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4
Sgoldstino inflation

In this chapter we continue the discussion on the effect of additional fields during
inflation, but in the context of supergravity theories. Also, we will not discuss
the explicit integration of heavy fields and their effect from an EFT point of view,
but rather the decoupling between different sectors of the theory. In particular,
we will discuss the decoupling between supersymmetric and non-supersymmetric
sectors for a special type of couplings during the inflationary stage. We will
see that even when a heavy sector is decoupled and stable, its influence on
the dynamical sector can be translated into constraints. In chapter 5 we will
discuss more general couplings and also the possibility of finding stable vacua.
Meanwhile, in this chapter we discuss the possibility that inflation is driven by
the sgoldstino, the superpartner of the goldstino. Unlike in generic supergravity
scenarios, the sgoldstino decouples from all other fields in the theory, which
allows for a simple and robust inflationary model. We argue that the two-field
model given by this single complex scalar correctly captures the full multi-field
inflationary phenomenology, that is, the non-inflationary sector is consistently
truncated. On the other hand, the assumption of stability, along the entire
inflationary trajectory, of the supersymmetry–preserving sector that is integrated
out leads to supplementary constraints on the parent supergravity. We investigate
small field, large field and hybrid sgoldstino inflation scenarios and provide some
working examples. They are subject to the usual fine-tuning issues that are
common to all supergravity models of inflation. We comment on some other
proposed sgoldstino inflation models.

4.1 Introduction

Scalar fields are abundant in supersymmetric theories. They all couple to
each other with at least gravitational strength interactions. Planck-suppressed
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Sgoldstino inflation

couplings are generically unimportant when describing processes at low energies,
but such a decoupling does not work for inflation. This can be most easily
inferred from the slow roll parameters, which get contributions from dimension
five and six operators that are unsuppressed. Describing inflation in a generic
supergravity model is thus a challenging task, as generically the scalar field
dynamics pose a complicated multi-field problem, as already explained in sections
1.4 and 1.5.

There are good reasons why a single-field description is desirable. In line with
Ockham’s razor, it is the simplest model that fits the data. Multi-field slow-roll
inflation with several (real) light fields has been studied for over a decade [88–91]
(see [92, 96] and references therein), and is very constrained by the observations,
in particular through the tight limits on isocurvature modes and non-gaussianity
that we have reviewed in section 1.3. However, it is technically challenging to
obtain single-field behavior in a full multi-field set-up.

As we have extensively described in the previous chapters, if there are turns
in the inflationary trajectory, derivative interactions between the inflaton and the
heavy fields can become transiently strongly coupled. These lead to features and
non-gaussianity in the spectrum of primordial perturbations that would not be
inferred from the naive EFT. Careful integration of the heavy fields recovers the
general low energy effective field theory of inflation including a variable speed of
sound for the adiabatic perturbations [98–101, 107, 176]. These interactions are
unavoidable whenever the potential “valley” provided by the multi-field potential
deviates from a geodesic of the multi-field sigma model metric. A corollary
from the point of view of inflationary model building is that, when it comes to
precision cosmology, the field space geometry of the “spectator” heavy fields
(that are supposed to sit at their adiabatic minima during slow-roll inflation) is
as important as their masses and couplings inferred from the potential alone.

Among the many scalars in a supersymmetric theory, the sgoldstino field
stands out. The sgoldstino is the scalar partner of the goldstino, and belongs
to the chiral superfield whose non-zero F-term breaks supersymmetry. It has
the special property [82, 102, 177] that it decouples from all other fields in the
theory. More precisely, setting all other superfields at the minimum of their
potential is a consistent truncation from the N = 1 supergravity multi-field
parent theory to an effective N = 1 supergravity with a single chiral superfield,
the sgoldstino. In particular, the (real, two-dimensional) sgoldstino plane is a
geodesically generated surface of the Kähler metric in the parent theory, so there
are no derivative interactions with the truncated heavy fields: all turns in the
inflationary trajectory are entirely confined to the sgoldstino plane. The effects of
the fluctuations of the heavy fields are suppressed by their mass squared exactly
as one would expect from an EFT expansion. This makes the sgoldstino an
ideal inflaton candidate, for it allows for a description of inflation in terms of

88



4.1. Introduction

a single complex field. From the point of view of inflationary modeling this is
still multi-field inflation (with two real fields), but this two-field model is not a
toy model, it really is the correct effective description for the full multi-field system.

If inflation is effectively driven by a single real scalar field, the inflaton, this
can be identified with a suitable linear combination of the real and imaginary
parts of the sgoldstino field. Meanwhile, the orthogonal combination is to remain
stabilized at a local minimum of the potential during inflation. The effect of
turns in the trajectory on the spectrum of primordial perturbations have to be
taken into account when comparing to observations, but at least they can be
calculated from the two-field model (see [93–95, 103, 178] and references therein).

Needless to say, this does not mean that all other scalars in the theory
(from the supersymmetry-preserving superfields) can be completely neglected,
as they have to be stabilised in a minimum of the potential during inflation.
Even though the sgoldstino decouples from these fields, vice versa this is not
true: the masses and couplings of all other fields generically depend on the field
value of the sgoldstino field. As during inflation the sgoldstino evolves along its
inflationary trajectory, the masses of the scalars change. If the inflaton is the
sgoldstino, they will remain at the critical points, but they may become light or
even tachyonic, triggering a waterfall-type exit from inflation that is not seen in
the two-field model, and that most likely would ruin inflation. Although it is still
a complicated task to determine the minimum of the multi-field potential along
the inflationary trajectory, it is much simpler than the full multi-field dynamics
needed for a generic inflationary model in supergravity.

