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3
Inflation with moderately sharp

features in the speed of sound: GSR
and in-in formalism for power

spectrum and bispectrum

In this chapter we continue the study of mild transient reductions in the speed
of sound of the adiabatic mode during inflation, of their effect on the primordial
power spectrum and bispectrum, and of their detectability in the CMB. We
focus on the regime of moderately sharp mild reductions in the speed of sound
during uninterrupted slow-roll inflation, a theoretically well motivated and self-
consistent regime that admits an effective single-field description. The signatures
on the power spectrum and bispectrum were previously computed using a slow-
roll Fourier transform (SRFT) approximation, based on the in-in formalism,
as reviewed in the previous chapter. Here we compare it with more complete
generalised slow-roll (GSR) and in-in methods, for which we derive new formulas
that account for moderately sharp features. The agreement between them is
excellent, and also with the power spectrum obtained from the numerical solution
to the equation of motion. We show that, in this regime, the SRFT approximation
correctly captures with simplicity the effect of higher derivatives of the speed
of sound in the mode equation, and makes manifest the correlations between
power spectrum and bispectrum features. In the previous chapter, based on [1],
we reported hints of these correlations in the Planck data and here we perform
several consistency checks and further analyses of the best fits, such as polarisation
and local significance at different angular scales. For the data analysis, we show
the excellent agreement between the CLASS and CAMB Boltzmann codes. Our
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results confirm that the theoretical framework is consistent, and they suggest that
the predicted correlations are robust enough to be searched for in CMB.

3.1 Introduction

The paradigm of inflation as the explanation for the origin of cosmic structures
has entered a decisive new phase. The latest data releases by the Planck [32]
and WMAP [31] collaborations point towards models of inflation that produce
a slightly red-tilted primordial power spectrum and a negligible amount of
scale-independent bispectra, as predicted [33, 38, 39] by the simplest models of
cosmological inflation1, but with a mild deficit of power on large scales. There
are also mild hints of scale-dependent features in the CMB power spectrum
[31, 113] and in the primordial bispectrum [48]. Besides this, the discovery of
B-mode polarization by BICEP2 [55], if it is confirmed to be result of primordial
tensor modes, would have striking implications and put inflation on a much
firmer footing. A large tensor-to-scalar ratio of r ∼ O(0.1) suggests – again, in
the context of canonical models – a high scale of inflation around 1016 GeV, a
Hubble parameter H ∼ 1014 GeV during inflation and a large, transplanckian
excursion in field space for the inflaton [56].

According to [155], there is currently a “very significant tension” (around 0.1%
unlikely) between the Planck temperature (r < 0.11 95%c.l.) and BICEP2 polar-
ization (r = 0.2+0.05

−0.07) results. Recently, several fundamental/phenomenological
models with features in the primordial spectra, such as sharp transition in the
slow-roll parameters [156], false vacuum decay [157], initial fast roll [158], a
non-Bunch-Davies initial state [159], or a bounce before inflation [160], among
others, were proposed to explain the observed power deficit on large angular
scales by Planck experiments. Alternatively, the tension could be resolved with
new data releases.

Another consequence of the BICEP2 results is that a large tensor-to-scalar
ratio seems to indicate a high energy scale of inflation around the grand
unification theory (GUT) scale. If confirmed, one would need to find a successful
UV embedding of the theory, and also deal with the problem of mass hierarchies
in the presence of multiple degrees of freedom. This is challenging, but not
impossible, and it seems that the energy range available could in principle host
the inflaton and the possible additional UV degrees of freedom, while preserving
a manageable mass hierarchy for which an effective single field theory is still
possible. The BICEP2 results also suggest that the inflaton field underwent
a super-Planckian excursion, which makes the theory very sensitive to higher
dimensional operators. While we expect a (mildly broken) symmetry protecting

1These are slow-roll inflation models involving a single neutral scalar field with a canonical
kinetic term and in the Bunch-Davies vacuum.
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the overall flatness of the potential, this also leaves room for the presence of
transient phenomena happening along the inflationary trajectory.

Among other phenomena, transient variations in the speed sound of the
adiabatic mode may occur in the presence of additional degrees of freedom
during inflation. For instance, when an additional heavy field can be consistently
integrated out [104, 106, 107, 109, 110, 161], inflation is described by an effective
single-field theory [98–100, 104, 107, 109] with a variable speed of sound. In
particular, changes in the speed of sound result from derivative couplings2

[101, 103, 106–109, 162–164]. Transient variations in the speed of sound will
produce correlated features in the correlation functions of the adiabatic curvature
perturbation [98, 111, 112, 124, 132, 133, 137, 165]. They are worth taking into
account since we expect them to be very good model selectors.

