, especially at the end of the slow-roll stage. Therefore,
in simple models with a separable Kähler function (5.6.1), a point representing
the configuration Hα

0 on the stability diagram of fig. 5.1 will move vertically as
a reflection of the inflationary trajectory, as we have seen in chapter 4. The
different possibilities in the simplest case where the supersymmetric sector
contains a single field were studied in [3].

Let us emphasise that in a broad region of the parameter space, the most
stable configurations during inflation are those where the fermionic mass spectrum
is fully contained within smaller values than the gravitino mass, that is, those
that correspond to minima of the gravitino mass.
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5.6.2 Quasi-separable Kähler function

There are certain situations in which the terms of the Hessian (5.4.5) spoiling the
separable structure, ∇XM and R, become subdominant, and one can write

G(H, H̄, L, L̄) = G(h)(H, H̄) +G(l)(L, L̄) + εGint(H, H̄, L, L̄) , (5.6.8)

with ε� 1. Therefore the mass spectrum can be calculated to leading order in
perturbation theory (see appendix C for details), and the necessary conditions for
stability (5.3.8) become sufficient. As we will see, this class of couplings have a
remarkable property: in a large region of parameter space all vacua remain stable
after the uplifting to dS, including those coming from supersymmetric vacua
with BF-allowed tachyons. In Fig. 5.2 we have plotted the stability diagram
for a particular eigenspace hλ with four different choices of the parameters.
The grey and light blue areas represent, for different choices of ∂mλ/∂X and
B[X,λ] = −RXX̄λλ̄, the region of parameter space where the necessary conditions
(5.3.8) are satisfied. Note that, as in the separable case, the minima of the
gravitino mass, i.e. when mλ ≤ 1, still have better stability properties than any
other field configuration when H � m3/2, i.e. for γ � 1, which is relevant for
inflation.

The stability diagrams signal the regions of the parameter space where the
stability conditions are met. Now, since the horizontal axis describes one of
the masses of the supersymmetric sector, it is important to take into account
that when we describe distributions, with mh = mλ|max, all the masses of the
supersymmetric sector are distributed according to the Marčenko-Pastur law
along the interval [0,mh]. Therefore, if there is a white region between 0 and mh

for a given γ, our scalar spectrum will contain tachyons, even if a configuration
(mh,γ) falls within the grey region. This is illustrated by the red vertical dashed
line in the right plot of Fig. 5.6. A possible loophole to this argument is that
of atypical fluctuated fermionic spectra such that all the fermionic masses are
contained within a region that remains stable, but as we argued before, in this
setup those configurations are exponentially suppressed.

As we discussed in previous sections, the bisectional curvature is zero in
KKLT constructions since the moduli space has a direct product structure for
the complex structure and Kähler sectors, and is naturally suppressed in Large
Volume Scenarios. For the latter type of models, the deviations of the Hessian
from the separable case, which are given by the derivative of the fermion mass
matrix and the curvature term, are suppressed by powers of volume.

5.6.3 Non-separable Kähler function

In this section we will consider the stability analysis of the truncated sector for a
general Kähler function satisfying the condition (5.4.1) for the supersymmetric
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truncation of the heavy sector. In this situation the Hessian of the scalar potential
along the supersymmetric sector reads

Hh = G
(
G + 3γ

)
+
√

3(γ + 1)∇XG − 3(γ + 1)R. (5.6.9)

The parameters µ2
±λ can no longer be identified with the squared-masses of the

scalar fields of the supersymmetric sector. Therefore, the conditions (5.3.8) are
necessary but not sufficient to guarantee the stability of the supersymmetric sector.

In generic situations the bisectional curvatures will take any value, but if
the Kähler manifold is regular at H0, the bisectional curvatures will normally
be bounded, B[X,λ] ∈ [Bmin, Bmax], for all λ = 1, . . . ,nh. The bound on the
bisectional curvature (5.3.9) depends on the fermion mass, which in principle
can take values between 0 and mh. Since it must be satisfied for all the fermion
masses in the distribution, let us impose it for the most restrictive one, which is
mλ = 0. In that case the bisectional curvature is constrained by the following
bound:

Bmax ≥ −
3γ + 1

3(γ + 1)
. (5.6.10)

Let us consider this bound in physically relevant situations: almost Minkowski
vacua and during inflation. A summary of the bounds can be seen in Tab. 5.1.

Non-supersymmetric Minkowski vacua

For γ ' 0 the Hessian reads

Hsusy = G2 +
√

3∇XG − 3R ⇒ µ2
±λ = (mλ ± 1)2 +

√
3
∂mλ

∂X
+ 3B[X,λ] ≥ 0.