The potential energy density driving inflation breaks supersymmetry
spontaneously [179, 180]. This source of supersymmetry breaking in the inflaton
sector is always present during inflation, and is in principle independent of the
source of vacuum supersymmetry breaking. For sgoldstino inflation there are two
possibilities. First, the same superfield that drives inflation is also responsible for
low energy supersymmetry breaking1. This would be the ideal situation. Not
only does inflation decouple from all other fields in the theory, it also links the
scale of inflation to the scale of supersymmetry breaking. The second possibility
is that the two sources of supersymmetry breaking are due to different fields.
Both sources may be operative during inflation, or alternatively, it may be that
only after inflation has ended, a phase transition takes place generating our
present-day supersymmetry breaking. In both cases the present day sgoldstino
field is not the sgoldstino during inflation.

The decoupling of the sgoldstino from the other fields fits in with recent

1This possibility has been discussed in [181–183] but as we will show it is difficult to implement
in practice.
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Sgoldstino inflation

work on how to incorporate different fields, or sets of fields, in a supergravity
set-up minimizing the coupling between them [82–85, 184–191]. Quite commonly
different sectors – e.g. the fields and couplings responsible for supersymmetry
breaking, for inflation, for moduli stabilisation, or making up the standard model
– are combined by simply adding their respective Kähler- and superpotentials.
However, following this procedure one cannot completely decouple these sectors.
Even if the Kähler and superpotential do not contain direct interaction terms
between fields in different sectors, the resulting scalar potential does. There are
always at least Planck-suppressed interactions between the fields, and generically
the mass matrix is not block diagonal in the different sectors. This complicates
the analysis of the full model enormously. Sectors are affected by the presence of
others, and although they work in isolation, they may no longer do so in the full
set-up. Moreover, heavy fields generically cannot be integrated out in a consistent
supersymmetric way.

The cross-couplings between sectors can be minimised if instead of adding
Kähler and superpotentials, one adds the Kähler invariant functions G = K +
ln |W |2 for the two sectors [83, 192]. This approach allows to integrate out fields
in a supersymmetry preserving way [82]. In Ref. [83] the addition of Kähler
functions was used to couple a supersymmetry breaking moduli sector (fields Xi)
to a supersymmetry preserving sector, for example the standard model (fields zi):

Gtot(Xi, X̄ ī, zi, z̄ī) = g(Xi, X̄ ī) +Gother(zi, z̄ī). (4.1.1)

In this work we use the same idea to couple a supersymmetry breaking inflationary
sector (fields Xi) to a supersymmetry preserving sector (zk)2. For simplicity
we restrict to effectively single field inflation, and models with a single inflaton
field X. As supersymmetry is broken during inflation, the inflaton is then the
sgoldstino. As it turns out, the ansatz (4.1.1) is actually too strict. We can allow
for explicit couplings between the inflaton and the other fields, of the form

G(X, X̄, zk, z̄k̄) = g(X, X̄) +
1

2

∑
i≥j

[
(zi − (zi)0)(zj − (zj)0)f (ij)(X, X̄, zk, z̄k̄)

+(zi − (zi)0)(z̄j̄ − (z̄j̄)0)h(ij)(X, X̄, zk, z̄k̄) + h.c.

]
(4.1.2)

with f, h arbitrary functions of their arguments. This is the most general ansatz
consistent with X being the sgoldstino. The explicit X-dependence in the second
term does not spoil the decoupling of the inflaton field, because the mass matrix
remains block diagonal in the two sectors as long as the fields zi sit at the
supersymmetric critical point (zi)0 during inflation (recall section 1.4.2). As
we will show, during sgoldstino inflation the Kähler function G is well defined,

2In [193] the separable form (4.1.1) was used to combine hybrid inflation with a supersymmetry
breaking moduli sector in a successful way. In this set-up the inflaton is not the sgoldstino.
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4.1. Introduction

i.e. the superpotential is non-zero, maybe except from isolated points in field space.

Single field inflation can be divided into three main classes: large field, small
field and hybrid inflation. We discuss whether and how sgoldstino inflation might
work in these three regimes. Any supergravity model of inflation has to address
the η-problem, as explained in section 1.4.1; this puts bounds on the Kähler
geometry [194–196], since the spectator sector must remain stabilised in order
to keep inflation going. As a summary of our findings, we find for these three
different regimes the following:

• Large field sgoldstino inflation does not work, at least not for potentials
that grow at most polynomial.

• Hybrid inflation provides the most natural embedding for sgoldstino inflation.
Indeed, usual F-term hybrid inflation is an example of having a sgoldstino
inflaton. In this set-up supersymmetry is restored in the vacuum, and there
is no relation with low energy supersymmetry breaking. More complicated
waterfall regimes may be devised, such that supersymmetry is broken in
the minimum after inflation. However, such an analysis is multi-field, and
complicated multi-field dynamics enters via the back door again.

• Small field inflation offers the best possibility to link inflation to supersym-
metry breaking. Naively all that is needed is finding and tuning a saddle
or maximum in a single field potential with a supersymmetry breaking
Minkowski minimum. We only find inflection points suitable for inflation
rather than a maximum or saddle point. Inflection point inflation yields
[197, 198] a low spectral index ns ≤ 0.92 − 0.93 (for N = 50 − 60 efolds),
which is ruled out by the CMB data, cf. eq. (1.2.22). However, in principle
one may add non-canonical kinetic terms to alter this prediction, at the cost
of tuning more coefficients. Interestingly enough, models in which super-
symmetry is broken after inflation are much easier to embed in a multi-field
set-up than models with a supersymmetry preserving vacuum. Finally, we
comment on some claims in the literature for small field sgoldstino inflation
[182, 183, 199] with no or very little fine-tuning. We will explain why these
models cannot work.