The detection of transients poses some interesting challenges. The effects of a
feature in the potential or a localised change in the speed of sound depend on its
location (in time or e-folds), its amplitude and the sharpness (or inverse duration).
If transients are too sharp, they can excite higher frequency modes that make
the single-field interpretation inconsistent (see, for example, [104, 106, 166]).
Notably, the best fit found so far in the data for a step feature in the potential
[113, 142, 167] falls outside the weakly coupled regime that is implicitly required
for its interpretation as a step in the single field potential [168, 169]. On the
other hand, if the features are too broad, their signature usually becomes
degenerate with cosmological parameters, making their presence difficult to
discern. There is an interesting intermediate regime where the features are
mild (small amplitude) and moderately sharp, which makes them potentially
detectable in the CMB/LSS data, and also they remain under good theoretical
control. This regime is particularly important if the inflaton field excursion is
large and can reveal features in the inflationary potential and the presence of
other degrees of freedom. At the same time, if slow-roll is the result of a (mildly
broken) symmetry that protects the background in the UV completion, the same
symmetry might presumably preclude very sharp transients.

In this chapter, based on [2], we study mild and moderately sharp fea-
tures in the speed of sound of the adiabatic mode, that we define to be
those for which the effects coming from a varying speed of sound are small
enough to be treated at linear order, but large enough to dominate over the
slow-roll corrections. This carries an implicit assumption of uninterrupted
slow-roll3. We will show that this regime ensures the validity of the effective single-
field theory, even though our analysis is blind to the underlying inflationary model.

2Or equivalently, turns in field space.
3In the particular case of reductions in the speed of sound coming from turns along the

inflationary trajectory, this has been shown to be a consistent scenario.
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In order to compare any model with data, it is important to develop fast
and accurate techniques to compute the relevant observables of the theory, in
this case, correlations functions of the adiabatic curvature perturbation. The
calculation of correlation functions is often rather complicated and the use of
approximate methods is needed. The study of transients often involves deviations
from slow-roll and may be analysed in the generalised slow-roll (GSR) formalism
[112, 124–130, 170]. This approach is based on solving the equations of motion
iteratively using Green’s functions. Although this formalism can cope with more
general situations with both slow-roll and speed of sound features, one usually
needs to impose extra hierarchies between the different parameters to obtain
simple analytic solutions.

A notable exception that is theoretically well understood is a transient, mild,
and moderately sharp reduction in the speed of sound such as would be found
in effectively single-field models with uninterrupted slow-roll inflation, obtained
by integrating out much heavier fields with derivative couplings that become
transiently relevant. In this regime, an alternative approach is possible, that
makes the correlation between power spectrum and bispectrum manifest [111].
The change in the power spectrum is simply given by the Fourier transform of the
reduction in the speed of sound, and the complete bispectrum can be calculated
to leading order in slow-roll as a function of the power spectrum. Hence we name
this approximation slow-roll Fourier transform (SRFT). One of the aims of our
work is to compare the GSR and SRFT approaches. In order to do this, we
develop simple expressions within the GSR approach and the in-in formalism for
computing the changes in the power spectrum and bispectrum due to moderately
sharp features in the speed of sound. These are new and extend the usual GSR
expressions for very sharp features.

The other aim of this work is to further scrutinise and validate the results of
our previous work [1], presented in chapter 2, where we searched for moderately
sharp features in the Planck CMB data. We reported several fits to the CMB
power spectrum and gave the predicted, correlated, oscillatory signals for the
primordial bispectrum. The functional form of the speed of sound was inspired
by soft turns along a multi-field inflationary trajectory with a large hierarchy
of masses, a situation that is consistently described by an effective single-field
theory [102, 103, 106–108, 136].

In the first part of this chapter we study the intermediate regime of moderately
sharp features in the speed of sound during uninterrupted slow-roll, in which both
the SRFT and GSR approaches can give accurate results. More precisely:

• In section 3.2.1 we review the SRFT results for the power spectrum and
bispectrum, and in section 3.2.2 we develop a simple formula within the
GSR formalism that reduces to the SRFT result for nearly all scales and is
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valid for arbitrary functional forms of the speed of sound within the regime
we study.

• In section 3.2.3, by comparing both results with a numerical solution for
the power spectrum, we show that the SRFT method correctly captures the
effect of all the terms in the equation of motion in a very simple way, while
the GSR method requires the inclusion of higher derivatives of the speed
of sound to match the numerical result. Nevertheless, there is excellent
agreement between both results with the numerical solution.

• Then we turn to the bispectrum. In section 3.2.4 we compute the features
in the bispectrum using the in-in formalism, and we take into account the
effect of additional operators with respect to previous results [124]. We
show that, for transient reductions of the speed of sound, the contributions
arising from the operators proportional to the amount of reduction and to
the rate of change are of the same order, independently of the sharpness
of the feature. In addition, because we study the not-so-sharp regime, we
compute the linear correction to the approximation that other quantities
do not vary during the time when the feature happens.

• In section 3.2.5 we compare the bispectra obtained with the SRFT approach
and with the moderately sharp approximation, finding remarkable agreement
for several functional forms of the speed of sound.