(5.6.11)
First, we know that the present vacuum is described by a small and positive
cosmological constant, γ ' 0, so from (5.6.10):

Bmax ≥ − 1
3 (dS vacuum) (5.6.12)

Regarding stable dS vacua, we have seen that small perturbations in the bisectional
curvature or derivatives of the masses can cause instabilities or, on the contrary,
can improve the stability. In particular, if the parameters satisfy

1√
3
σd ≤ Bmin , (5.6.13)

the necessary stability conditions (5.3.8) are satisfied by typical vacua, but any
other case requires a case by case analysis. For example when ∂mλ/∂X > 0 and
B[X,λ] < 0, uplifting to stable dS vacua strongly constrains mh to small values,
to the point that for B[X,λ] < −1/3 the only (exponentially suppressed) hope is
to have an atypical fluctuated fermionic spectrum such that all the masses fall on
the stable region.
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H � m3/2 (Dark energy) H ≈ m3/2 (Inflation) H � m3/2 (Inflation)

Bmax ≥ − 1
3 Bmax & − 2

3 Bmax & −1

Table 5.1 – Necessary conditions for the stability of a typical configuration of
the supersymmetric sector. Bmax is the maximum value that can be attained by
the bisectional curvature at (Hα

0 , L
i
0) varying the sGoldstino direction zX , and the

direction of the fermion mass eigenstate zλ.

Stability of the supersymmetric sector during inflation

Another interesting limit is H � m3/2, or in other words γ � 1, which is relevant
for inflation. In those cases we have the following necessary conditions:

H ≈ m3/2 : Bmax ≥ − 2
3 , H � m3/2 : Bmax ≥ −1 (5.6.14)

When the parameters satisfy

mh ≤ 1 +Bmin (5.6.15)

all the stability constraints (5.3.8) are satisfied by the supersymmetric sector,
and thus with probability P ∼ O(1) the supersymmetric sector will remain
tachyon-free along the inflationary trajectory. Other situations have to be studied
in a case by case basis.

In order for the fluctuations of the supersymmetric sector to be suppressed
during inflation with γ ≈ 1 we would have the slightly tighter constraint Bmax ≥
−1/2.

5.7 Conclusions

In this chapter we have extended the analysis of chapter 4 in several aspects. Our
results illustrate, in a different context that chapters 2 and 3, the importance of
considering the coupling between different sectors of the theory. In this chapter
we have studied the type of coupling that is necessary for the stability of a
supersymmetric sector which is embedded in a theory with broken supersymmetry.
This case falls outside the scope of previous analyses. In particular we have
considered N = 1 supergravity models involving only chiral multiplets, and
which are consistent with the supersymmetric truncation of the fields preserving
supersymmetry. This class of theories is characterised by a Kähler function G
satisfying:

∂αG(H, H̄, L, L̄)|H0
= 0 for all Li ,
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where Li are the fields in the supersymmetry breaking sector, and Hα are the
fields in the supersymmetric sector which are frozen at a configuration Hα

0 . In
addition, following [211, 212], we have treated the couplings in the decoupled
(supersymmetric) sector as random variables, and we studied the Hessian of
the scalar potential using tools from random matrix theory. This analysis is
motivated by the supergravity description of the dilaton and complex structure
moduli in KKLT constructions and Large Volume Scenarios of type-IIB flux
compactifications, where the complex structure and dilaton fields are truncated
from the theory before considering the stability of the Kähler moduli, and
the truncation is done in a way that leaves supersymmetry approximately
unbroken. The stability of the truncated sector is crucial to ensure the viability
of cosmological models based on supergravity theories with this structure, both
when they describe the present vacuum with a small cosmological constant (dark
energy), as well as for scenarios of slow-roll inflation. The main conclusion of our
analysis is that, in a broad range of parameters, the configuration of a decoupled
supersymmetric sector Hα

0 remains free of tachyons with order one probability,
Pstable ∼ O(1).

In order to perform the analysis we have derived the set of necessary conditions
(5.3.8) for the stability of the supersymmetric sector. These conditions, which
can be seen as constraints on the Kähler potential K and the superpotential
W , are expressed in terms of the ratio of the Hubble parameter to the gravitino
mass (γ = H2/m2

3/2), the masses the chiral fermions and their derivatives along

the sGoldstino direction (mλ and ∂mλ/∂X, respectively), and the bisectional
curvatures of the Kähler manifold

B[X,λ] ≡ −RIJ̄KL̄ z
I
X z̄ J̄

X z Kλ z̄ L̄λ .

Here RIJ̄KL̄ are the components of the Riemann tensor, zX is a unit vector
along the sGoldstino direction, and the zλ form an orthonormal basis on the
supersymmetric sector. In general, the conditions (5.3.8) are necessary but
can not guarantee the stability of the truncated supersymmetric sector. Still,
assuming that the number of Hα fields is large, nh � 1, and that there is no large
hierarchy between the masses in the truncated sector and the supersymmetry
breaking scale (as in LVS), we were able to derive generic constraints on the
geometry of the moduli space. In particular, we have shown that positive values
of the bisectional curvatures B[X,λ] considerably improve the stability of the
supersymmetric sector, as is summarised in Table 5.1.

We have analysed in detail a class of models which includes physically relevant
scenarios, and for which the conditions (5.3.8) are necessary and sufficient for the
stability of the supersymmetric sector. This also allows us to perform a detailed
study of the scalar mass spectrum and establish specific criteria to achieve tachyon-
free spectra. This class of models is characterised by an almost separable Kähler
function:
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G(H, H̄, Li, L̄) = Gh(H, H̄) +Gl(L, L̄) + εGmix(H, H̄, L, L̄),

with ∂αGh|H0
= ∂αGmix|H0

= 0 and ε� 1.