Summarising, in this work we provide a systematic approach in which the addi-
tional sector of fields is consistently truncated in a supersymmetric way, and we
provide working examples which illustrate the fact that fine-tuning is necessary
in generic supergravity models in order to achieve successful inflation. As empha-
sised along this manuscript, it is of great importance to provide mechanisms that
explain the consistent truncation of additional non-inflating degrees of freedom,
especially in high-energy theories where their presence is inevitable. Addition-
ally, the requirement of stabilisation imposes further constraints in the parent
supergravity, which will be generalised in the next chapter.
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Sgoldstino inflation

4.2 Decoupling of the sgoldstino

In this section we show the decoupling of the sgoldstino field explicitly. In the
first subsection we derive the mass matrix, which is block diagonal along the
sgoldstino inflation trajectory. We will argue in subsection 4.2.2 that the Kähler
function for a dynamical sgoldstino field can always be put in the form (4.1.2).
In subsection 4.2.3 we show that this sgoldstino trajectory is independent of the
field values of all the other fields. Vice versa that is not the case: the dynamics
of the supersymmetry-preserving fields does depend on the sgoldstino field. Care
must be taken so that these fields remain stabilised along the full inflationary
trajectory. Finally, in subsection 4.2.4 we discuss the special limit of separable
Kähler functions (4.1.1), which is a non-generic type of coupling, where the results
of [83] are retrieved. In the next chapter we will discuss physical frameworks for
which quasi-separable Kähler functions naturally arise.

4.2.1 Mass matrix

We start with the general formula for the mass matrix, then specialise to sgoldstino
inflation. For the sake of clarity, we will repeat some of the formulas and statements
established in section 1.4, where the basic notation is outlined, and refer to the
reader to that section for conventions, and to appendix A for a translation of
quantities in terms of G to quantities in terms of K and W . The scalar potential
can be expressed solely in terms of the Kähler function3 G = K + ln |W |2:

VF = eG[GIG
IJ̄GJ̄ − 3], (4.2.1)

with I, J running over all fields ΦI . The mass matrix is given by

M =

(
M I
J M I

J̄

M Ī
J M Ī

J̄

)
, M I

J = GIK̄∇K̄∇JV, M I
J̄ = GIK̄∇K̄∇J̄V, (4.2.2)

where ∇KvL = ∂KvL−ΓMKLvM is the covariant derivative of some vector vL. The
eigenvalues and eigenvectors of the mass matrix correspond to the m2–values and
mass eigenstates respectively. The first derivative of the potential is

VK = GKV + eG[GI∇KGI +GK ] (4.2.3)

where we used metric compatibility ∇KGIJ̄ = 0, ∇KGI = δIK and introduced the

notation VK = ∂KV , GI = GIJ̄GJ̄ . Stationarity is not assumed, as the inflaton
field is displaced from its minimum during inflation. The second derivatives of

3This procedure is ill defined for W = 0. To cure this, one can use the variable φ ≡ eG

instead, which remains well defined [200]. However, in the next section we show that W = 0 at
most in isolated points in field space.
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4.2. Decoupling of the sgoldstino

the potential are

∇L̄∇KV = (GKL̄ −GKGL̄)V + 2G(KVL̄) (4.2.4)

+ eG[GIJ̄(∇L̄GJ̄)(∇KGI)−RIJ̄KL̄GIGJ̄ +GKL̄] ,

∇L∇KV = (∇(LGK) −G(KGL))V + 2G(KVL) + eG[2∇(KGL) +GI∇(L∇K)GI ] ,

where round brackets denote symmetrisation. We used that [∇L̄,∇K ]GI =
∇L̄∇KGI = −RKL̄IJ̄GJ̄ .

Now consider F-term breaking of supersymmetry, signalled by a non-zero
GX 6= 0. Here X is the scalar component of the chiral superfield which also
contains the goldstino. Note that one can always make a field redefinition such
that only one linear combination of fields breaks supersymmetry. All other fields
in the theory, denoted by zi (indexed by lower case latin letters), do not break
supersymmetry. Hence, we split the fields in ΦI = {X, zi}, with

GX |z0 6= 0, Gi|z0 = 0 (4.2.5)

at some point in field space z0 = {(z1)0, (z2)0, ...}, the so-called supersymmetric
critical point.

We are interested in a cosmological situation, in which X(t) is the inflaton
rolling along some trajectory with VX 6= 0. While the inflaton rolls in the X-
direction, we want all orthogonal fields zi to remain extremised at z0. To that
end we demand that

(∂X)
m

(∂X̄)
n
Gi|z0 = 0, ∀m,n ∈ N. (4.2.6)

Indeed, from (4.2.3), we then have that

Vi|z0 = GiV + eG[GP∇iGP +Gi] = eGGX∇iGX = 0. (4.2.7)

For notational convenience we dropped the |z0 on the right hand side, but the
reader should keep in mind that all expressions should be evaluated at z = z0.

Thus zi = (zi)0 is an extremum of the potential. To see whether this is a
maximum, minimum or saddle point, we must calculate the eigenvalues of the
mass matrix, which need to be positive definite for a stable minimum. This
analysis is simplified because (4.2.5) assures the mass matrix is in block diagonal
form, i.e. MX

i |z0 = M X̄
i |z0 = 0. To prove this last statement, it is enough to show

the block diagonal form of the second covariant derivatives, as it follows from
(4.2.6) that the field metric GIJ̄ |z0 is block diagonal as well. The first equation in
(4.2.4) gives for mixed indices

∇ī∇XV |z0 = (GXī −GXGī)V + 2G(XVī)

+ eG[GKL̄(∇īGL̄)(∇XGK)−RKL̄XīGKGL̄ +GXī]

= −eGGXGX̄RXX̄Xī = 0 . (4.2.8)
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Sgoldstino inflation

In the first step we used (4.2.5, 4.2.6) and that ∇iGX |z0 = ∇XGi|z0 = 0; in the
second step that RXX̄Xī|z0 = Gjī∂X̄ΓjXX = 0 as well, which also follows from
(4.2.6). The second equation in (4.2.4) likewise vanishes for mixed indices:

∇i∇XV |z0 = (∇(iGX)−G(XGi))V+2G(XVi)+eG[2∇(XGi)+G
K∇(i∇X)GK ] = 0.