In the second part of this paper we perform a number of additional consistency
checks regarding the theoretical framework and the statistical analysis described
in the previous chapter. In particular:

• In section 3.3.1 we explain the choice of parameter space used for our
statistical search of transient reductions of the speed of sound in the Planck
data, which was designed to be theoretically consistent. In section 3.3.2 we
check that adiabatic and unitary regimes are respected, and therefore the
fits found in the data can be consistently interpreted as transient reductions
in the speed of sound.

• In section 3.3.3 we analyse the implications of the BICEP2 results for the
consistency of an effective single-field description of inflation. We conclude
that, even with a inflationary scale at the level of the GUT scale, a single-
field description may be possible, and we argue that moderately sharp
reductions of the speed of sound are completely consistent with an adiabatic
evolution, i.e. an effective single-field regime.

• In section 3.3.4 we review the main results of our previous work [1] and
make an independent consistency check using two different Boltzmann
codes and MCMC samplers, namely CLASS+Monte Python versus
CAMB+CosmoMC, finding great agreement. We explicitly give the (small)
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degeneracy of the cosmological parameters with the parameters of our model.
Last, we also show the polarisation spectra and the local improvement of
our fits to the CMB power spectrum as a function of the angular scale.

Finally, we leave section 3.4 for conclusions and outlook.

3.2 Moderately sharp variations in the speed of
sound: primordial power spectrum and bis-
pectrum

In the framework of the effective field theory (EFT) of inflation [98] one can
write the effective action for the Goldstone boson of time diffeomorphisms π(t,x),
directly related to the adiabatic curvature perturbation R(t,x) via the linear
relation4 R = −Hπ. Let us focus on a slow-roll regime and write the quadratic
and cubic actions for π:

S2 =

∫
d4x a3M2

PlεH
2

{
π̇2

c2s
− 1

a2
(∇π)

2

}
, (3.2.1)

S3 =

∫
d4x a3M2

PlεH
2

{
− 2Hsc−2

s ππ̇2

−
(
1− c−2

s

)
π̇

[
π̇2 − 1

a2
(∇π)

2

]}
, (3.2.2)

where ε = −Ḣ/H2 and we are neglecting higher order slow-roll corrections, as
well as higher order terms in u and s, defined as:

u ≡ 1− c−2
s , s ≡ ċs

csH
. (3.2.3)

In this section we compare the different approaches to evaluating the power
spectrum and bispectrum of the adiabatic curvature perturbation from (3.2.1)
and (3.2.2) with a variable speed of sound, and show the excellent agreement
between them.

The Slow-Roll Fourier Transform (SRFT) approach, developed in [111], is
briefly reviewed in section 3.2.1. The advantage of this method is that one obtains
very simple analytic formulas for both the power spectrum and bispectrum
computed from (3.2.1) and (3.2.2). More importantly, correlations between
features in the power spectrum and bispectrum show up explicitly. In section
3.2.2 we review the generalised slow roll (GSR) formalism [112, 121, 124, 125, 130–
132, 170] and compute the power spectrum from the quadratic action (3.2.1)

4In this work, we do not need to consider non-linear correction terms, since we are in a
slow-roll regime. For further details on this, see [39].
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in the moderately sharp approximation. This method applies to more general
situations where slow-roll is not necessarily preserved, but it requires solving
iteratively the equations of motion, which include higher derivatives of the speed
of sound. The GSR formalism gives very simple expressions in the case of very
sharp features and has been used to calculate the effect of steps in the potential
and in the speed of sound (see, for example, [124, 129]).

In section 3.2.3 we compare both methods with the power spectrum obtained
from the numerical solution to the mode equations. We show that the SRFT
method correctly captures the effect of higher derivative terms of the speed of
sound in a very simple way, while the GSR method requires the inclusion of
all terms in the equations of motion to match the numerical result at all scales
(especially at the largest scales).

Then we turn to the bispectrum. In section 3.2.4 we compute the bispectrum
from the cubic action (3.2.2) using an approximation for sharp features as in
[124], but including the next order correction and additional operators. Last,
in section 3.2.5 we check that the agreement with the SRFT result [111] is
excellent. An important point we show is that the contributions to the bispectrum
arising from the terms proportional to (1− c−2

s ) and s in (3.2.2) are of the same
order, independently of the sharpness of the feature. We also eliminate the small
discrepancy found in [124] between their bispectrum and the one obtained with
GSR [121] for step features in the scalar potential, due to a missing term in the
bispectrum.