When the parameter ε is set to zero, this type of Kähler function describes a large
class of no-scale models, and in particular it includes the effective supergravity
description of type-IIB compactifications to zero-order in α′ and non-perturbative
corrections. In the latter case the fields Hα are identified with the dilaton and
complex structure moduli, and Li with the Kähler sector. When ε is small but
non-zero, this type of theories include models with a similar structure to the
effective description of LVS, where the magnitude of ε is suppressed by the volume
of the compact space, ε ∼ 1/V. We have then studied case by case the typical
scalar mass distribution of the supersymmetric sector and its dependence on the
parameters appearing in (5.3.8). A fundamental quantity that determines the
stability of field configurations is the mass scale of the supersymmetric sector in
units of the gravitino mass, denoted by mh. This parameter is defined in such a
way that typically the fermion masses are distributed in the interval mλ ∈ [0,mh].
When the mass scale of the supersymmetric sector is larger than the gravitino
mass, mh > 1, the typical spectrum has the following general features:

• At Minkowski vacua the spectrum has no tachyons in the fully separable case
(ε = 0). However, depending on the parameters, the scalar mass spectrum
may contain a significant fraction of fields with can be much lighter than
the gravitino.

• Minkowski configurations are very susceptible to become tachyonic when
the Kähler function has a small non-separable term, for instance with
ε ∼ O(10−1 − 10−2). However, in LVS the parameter ε ∼ 1/V is exponen-
tially small, and in practice we recover the fully separable case, for which
Minkowski vacua are metastable.

• In the regime mh ∼ O(1− 102), typical field configurations always become
tachyonic for sufficiently large values of the ratio γ = H2/m2

3/2.

• When the mass scale mh is much larger than the gravitino mass, mh �
nh � 1, the supersymmetric sector is always stable. This is precisely the
hierarchy needed in KKLT type of stabilisation mechanisms.

Conversely, when the mass scale of the supersymmetric sector is smaller than
the gravitino mass, mh < 1, the spectrum displays a mass gap which protects
the stability of the truncated sector. Therefore, provided the non-separable
corrections to the Kähler function are small, the truncated sector is typically
stable in the regime mh < 1, regardless of the ratio H/m3/2. Interestingly, in this
regime, the configuration of the supersymmetric sector always corresponds to
minima of the Kähler function G. The presence of the mass gap in the spectrum
suggests that the robust stability properties of the minima of G will survive
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in more realistic models where the truncation of the supersymmetric sector
is only approximate. Therefore, the minima of the Kähler function can be of
interest in exploring new stabilisation mechanisms, for example in cases where
the supersymmetric sector is not protected by a large mass hierarchy, as in KKLT
constructions, or where the non-separable corrections in the Kähler function are
small but not exponentially suppressed as in Large Volume Scenarios.

From our analysis it follows that, in general, supersymmetric AdS minima
are more difficult to realise than the stabilisation of a supersymmetric sector,
when this sector is embedded in a theory where supersymmetry is spontaneously
broken. In other words, a decoupled supersymmetric sector can be stabilised
at configurations which do not correspond to supersymmetric minima in
the absence of supersymmetry breaking. This discussion already allows us
to understand the situation in LVS in relation to the random supergravity
analysis that we have performed here and the one in [212]. Recall that in
LVS all moduli can be stabilised in a very model-independent way, while the
fraction of configurations of the complex structure moduli which correspond to
supersymmetric minima of the potential induced by fluxes is exponentially small
Psusy ∼ exp(−8n2

h/m
2
h) [212]. Conversely, our results indicate that there can be

a large fraction of stable configurations for the supersymmetric moduli when the
supersymmetry breaking effects are included, Pstable ∼ O(1). This can be easily
understood from the discussion in the previous paragraph: by considering only
supersymmetric AdS minima of the scalar potential induced by the fluxes, we
are discarding most configurations where the supersymmetric sector is stable.
Actually, the non-generic couplings between the supersymmetric sector and the
remaining moduli can turn all the Breitenlohner-Freedman allowed tachyons of
supersymmetric critical points into stable modes. In Large Volume Scenarios the
no-scale structure of the Kähler sector is fundamental in order to achieve the
stabilisation of the supersymmetric moduli.

Many interesting questions regarding the implications for inflation in super-
gravity arise from our analysis. In particular, it is important to understand
which situations lead to a supersymmetric sector with a scalar mass distribution
where all the scalar field masses remain much larger than the Hubble scale, since
this would describe a stable supersymmetric sector with suppressed isocurvature
fluctuations. It would also be useful to study the inflationary constraints in
particular models where inflation is driven by a field orthogonal to the sGoldstino
direction, or in other words, a field contained in the supersymmetric sector, as in
[86]. Last, it is interesting to understand why there is an optimum negative value
for ∂mλ/∂X that optimises the stability, as well as the effect of this term in the
scalar spectral density and its physical interpretation.
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