(4.2.9)

4.2.2 Kähler invariant function for sgoldstino inflation

Let us quickly comment on our use of the Kähler function G = K+ln |W |2, rather
than expressing results in terms of the Kähler potential and superpotential. The
potential danger in using G is that it becomes undefined when W = 0. However,
it is easy to show that for sgoldstino inflation we nowhere have W = 0, except
maybe for isolated points in field space. Therefore the Kähler function G is well
defined. To illustrate this, consider a theory with two chiral fields – the extension
to many fields is straightforward – with a superpotential W = W (X,Z). For
sgoldstino inflation, with X the goldstino superfield, we have

DXW |{X(t),Z0} 6= 0, DZW |{X(t),Z0} = 0, (4.2.10)

with DXW = KXW +WX the Kähler covariant derivative. Setting W = 0 along
the whole trajectory implies

W |{X(t),Z0} = 0 ⇒ WX |{X(t),Z0} = 0 ⇒ DXW |{X(t),Z0} = 0 (4.2.11)

in contradiction with (4.2.10). Therefore the superpotential can only vanish for
sgoldstino inflation at accidental zeroes at isolated points in field space (possibly
on the trajectory, but this does not change our conclusions).

As a side remark, note that when the inflaton is identified with the Z field
rather than the sgoldstino field X, as for example in the models of Ref. [86], it is
possible to have W = 0, DXW |{X0,Z(t)} 6= 0 and DZW |{X0,Z(t)} = 0 along the
whole trajectory {X0, Z(t)}, as already mentioned in section 1.4. In this case the
Kähler invariant function is not well defined, and a description in terms of K and
W is needed. Despite this, let us stress that the physical quantities, such as the
scalar potential and its derivatives, are well defined in any case.

Expanding the Kähler function around the supersymmetry critical point
zi = zi0, the most general form for sgoldstino inflation – satisfying (4.2.5) and
(4.2.6) – can be written as in eq. (4.1.2).

4.2.3 Inflationary trajectory

We have seen in subsection 4.2.1 that along the inflationary trajectory all super-
symmetry preserving fields are extremised at zi = zi0. Since the mass matrix
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4.2. Decoupling of the sgoldstino

is block diagonal, we can determine the stability of the zi extremum from the
sub-block ofM with zi indices. It can easily be shown that the inflaton trajectory
itself is independent of the field values of the other fields. Indeed, the poten-
tial along the inflationary trajectory only depends on the function g(X, X̄) in
(4.1.2), and is thus independent of the field values of all other fields. The height
V0 ≡ V |z0 , slope and second derivatives of the inflaton potential are given by
(4.2.1, 4.2.3, 4.2.4) with I, J only running over X and G→ g. For example we
have

V0 = eg
[
gXg

XX̄gX̄ − 3
]
, (4.2.12)

VX |z0 = gXV0 + eg
[
gX∇XgX + gX

]
. (4.2.13)

In contrast, the mass matrix along the orthogonal directions does depend on the
inflaton field value. We find

M i
j |z0 = Gik̄∇k̄∇jV

= Gik̄
[
Gjk̄V0 + eG[Glm̄(∇k̄Gm̄)(∇jGl)−RXX̄jk̄GXGX̄ +Gjk̄]

]
= eg

[
δij(b+ 1) + xim̄x

m̄
j + wij

]
(4.2.14)

and

M ī
j |z0 = Gīk∇k∇jV

= Gīk
[
∇(kGj)V0 + eG[2∇(jGk) +GX∇(k∇j)GX ]

]
= eg

[
xīj(b+ 2) + yīj

]
. (4.2.15)

Here we introduced the notation

b = V0e−g = g
X
gX − 3 (4.2.16)

xīj = Gīk∇kGj = Gīk∇jGk (4.2.17)

wij = −Gik̄GXGX̄RXX̄jk̄ (4.2.18)

yīj = GīkGX∇(k∇j)GX . (4.2.19)

Note that b = V0/m
2
3/2 gives the height of the potential in units of the gravitino

mass. During slow-roll this is approximately b ' 3H2/m2
3/2.

The functions b, x, y, w can be expressed in terms of the functions f, g, h
appearing in the Kähler function (4.1.2). In general, the constraint that the
squared masses should be positive is complicated, but there is a situation in
which it simplifies considerably. As discussed in the next section, if the Kähler
function is separable [83, 84], the matrices y and w vanish and the constraint only
involves the eigenvalues of the x matrix. The diagonalisation for separable and
quasi-separable Kähler functions is performed in detail in appendix B.
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4.2.4 Separable Kähler function

Let us consider a set-up with separable Kähler functions [83–85]:

G(X, X̄, zi, z̄i) = g(X, X̄) + g̃(zi, z̄i), (4.2.20)

For the separable Kähler function above (4.2.20) all mixed derivatives of G, such
as GzzX , cancel. With this simplification

b = g
X
gX − 3, xīm = g̃īkg̃km, yīj = wij = 0. (4.2.21)

We now consider the case with only one z field, which turns xīj into a scalar. As
one can always diagonalise the matrix x, this simplification precisely gives the
result along one of the eigenvectors, and thus can be straightforwardly generalised
to several z fields. We recover the system studied in [83]4:

Mz
z |z0 = eg[(b+ 1) + |x|2], M z̄

z |z0 = eg(b+ 2)x, (4.2.22)

which has eigenvalues5

m2
±|z0 = eg

[
1 + b+ |x|2 ± |(2 + b)x|

]
= eg

[(
|x| ± 1

2
|b+ 2|

)2

− b2

4

]
. (4.2.23)

The function b is bigger, equal or smaller than zero for a dS, Minkowksi or AdS
universe, respectively. Take b ≥ 0; in the opposite limit the masses m2

− and m2
+

are exchanged. The smallest mass eigenstate is positive m2
− > 0, i.e., the z-field

is stabilized along the inflationary trajectory, for |x| < 1 or |x| > (1 + b). We will
put this analysis in practice for sgoldstino inflation in subsection 4.3.2 (hybrid
inflation) and 4.3.3 (small field inflation).