3.2.1 Power spectrum and bispectrum with the SRFT
method

In this formalism [111] we assume an uninterrupted slow-roll regime, which is
perfectly consistent with turns along the inflationary trajectory. In order to
calculate the power spectrum, we separate the quadratic action (3.2.1) in a free
part and a small perturbation:

S2 =

∫
d4x a3M2

PlεH
2

{
π̇2 − 1

a2
(∇π)

2

}
−
∫
d4x a3M2

PlεH
2

{
π̇2
(
1− c−2

s

)}
,

(3.2.4)
Then, using the in-in formalism [40, 41], the change in the power spectrum due to
a small transient reduction in the speed of sound can be calculated to first order
in u ≡ 1− c−2

s , and it is found to be [111]

∆PR
PR,0

(k) = k

∫ 0

−∞
dτ u(τ) sin (2kτ) , (3.2.5)

where k ≡ |k|, PR,0 = H2/(8π2εM2
Pl) is the featureless power spectrum with

cs = 1, and τ is the conformal time. We made the implicit assumption that
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the speed of sound approaches to one asymptotically, since we are perturbing
around that value5. Here we see that the change in the power spectrum is
simply given by the Fourier transform of the reduction in the speed of sound.
Notice that the result above is independent of the physical origin of such reduction.

For the three-point function, we take the cubic action (3.2.2), written to first
order in u and s, which implies that we must have |u|max, |s|max � 1. We also
disregard the typical slow-roll contributions that one expects for a canonical
featureless single-field regime [39]. Therefore, for the terms proportional to u and
s to give the dominant contribution to the bispectrum, one must require that u
and/or s are much larger than the slow-roll parameters, i.e. max(u, s)� O(ε, η),
as we will recall in section 3.3.1. Using the in-in formalism, one finds [111]:

∆BR(k1,k2,k3) =
(2π)4P2

R,0

(k1k2k3)2
× (3.2.6)

{
−3

2

k1k2

k3

[
1

2k

(
1 +

k3

2k

)
∆PR
PR,0

− k3

4k2

d

d log k

(
∆PR
PR,0

)]
+ 2 perm

+
1

4

k2
1 + k2

2 + k2
3

k1k2k3

[
1

2k

(
4k2 − k1k2 − k2k3 − k3k1 −

k1k2k3

2k

)
∆PR
PR,0

−k1k2 + k2k3 + k3k1

2k

d

d log k

(
∆PR
PR,0

)
+
k1k2k3

4k2

d2

d log k2

(
∆PR
PR,0

)]} ∣∣∣∣∣
k

,

where ki ≡ |ki|, k ≡ (k1 + k2 + k3)/2, and ∆PR/PR,0 and its derivatives are
evaluated at k. From the result above it is clear how features in the power
spectrum seed correlated features in the bispectrum. Note that in the squeezed
limit (k1 → 0, k2 = k3 = k) one recovers the single-field consistency relation
[39, 171].

In the following sections, we compute the power spectrum and bispectrum
using alternative methods and compare the results.

3.2.2 Power spectrum in the GSR formalism

One can calculate the power spectrum by solving iteratively the full equations of
motion (first in [125, 170] and further developed in [112, 121, 126, 127, 130, 131]).
The idea is to consider the Mukhanov-Sasaki equation of motion with a time-
dependent speed of sound, namely:

d2vk(τ)

dτ2
+

(
c2sk

2 − 1

z

d2z

dτ2

)
vk(τ) = 0 , (3.2.7)

5At the level of the power spectrum, the generalisation to arbitrary initial and final values of
the speed of sound cs,0 is straightforward, provided they are sufficiently close to each other.

60



3.2. Moderately sharp variations in the speed of sound: primordial
power spectrum and bispectrum

with v = zR, z2 = 2a2M2
Plεc

−2
s and

1

z

d2z

dτ2
= a2H2

[
2 + 2ε− 3η̃− 3s+ 2ε(ε− 2η̃− s) + s(2η̃+ 2s− t) + η̃ξ̃

]
, (3.2.8)

where we have used the following relations6:

ε = − Ḣ

H2
, η̃ = ε− ε̇

2Hε
, s =

ċs
Hcs

, t =
c̈s
Hċs

, ξ̃ = ε+ η̃ −
˙̃η

Hη̃
,

(3.2.9)
and here the dot denotes the derivative with respect to cosmic time. Defining a
new time variable dτc = csdτ and a rescaled field y =

√
2kcsv, the above equation

can be written in the form:

d2y

dτ2
c

+

(
k2 − 2

τ2
c

)
y =

g (ln τc)

τ2
c

y , (3.2.10)

where

g ≡ f ′′ − 3f ′

f
, f = 2πzc1/2s τc , (3.2.11)

and ′ denotes derivatives with respect to ln τc. Throughout this section (and only
in this section), unless explicitly indicated, we will adopt the convention of positive
conformal time (τ, τc ≥ 0) in order to facilitate comparison with [127, 131]. Note
that g encodes all the information with respect to features in the background.
In this sense, setting g to zero represents solving the equation of motion for a
perfect de Sitter universe, where the solution to the mode function is well known.
Considering the r.h.s. of equation (3.2.10) as an external source, a solution to the
mode function can be written in terms of the homogeneous solution. In doing so,
we need to expand the mode function in the r.h.s. as the homogeneous solution
plus deviations and then solve iteratively. To first order, the contribution to the
power spectrum is of the form [127]:

lnPR = lnPR,0 +

∫ ∞
−∞

d ln τcW (kτc)G
′ (τc) , (3.2.12)

where the logarithmic derivative of the source function G reads:

G′ = −2(ln f)′ +
2

3
(ln f)′′ , (3.2.13)

and the window function W and its logarithmic derivative (used below) are given
by

W (x) =
3 sin (2x)

2x3
− 3 cos (2x)

x2
− 3 sin (2x)

2x
, (3.2.14)

W ′(x) ≡ dW (x)

d lnx
=

(
−3 +

9

x2

)
cos(2x) +

(
15

2x
− 9

2x3

)
sin(2x) . (3.2.15)

6Note that η̃ corresponds to η2/2 as defined in (1.2.4).
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If we consider moderately sharp features in the speed of sound, such that ε, η̃ � s, t,
the leading contribution to the function G′ is the following:

G′ = −2

3
s+

2

3

(
aHτc
cs
− 1

)2

+
2

3

(
aHτc
cs
− 1

)
(4− s)+1

3

(
aHτc
cs

)2

s (−3 + 2s− t) ,

(3.2.16)
where t is defined in (3.2.9). Moreover, when |s| � 1 but t & O(1), the logarithmic
derivative of G is approximately given by:

G′ ' s− ṡ

3H
, (3.2.17)

where we have used that aHτc/cs ' 1 + s. This result agrees with the results of
[131] in the mentioned limits. In this approximation, the leading contribution to
the power spectrum is:

lnPR ' lnPR,0 +

∫ ∞
−∞

d ln τc

[
W (kτc)s (τc)−

1

3
W (kτc)

ds

d ln τc

]
. (3.2.18)

Integrating by parts the term proportional to the derivative of s we obtain:

lnPR ' lnPR,0 +

∫ ∞
−∞

d ln τc

[
W (kτc) +

1

3
W ′ (kτc)

]
s (τc)

= lnPR,0 +

∫ ∞
−∞

d ln τc

[
sin(2kτc)

kτc
− cos(2kτc)

]
s (τc) . (3.2.19)

This is the result that we will compare in section 3.2.3 with the SRFT result
(3.2.5). Let us recall that the regime in which this expression has been derived is
for moderately sharp reductions such that O(ε, η) � s � 1 and t & O(1). We
would like to point out that the s term in the source function (3.2.17) provides
the dominant contribution to the power spectrum on large scales. This can be
seen by comparing W and W ′ in (3.2.19), which carry the contribution of s and
ṡ, respectively. We will show in section 3.2.3 that when including this term, the
power spectrum at large scales matches the numerical solution considerably
better (see figure 3.3).

In the following, we will: (i) derive an analytic expression for the power
spectrum (3.2.19) solely in terms of cs in order to connect with the SRFT
approach. (ii) Find an analytic approximation for arbitrary functional forms of
the speed of sound in the moderately sharp regime specified above.

(i) For the first point, one can integrate by parts (3.2.19) in order to get a
formula than only involves the speed of sound. Doing so, we obtain:

lnPR = lnPR,0−
∫ ∞
−∞

d ln τc

[
2 cos(2kτc)−

sin(2kτc)

kτc
+ 2kτc sin(2kτc)

]
ln cs (τc) ,

(3.2.20)
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where we have used that s ' d ln cs/d ln τc and that the asymptotic value of the
speed of sound is one, otherwise the boundary term would not vanish. Therefore,
the expression above is only valid for functional forms of the speed of sound
that satisfy cs(τ = 0) = cs(τ = ∞) = 1. Let us restrict our attention to mild
reductions of the speed of sound |u| = |1− c−2

s | � 1, in which the SRFT approach
is operative. In that case, for mild and moderately sharp reductions, the time τc
is very well approximated by τc ' τ . Furthermore, the logarithmic term of the
speed of sound can be expanded as follows:

ln cs(τ) ' 1

2

(
1− c−2

s (τ)
)

+O(u2) . (3.2.21)

Using the expansion above and the fact that ln(PR/PR,0) = ln(1+∆PR/PR,0) '
∆PR/PR,0, we can write:

∆PR
PR,0

' k
∫ 0

−∞
dτ
(
1− c−2

s

) [
sin(2kτ) +

1

kτ
cos(2kτ)− 1

2k2τ2
sin(2kτ)

]

'


∆PR
PR,0

∣∣∣
SRFT

+O
[
(kτ)2

]
, kτ � 1

∆PR
PR,0

∣∣∣
SRFT

+O
[
(kτ)−1

]
, kτ � 1

(3.2.22)

where we have already returned to negative conformal time. Notice that when
kτ � 1 we retrieve the SRFT expression (3.2.5) with a subleading correction
O(kτ) inside the integral, and that for kτ � 1 we also retrieve the SRFT result.
The regime kτ ∼ 1 will generally involve large scales, where the change in the
power spectrum is small, as can be seen in figure 3.3.