Close to the instability bounds |x| / 1 or |x| ' (1 + b) the spectator field z
is lighter than the Hubble scale, and cannot be integrated out. In a Minkowski
vacuum after inflation either b = 0 or b → ∞; the latter case may occur in
a supersymmetric vacuum with W → 0. For b = 0, the masses reduce to
m2
± = m2

3/2 (1± |x|)2
, with m3/2 the gravitino mass. For |x| > 1, the lightest

scalars from the supersymmetric sector are heavier than the gravitino. However, for
|x| < 1 the lightest of the two eigenstates is lighter than the gravitino and cannot
be neglected from a low–energy description. This will play an important role
later. In the supersymmetric vacuum with b→∞ we find m2

± ≈ V0(1± |x|)→ 0,
and the spectators are massless. To avoid a plethora of massless fields in the
theory, one has to either break the supersymmetry, or else go beyond the simple
separable form of the Kähler function (4.2.20).

4The definition of b is different from [83], which has b↔ b− 3.
5See appendix B for further details.
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4.3. Single field sgoldstino inflation

4.3 Single field sgoldstino inflation

In this work we focus on effectively single field inflation models, for simplicity.
The inflaton, a real scalar, is identified with a suitable linear combination of the
real and imaginary parts of the sgoldstino field; the orthogonal combination is
to remain stabilised at a local minimum of the potential during inflation. For
the purpose of this chapter, we will not take into account the dynamics of the
stabilised field, since the aim of this chapter is to show the restrictions on the
parent supergravity, but for a complete and consistent description one should
also take into account the dynamics of the stabilized field, as stressed along this
thesis.

Single field inflation can be divided into three classes: small field, large
field and hybrid inflation. In the first two cases, if the model only contains
a single chiral superfield, the inflaton is automatically the sgoldstino. If
several fields are present, as is the case for hybrid inflation, one has to be
more careful, as the sgoldstino does not have to coincide with the inflaton direction.

As is well known any supergravity model of inflation has to address the η-
problem [179, 201, 202], which has been explained in section 1.4.1, together with
its possible solutions. In the remainder of this section we will discuss large field,
small field and hybrid sgoldstino inflation, and how the η-problem may or may
not be addressed in each case.

4.3.1 Large field inflation

In models of large field inflation [203], the inflaton field traverses super-Planckian
distances in field space during inflation. For a potential dominated by a single
monomial during inflation, V ∼ λφn, the slow roll parameters

ε =
1

2

(
Vφ
V

)2

, η =
Vφφ
V

, (4.3.1)

both scale as η, ε ∼ 1/φ2, and are automatically suppressed for super-planckian
field values. At first sight, no tuning of the potential is needed. However, the
problem is that for such large field values all non-renormalisable operators are
unsuppressed. Therefore, an explicit UV completion of the model is needed to
determine whether inflation is possible.

Embedding large field inflation in supergravity provides a better control over
the UV behavior of the theory. Because of the η-problem such an embedding is far
from straightforward, as the potential grows exponentially rather than polynomial.
Fine-tuning η is not an option, as η has to be small along the whole inflationary
trajectory, which spans super-Planckian distances in field space ∆φ > 1 (in
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Planck units). This is in contrast with small field inflation, discussed in subsection
4.3.3, where the η-problem can be solved by tuning η at a single point in field space.

Instead of fine-tuning, we can try to solve the η-problem by invoking a shift
symmetry [80]. Consider a Kähler function G = K(X − X̄), which is symmetric
under a shift X → X+c with c a real constant. Since G does not depend explicitly
on φ ∝ Re(X), the exponent in the scalar potential is independent of φ and there
is no η-problem. However, since we need a slope for the potential in order to
obtain inflation, the shift symmetry needs to be weakly broken. To assure the
breaking does not reintroduce exponential terms that ruin inflation, we add a
logarithmic term G = K(X − X̄) + ln |W (X)|2 with W not growing faster than
power law. Let us, for instance, consider a canonical Kähler potential6 with a
shift symmetry and a polynomial superpotential:

K =
1

2

(
φ+ φ̄

)2
, W =

∑
n

λnφ
n (4.3.2)

Let us assume that the real part of the field α = (φ + φ̄)/2 is stabilised at the
critical point α = 0. The scalar potential and the potential slow-roll parameters
for the imaginary part β = (φ− φ̄)/2i are the following:

V (β) =
∑
n

|λn|2β2n

(
n2

β2
− 3

)
, (4.3.3)

εV =
2

β2

∑
n,m nm|λn|2|λm|2β2(n+m)

[
n(n−1)
β2 − 3

] [
m(m−1)

β2 − 3
]

∑
n,m |λn|2|λm|2β2(n+m)

(
n2

β2 − 3
)(

m2

β2 − 3
) , (4.3.4)

ηV =
2

β2

∑
n n|λn|2β2n

[
n(2n−3)(n−1)

β2 − 3(2n− 1)
]

∑
n |λn|2β2n

(
n2

β2 − 3
) . (4.3.5)

We now distinguish two situations:

• If all the coefficients λn are of the same order, the highest monomial will
dominate for values of the field β > MP. Given this, we must require that
n2 > 3β2 along the whole trajectory in view of eq. (4.3.3), so n� 1 in any
case. The slow-roll parameters are approximately given by:

εV ≈
2n2

β2
> 6 , ηV ≈

4n2

β2
> 12 (4.3.6)

Clearly we cannot achieve inflation in this situation.

6Generalising to non-canonical terms is straightforward, since along the inflaton trajectory
these become constant and can therefore be absorbed in a redefinition of the fields.
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• If we tune the coefficients such that all the terms are equally important in
the large field regime, we need:

|λ0| � |λ1| � · · · � |λn| (4.3.7)

At the same time, the highest monomials must cancel the negative con-
tributions to the scalar potential coming from the lowest monomials, that
is:

|λn−p|2 ≥
|λp|2

β2(n−2p)

∣∣∣∣ p2 − 3β2

(n− p)2 − 3β2

∣∣∣∣ , p < n/2 (4.3.8)

As argued before, fine-tuning along the whole (large field) trajectory is not
a viable option.

Although we did the analysis for a single field, this straightforwardly generalises
to the multi-field case. If the inflaton is the sgoldstino, it decouples from the other
fields, and its potential can be analysed independently and will always be of the
form (4.3.3). We conclude that large field sgoldstino inflation in a supergravity
model does not work as it is plagued by an instability in the scalar potential.

We note that it is certainly not impossible to have large field inflation in
supergravity, only that it does not work with a single chiral superfield. Two-field
models have been constructed that avoid the instability [80, 86], employing a shift
symmetry to address the η-problem. However, in these models the inflaton is not
the sgoldstino (rather the sgoldstino is the orthogonal field).

4.3.2 Hybrid inflation

Hybrid inflation is a multi-field model of inflation which in addition to the inflaton
contains one or more so-called waterfall fields, which serve to end inflation [204].
During inflation the waterfall fields are stabilised in a local minimum, and inflation
is effectively single field. If the inflaton field drops below a critical value, one
of the waterfall fields becomes tachyonic, and inflation ends with a phase transition.

Standard F-term hybrid inflation [205, 206] is an example of sgoldstino inflation.
The Kähler function is of the separable form (4.2.20) discussed in section 4.2.4.

G = g(X, X̄) + g̃(χ1, χ̄1, χ2, χ̄2), (4.3.9)

with7

g = XX̄ + ks(XX̄)2 + ln |κX|2 + ..., g̃ = χ1χ̄1 + χ2χ̄2 + ln |χ1χ2 − µ2|2 + ...

7To see that this setup is indeed of the general form (4.1.2), one can move a factor of ln |µ2|2
from g̃ to g and Taylor expand the remaining ln |χ1χ2

µ2 − 1|2.

99



Sgoldstino inflation

x

b
Unstable

H
yb
rid

Sm
al
lF
ie
ld

Sm
al
lF
ie
ld

Figure 4.1 – (Figure adapted from [83, 85].) Stability diagram for the separable case
G = g(X, X̄) + g̃(z, z̄). The variables on the axes b, x are defined in (4.2.21), with x one

of the eigenvalues of the xīj matrix. The masses of the spectator fields are positive in
the shaded region, while the unstable region signals a tachyonic mode. The black arrow
represents the inflationary trajectory for the proposed hybrid set-up, which ends when one
of the spectator fields (the waterfall fields) becomes tachyonic. Also shown are possible
inflationary trajectories for small field inflation (red arrows).

The inflaton φ is identified with the real direction via the decomposition
X = (φ + iθ)/

√
2. Inflation takes place for large φ > φc =

√
2µ, and all other

fields stabilised at zero field value. The potential along the inflationary trajectory
is

V = κ2µ4
(
1− 2ksφ

2 + ...
)

(4.3.10)

The η-problem is solved via a moderate fine-tuning of ks . 10−2. During inflation

GX =
√

2
φ + φ√

2
+ ksφ

3

√
2

and Gχ1 = Gχ2 = 0. Hence φ is indeed the (real part

of the) sgoldstino field. The Minkowski minimum after inflation is at X = 0,
and |χ1| = |χ2| = µ. In the minimum GX = Gχ± = 0 and supersymmetry is
restored, and therefore there is no relation between inflation and low energy
supersymmetry breaking.

The masses of waterfall fields along the inflationary trajectory can be
found using the results of section 4.2.4. The mass eigenstates are the linear
combinations χ± = (χ1 ± χ2)/

√
2. Using these as a basis the matrix xĩm becomes
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diagonal during inflation. This shows that we can restrict our attention to
only one of the complex fields χ±, the other field will give the same masses
for its two real degrees of freedom. Now we can directly compute the masses
from (4.2.23). The stability region as a function of b and |x| is plotted in Fig
4.1. The inflationary trajectory corresponds to a vertical trajectory in the
plot, going upwards as the field rolls down. When it irrevocably hits the insta-
bility region (i.e. when the lower mass eigenvalue becomes negative), inflation ends.

We note that a similar stability analysis can be done for all models of sgoldstino
inflation. Whereas hybrid inflation critically makes use of the instability regions,
for any non-hybrid scenario — being it small or large field inflation — the
inflationary trajectory would have to stop before reaching the instability region.
This is automatic for |x| < 1, otherwise the stability conditions place an upper
bound on b during inflation. We will return to this point shortly when discussing
small field inflation.

4.3.3 Small field inflation

Inflation in small field models [9, 10] takes place for sub-Planckian values of the
inflaton field. This allows for a Taylor expansion of the inflaton potential around
its Minkowski minimum. If one term in the polynomial expansion dominates
during inflation, the slow roll parameters blow up: ε, η ∼ 1/φ2 in the small field
limit, prohibiting inflation. The only way to get around this conclusion is that
several terms in the expansion conspire together to nearly cancel, thus obtaining
small slow-roll parameters.

This motivates to consider inflation near an extremum – a maximum, saddle
point or inflection point – of the potential. This assures that the first slow
roll parameter ε vanishes. The η-parameter can be made small by tuning
the parameters in the potential. Since the inflaton field traverses only small,
sub-Planckian distances in field space, tuning the curvature of the potential at a
single point (the extremum) suffices, in contrast with large field inflation.