(ii) In what follows we derive an analytic approximation to the power spectrum
(3.2.19) for generic forms of the speed of sound, provided they are moderately
sharp, i.e. O(ε, η)� s� 1 and t & O(1). As in (i), in this regime we can safely
consider τc ' cs,0τ . Let us drop the rest of assumptions made in point (i), which
were only made to establish connection with the SRFT approach. We define the
function X(kτc) ≡ −W ′(kτc)− 3W (kτc), which in general can be decomposed as
follows:

X(kcs,0τ) = pc(kcs,0τ) cos(2kcs,0τ) + ps(kcs,0τ) sin(2kcs,0τ) , (3.2.23)

where pc and ps denote the polynomials multiplying the cosine and sine, respec-
tively. Following [124], we will parameterise c2s in terms of the height σ∗ and the
sharpness βs of the feature, and a function F describing the shape of the variation
of the speed of sound:

c2s(τ) = c2s,0

[
1− σ∗F

(
−βs ln τ

τf

)]
, (3.2.24)
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where τf is the characteristic time of the feature and we take σ∗ � 1 to focus on
small variations. The rate of change in the speed of sound can be written at first
order in σ∗ as follows:

s(τ) = −1

2
σ∗βsF

′
(
−βs ln τ

τf

)
+O

(
σ2
∗
)
, (3.2.25)

where ′ denotes the derivative with respect to the argument. Since we are
considering sharp features happening around the time τf , the functions involved
in the integral (3.2.19) will only contribute for values in the neighbourhood of
τf . Note that for polynomials with negative powers of kτ , the approximation of
evaluating them at kτf fails for small values of kτ , since in that region they vary
very rapidly. This may cause infrared divergences in the spectrum which, as we
will see, can be cured by approximating the polynomials to first order around kτf .

First, we define the variable y ≡ −βs ln (τ/τf ), and we expand the functions
around τ = τf , which is equivalent to y/βs � 1. Then, at first order, the
expansion of X in (3.2.23) reads:

X(kcs,0τ) '

[
pc (kcs,0τf )− y kτf

βs

dpc
d(kτ)

∣∣∣∣
τf

]
cos
[
2kcs,0τf

(
1− y

βs

)]

+

[
ps (kcs,0τf )− y kτf

βs

dps
d(kτ)

∣∣∣∣
τf

]
sin
[
2kcs,0τf

(
1− y

βs

)]
. (3.2.26)

Substituting in (3.2.19) the above expansion and the definition of s (3.2.25), the
change in the power spectrum is given by:

∆PR
PR,0

=
σ∗
6

{[
pc cos θk + ps sin θk

] ∫ ∞
−∞

dy cos

(
θk
βs
y

)
F ′ (y)

+
[
pc sin θk − ps cos θk

] ∫ ∞
−∞

dy sin

(
θk
βs
y

)
F ′ (y)

−kτf
βs

[
dps
d(kτ)

∣∣∣∣
τf

sin θk +
dpc
d(kτ)

∣∣∣∣
τf

cos θk

]∫ ∞
−∞

dy cos

(
θk
βs
y

)
y F ′ (y)

+
kτf
βs

[
dps
d(kτ)

∣∣∣∣
τf

cos θk −
dpc
d(kτ)

∣∣∣∣
τf

sin θk

]∫ ∞
−∞

dy sin

(
θk
βs
y

)
y F ′ (y)

}
,

where θk ≡ 2kcs,0τf . Note that the integrals above are the Fourier transforms of
the symmetric and antisymmetric parts of the derivative of the shape function F .
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We define the envelope functions resulting from these integrals as follows:∫ ∞
−∞

dy cos

(
θk
βs
y

)
F ′(y) ≡ 1

2
DA ,

∫ ∞
−∞

dy sin

(
θk
βs
y

)
F ′(y) ≡ 1

2
DS , (3.2.27)

∫ ∞
−∞

dy y F ′(y) cos

(
θk
βs
y

)
=
βsk

2θk

dDS
dk

, (3.2.28)

∫ ∞
−∞

dy y F ′(y) sin

(
θk
βs
y

)
= −βsk

2θk

dDA
dk

, (3.2.29)

where DS and DA are the envelope functions corresponding to the symmetric and
antisymmetric parts of F , respectively. Finally, the change in the power spectrum
can be written as:

∆PR
PR,0

=
σ∗
12

{[
pc cos θk + ps sin θk

]
DA +

[
pc sin θk − ps cos θk

]
DS

}

− σ∗
24cs,0

{[
dps
d(kτ)

∣∣∣∣
τf

sin θk +
dpc
d(kτ)

∣∣∣∣
τf

cos θk

]
k
d

dk
DS

+

[
dps
d(kτ)

∣∣∣∣
τf

cos θk −
dpc
d(kτ)

∣∣∣∣
τf

sin θk

]
k
d

dk
DA

}
(3.2.30)

Let us stress that the contributions from the second and third lines are comparable
to the ones in the first line. The infrared limit of the symmetric part is finite and
tends to zero, which would not have been the case if we had only considered the
zeroth order terms (first line). We will now substitute the values of the polynomials
for the particular regime we are analysing, pc = 1/3 and ps = −1/(3kcs,0τ). In
this case, the change in the power spectrum reads:

∆PR
PR,0

=
σ∗
36

{[
cos θk −

2

θk
sin θk

]
DA +

[
sin θk +

2

θk
cos θk

]
DS

}

−σ∗
72

{[
4

θ2
k

sin θk

]
k
d

dk
DS +

[
4

θ2
k

cos θk

]
k
d

dk
DA

}
. (3.2.31)

Test for generic variations in the speed of sound

In this section we will test the approximation (3.2.30) in comparison with the
full integral (3.2.19). For the following particular example, we will explicitly
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Figure 3.1 – Speed of sound as defined in (3.2.32) for three different val-
ues of the parameters. We show the power spectra calculated with the
full integral (3.2.19) (dotted line) and with the approximation (3.2.30) (solid
line). The parameters, for the blue, olive and red figures, are respectively
given by: A = [−0.021,−0.0215,−0.0043], B = [−0.043,−0.0086,−0.043],
α2 = [exp(6.3), exp(6.3), exp(7)], β2

s = [exp(6.3), exp(6.3), exp(7)], τ0g =
[− exp(5.6),− exp(5.55),− exp(5.55)], τ0t = [− exp(5.4),− exp(5.55),− exp(5.55)].
For the first set of parameters the symmetric and antisymmetric parts have compa-
rable magnitude, while for the second (third) set of parameters the antisymmetric
(symmetric) part dominates. As can be seen by the very good agreement between
the full integral and the approximation, the chosen parameters are all of them in
the sharp feature regime.

decompose c2s into its symmetric and antisymmetric parts:

c2s = 1 +A
[
1− tanh

(
α ln τ

τ0t

)]
+B exp

[
−β2

s

(
ln τ

τ0g

)2
]

=

{
1 +A+B exp

[
−β2

s

(
ln τ

τ0g

)2
]}

S

+

{
−A tanh

(
α ln τ

τ0t

)}
A

. (3.2.32)
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Figure 3.2 – Here we test when the approximation (3.2.30) starts to break down.
The full integral (3.2.19) is represented by dashed lines while the approximation
(3.2.30) is given by solid lines. We take A = 0, B = −0.043, τ0g = − exp(5.55) for
the three profiles of the speed of sound, and βg = [exp(1), exp(3), exp(11/2)] for
the blue, red and olive figures respectively. We see that the approximation starts to
fail for features with ∆N & 1.

From the definitions (3.2.24) and (3.2.27) , the envelope functions are given by :

DA = −4πA

σ∗

kτ0t
α

1

sinh(πkτ0t/α)
, DS =

4
√
πB

σ∗

kτ0g
βs

exp

(
−
k2τ2

0g

β2
s

)
.

(3.2.33)
Since the symmetric and antisymmetric parts do not necessarily peak at the
same time, the integrands involved in each part take values around τ0g and τ0t ,
respectively. We test our approximation for different values of the parameters
above, and show our results in figure 3.1. We can see that the approximation is
indeed very good, and that it allows to reproduce highly non-trivial power spectra.
By allowing βs and/or α to be small, we can see where the approximation starts
to fail. We show these results in figure 3.2, where one can see that for features
with ∆N & 1 the approximation breaks down.

3.2.3 Comparison of power spectra

In this section we apply both SRFT and GSR methods for moderately sharp
reductions to calculate the change in the power spectrum, and compare them with
the power spectrum calculated from the numerical solution to the mode equation
(3.2.7). We will test a reduction in the speed of sound purely symmetric in the
variable y = −βs ln(τ/τf ):

u = 1− c−2
s = B e−β

2
s(N−Nf )2 = B e

−β2
s

(
ln τ
τf

)2

. (3.2.34)

In figure 3.3 we show the comparison between the power spectrum coming from
the GSR result (3.2.30) with the one coming form the SRFT method (3.2.5), and
with a numerical solution. In general terms, both methods are in good agreement
with the numerical solution. We also note that at large scales the SRFT method
reproduces the numerical results better than the GSR method. This is partly due
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Figure 3.3 – Change in the power spectrum due to a reduced speed of sound given
by (3.2.34), with the following choice of parameters: B = −0.043, βs = 23.34,
ln(τf ) = 5.55, corresponding to one of our best fits to the Planck CMB power
spectrum [1]. LEFT: different methods to compute the primordial power spectrum:
GSR in the sharp feature approach (blue), SRFT (red), and a solution obtained
from the numerical solution to the mode equation (3.2.7) (black dotted). RIGHT:
differences of the GSR sharp feature method (solid blue) and SRFT (red) against the
numerical solution. The dashed blue line is the GSR sharp feature approach if we had
not taken into account the term proportional to s in the source function (3.2.17).
The numerical solution is calculated choosing ε ' 1.25 × 10−4 and η̃ ' −0.02.
Higher values of ε need a proper accounting for the slow-roll corrections.

to the fact that in the GSR approximation we have only taken a subset of the
terms in the source function. The agreement would have been much worse if
we had not taken into account the term proportional to s, as the dashed line in
the right plot of figure 3.3 indicates. Note that kτf ∼ 1 corresponds to the first
peak in the left plot of fig. 3.3 above, precisely the regime where we expect a
discrepancy, as anticipated in eq. (3.2.22).