We were able to construct a fine-tuned small field inflation model in super-
gravity containing only a single chiral field. In such a set-up the inflaton is
automatically the sgoldstino, and our example is proof of principle for small field
sgoldstino inflation. Consider a model with8

K =
∑
n

αn(XX̄)n, W =
∑
n

λnX
n. (4.3.11)

We decompose the complex scalar X = (φ + iθ)/
√

2 with φ the inflaton field.
The model parameters λn, αn can be tuned in such a way that the potential

8 This ansatz (4.3.11) is equivalent to G =
∑
n=1 αn(XX̄)n + log |

∑
n=0 λnX

n|2.
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allows for inflation near an inflection point which, without loss of generality, is
located at the origin (φ, θ) = (0, 0), and a Minkowski minimum at finite field
value (φ, θ) = (φ0, 0). In particular, we demand

• Vanishing slope and curvature of the potential at the origin 1) Vφ|(0,0) = 0
and 2) Vφφ|(0,0) = 0.

• The height 3) V |(0,0) ≡ V0 of the potential at the origin is fixed by the
normalisation of the power spectrum given by the data.

• After inflation the inflaton settles in a local Minkowski minimum with 4)
V |(φ0,0) = 0 and 5) Vφ|(φ0,0) = 0. Moreover, the masses are positive definite
6) m2

i |(φ0,0) > 0.

• Along the whole trajectory, from the extremum to the minimum, the
orthogonal field is stabilized 7) Vθ = Vφθ = 0 and 8) m2

θ & H2.

We consider solutions with canonical kinetic terms, i.e. we set α1 = 1 and αi = 0
for i 6= 1. To satisfy conditions 1-5 we need at least five parameters and choose
them accordingly. We take all λi real, and consider the first five in the expansion.
Tuning is required to satisfy conditions (2) and (4) — the smallness of η parameter
and of the cosmological constant — in the usual sense that large contributions
should nearly cancel. Conditions 6-8 are then checked for consistency, but do not
require any new input. Setting the minimum at φ0 = 1 we find two inflationary
inflection point solutions9

{λ0, λ1, λ2, λ3, λ4} =

√
V0

23
× {3,−5

√
2, 3, 0, 2}, (4.3.12)

and

{λ0, λ1, λ2, λ3, λ4} =

√
V0

19
√

73
× (4.3.13){

3

√
39287− 1464

√
6,

√
2
(

543551− 19764
√

6
)
,

3

√
39287− 1464

√
6, 0,−2

√
4943− 1152

√
6

}
,

and all other λi are zero.

Both examples above correspond to inflection point inflation, rather than to
inflation near a maximum or saddle point. This is unfortunate, as for inflection
point inflation the spectral index is bounded to be ns ' 0.92, which is ruled
out. We review this argument in appendix C. However, the spectral index can

9λ3 = 0 only vanishes for φ0 = 1, but is non-zero for other positions of the minima.
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Figure 4.2 – Scalar potential for small field inflation corresponding to the first solution
(4.3.12).

be larger if the cubic term is absent or unnaturally small, as is the case for
inflation at a maximum rather than an inflection point. Then the correction to
the spectral index (B.0.4) is set by the quartic term in the Taylor expansion
around the extremum, rather than by cubic term, with an upper bound ns . 0.95.
In our set-up this would require an extra tuning condition Vφφφ ≈ 0; without it
we always find a saddle point.

The first solution above (4.3.12) has a supersymmetric Minkowksi minimum.
In this scenario the supersymmetry breaking observed today is not related to the
supersymmetry breaking during inflation. The second solution (4.3.13), however,
does end in a supersymmetry breaking minimum, and the gravitino mass today
can be related to the inflationary scale. The gravitino mass is m3/2 ∼ 10−7 in
Planck units, see appendix C.

There is a huge difference between the two solutions when combined with
other spectator fields. The first solution has a supersymmetry preserving vacuum
in which W → 0. Although at this exact point our description in terms of a
Kähler function G breaks down, we can nevertheless describe the behavior of
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x

b

Figure 4.3 – Stability plot of the spectator z-fields for a separable Kähler function
G = g(X, X̄) + g̃(z, z̄). The trajectories for small field inflation are vertical lines, going
upward (red) to infinity for solution (4.3.12) which has a supersymmetry preserving
vacuum, and downward (black) to zero for (4.3.13) which has a supersymmetry breaking
vacuum. Dashed lines indicate unstable trajectories. The position on the horizontal axis
depends on the specifics of the spectator sector. Solution (4.3.12) always leads to an
instability for |x| > 1.

the potential as we approach this singular limit. We find that b ∝ V0/W0 →∞,
which implies that if we draw the stability diagram for the simplified case
of separable Kähler functions (4.2.20), see Fig. 4.3, this inflationary model
corresponds to vertical trajectories going upwards to infinity. The position on
the horizontal axis given by |x| depends on the specifics of the spectator sector,
but it is clear that for all |x| > 1 one of the fields becomes tachyonic as the
inflaton approaches its minimum, and the potential is unstable. Hence, solution
(4.3.12) with a supersymmetry vacuum can only be combined with different
fields if this extra sector has |x| < 1 (for several fields the eigenvalues of the |x|2
matrix should all be less than unity, and in fact in chapter 5 we will consider the
statistical properties of a truncated sector with a large number of fields). This
puts enormous limitations on the spectator sector. For |x| < 1 the masses of the
spectator fields vanish in the vacuum, as discussed at the end of section (4.2.4).
However, in a subsequent supersymmetry breaking phase transition they may
pick up a soft mass term. This disastrous conclusion may be avoided by taking
more generic Kähler functions.
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In contrast, solution (4.3.13) has a supersymmetry breaking vacuum, and
the parameter b = V0/W = 0 vanishes in the minimum. The inflaton trajectory
again corresponds to a vertical trajectory in the stability diagram, but now going
downwards. Except for a small region near |x| = 1 there are no instabilities in
the potential, and at least for the separable Kähler function (4.2.20) sgoldstino
inflation can straightforwardly be combined with a spectator sector. In the region
|x| > 1 the spectator fields are heavy in the vacuum and can be integrated out to
get a low energy EFT. In the other limit |x| < 1 the spectator fields are of the
same order as the gravitino mass (see the discussion at the end of section 4.2.4),
and are relatively light.

Other proposals for small field sgoldstino inflation

In the recent literature there have been claims for small field sgoldstino inflation,
with no or very little fine-tuning of the parameters in the potential. As argued
in this paper, unless some symmetry principle is invoked, this is not possible
as the slow roll parameters generically blow up in the small field limit. Indeed
we find that these proposals do not work, although the devil is sometimes
in the details. I will describe one of the setups, which illustrates how to not
deal with multi-field dynamics, and refer to our original paper [3] for further details.

Refs. [182, 183] propose a model of sgoldstino inflation in a single field set-up
without tuning of parameters. To address the η problem they add a logarithmic
term to the Kähler potential

K = XX̄ + aXX̄(X + X̄) + b(XX̄)2 + ...− 2 ln(1 +X + X̄),

W = fX + fnM. (4.3.14)

However, in the small field regime the logarithm can simply be expanded and
does not alter the qualitative structure of the potential. It also does not enhance
the symmetry.

Taking arbitrary parameters, except for the constraint that the minimum
at the origin is stable and has zero cosmological constant, both the epsilon and
eta-parameter exceed unity throughout the whole field space |X| < 1. Slow
roll inflation cannot happen. In [182] it is actually claimed that ε < 1, but
what they calculate is εθ = gθθ(Vθ/V )2, where we again decomposed the field
X = (φ + iθ)/

√
2 and gij is the metric in field space. However, in a situation

where the potential falls much steeper in the φ-direction than in the θ-direction,
this is not the relevant slow roll parameter. Instead, one should use the more
general multi-field generalization ε = gijViVj/V

2.
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Ref. [183] shows inflationary trajectories with a large number of efolds N > 60.
However, their trajectories are calculated in the – non-applicable – slow roll
approximation. For all initial points in field space proposed in [182, 183] we have
solved the full two-dimensional field equations and the slow-roll approximations
to them. In all cases the slow roll solutions wildly diverge from the full solutions,
which can only give inflation for less than an e-fold, confirming once more that
this setup does not provide a slow roll regime. The only way to get inflation in
the set-up of [182, 183], in any case, is to tune parameters near an extremum,
along the lines of our example (4.3.11).

4.4 Conclusions

Inflationary models in supergravity, where the inflaton sits in a complex scalar
superfield, necessarily involve a multi-field analysis. Any extra fields present
during inflation must be integrated out to give an effective single-field slow-roll
dynamics that is consistent with the CMB. However, even very heavy fields
can leave a detectable imprint in the spectrum of primordial perturbations,
in particular through a reduction in the speed of sound of the adiabatic
perturbations, as deeply explained along the previous chapters of this thesis. The
correct effective field theory for the adiabatic mode has a variable speed of sound
that depends on the background trajectory. A necessary condition to recover the
standard single-field slow roll description is that the trajectory should have no
turns into the heavy directions. In this case, the speed of sound is unity, equal to
the speed of light, and integrating out the extra fields gives the same effective
action as truncating the heavy fields at their adiabatic minima.

In supersymmetric models there is an extra complication. One has to
integrate out whole supermultiplets in order to obtain an effective supergravity
description for the remaining superfields. This is only possible if the superfields
that are being integrated out are in configurations that do not contribute to
supersymmetry breaking.

Sgoldstino inflation naturally implements these two conditions. The full
inflationary dynamics is confined to the sgoldstino plane. Putting the scalar
components of all other superfields at their minima is a consistent truncation of
the parent theory. This makes sgoldstino inflationary models extremely attractive,
because of their simplicity and robustness.

We have analysed sgoldstino inflation scenarios exploiting the fact that the
Kähler function G = K + log |W |2 has a relatively simple separable form which
allows some aspects to be analysed in a model-independent way. We derived a
necessary and sufficient condition on the Kähler function for the stability of the
supersymmetry-preserving sector, the spectator fields that are integrated out.
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Figure 4.1 shows the constraint for a separable Kähler function, in particular for
hybrid F-term inflation (which is a well studied case of sgoldstino inflation) and
small field inflation.

In the case of small field sgoldstino inflation we were able to provide some
viable fine-tuned examples around inflection points. The spectral index is rather
low, but a higher spectral index would be possible with additional fine-tuning.
Rather surprisingly, the inflationary model can only be straightforwardly combined
with a spectator sector if the minimum after inflation breaks supersymmetry. In
our inflation example with a supersymmetry preserving Minkowski vacuum the
spectator sector is very constrained by the condition that there should be no
tachyonic modes in the system. This is illustrated in figure 4.3.

Summarising, in this work we provide proof of principle for the viability of
inflationary models where the supersymmetry breaking field is the inflaton. More
importantly, the presence of an additional sector that preserves supersymmetry
can be incorporated in the description if the decoupling and stability constraints
are satisfied.

Here we restricted the analysis to inflationary dynamics and a separable
Kähler function, but in the next chapter we extend the analysis to more general
Kähler functions, and we derive constraints using the supersymmetric and non-
supersymmetric directions, not only for the inflationary dynamics but also for
a stationary vacuum. Moreover, we will give an example in which the quasi-
separable (non-generic) structure of the Kähler function is naturally realised.
In order to study systems with a large number is fields in the supersymmetric
sector, we also use random matrix theory techniques to describe their statistics.
This completes the picture of constraints on inflation in supergravity due to the
presence of additional fields.
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