This shows that, in the regime of moderately sharp variations of the speed of
sound, the simple SRFT formula (3.2.5) is capable of reproducing the effect of
all the terms in the equation of motion, and that there is no need to impose any
further hierarchy between the different terms of the equation of motion in order
to have a simple expression, as long as slow-roll is uninterrupted.

3.2.4 Bispectrum for moderately sharp reductions

In this section we will compute the change in the bispectrum due to moderately
sharp reductions in the speed of sound using the in-in formalism. Instead of the
SRFT method reviewed in section 3.2.1, we will use an approximation based on
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sharp features [124], as for the power spectrum. Our starting point is the cubic
action in the effective field theory of inflation, where we will only take into account
the contribution from variations in the speed of sound at first order:

S3 =

∫
d4x a3M2

Pl

ε

H

{
2Hsc−2

s RṘ2 +
(
1− c−2

s

)
Ṙ
[
Ṙ2 − 1

a2
(∇R)

2

]}
,

(3.2.35)
with R = −πH. For sharp features (βs � 1) and given the parameterisation
in (3.2.24) and (3.2.25), one is tempted to think that the contribution of s will
dominate over the contribution of (1 − c−2

s ). However, we will show that the
contributions arising from both terms are of the same order, independently of
the sharpness βs. As dictated by the in-in formalism, the three-point correlation
function reads:

〈Rk1
Rk2
Rk3
〉 =

〈
Re

{
2iRk1

(0)Rk2
(0)Rk3

(0)× (3.2.36)∫ 0

−∞
dτ

∫
d3x a4M2

Pl

ε

H

[
2Hsc−2

s RṘ2

+
(
1− c−2

s

)
Ṙ3 −H2τ2

(
1− c−2

s

)
Ṙ (∇R)

2
]}〉

,

where we have used that7 a = −1/(Hτ). After expressing the functions R(τ,x)
in Fourier space and using the Wick theorem, we obtain

〈Rk1
Rk2
Rk3
〉 = Re

{
2i uk1

(0)uk2
(0)uk3

(0) (3.2.37)

×
∫ 0

−∞

dτ

τ2

εM2
Pl

H2
(2π)3

∫
d3q1

∫
d3q2

∫
d3q3 δ(q1 + q2 + q3)

×
[
4sc−2

s u∗q1
(τ)u∗′q2

(τ)u∗′q3
(τ)
(
δ(k1 − q1)δ(k2 − q2)δ(k3 − q3)

+{k1 ↔ k2}+ {k1 ↔ k3}
)

−6τ
(
1− c−2

s

)
u∗′q1

(τ)u∗′q2
(τ)u∗′q3

(τ)δ(k1 − q1)δ(k2 − q2)δ(k3 − q3)

−2τ
(
1− c−2

s

)
(q2 ·q3)u∗′q1

(τ)u∗q2
(τ)u∗q3

(τ)
(
δ(k1 − q1)δ(k2 − q2)δ(k3 − q3)

+{k1 ↔ k2}+ {k1 ↔ k3}
)]}

,

where8 uk(τ) = vk(τ)/z (see eq. (1.2.16)) and we have used that

〈Rk(τ)Rq(τ)〉 = (2π)3uk(τ)u∗q(τ)δ (k− q) . (3.2.38)

7Note that the expression a = −1/(Hτ) is only valid for uninterrupted slow-roll. In the
case of slow-roll violations, especially for sharp steps in the potential, the corrections may give
additional contributions to the correlation functions.

8The mode function uk(τ) should never be confused with the reduction in the speed of sound
u(τ) = 1− c−2

s .
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For the leading order contribution, it suffices to use the zeroth-order mode function

uk(τ) =
iH√

4εcs,0k3
(1 + ikcs,0τ) e−ikcs,0τ , (3.2.39)

and the three-point correlation function is then:

〈Rk1
Rk2
Rk3
〉 =
P2
R,0(2π)7M6

Pl

8k3
1k

3
2k

3
3

δ(k1 + k2 + k3) (3.2.40)

×
∫ 0

−∞
dτ

{
cos (Kcs,0τ)

[
4sc−2

s c3s,0τk1k2k3(k1k2 + 2 perm)

− 2τcs,0
(
1− c−2

s

) [
k2

1(k2 + k3)(k2 ·k3) + 2 perm
]]

− sin (Kcs,0τ)
[
4sc−2

s c2s,0(k2
1k

2
2 + 2 perm)− 2

(
1− c−2

s

) [
k2

1(k2 ·k3) + 2 perm
]

− 6τ2c4s,0
(
1− c−2

s

)
k2

1k
2
2k

2
3 + 2τ2c2s,0

(
1− c−2

s

)
k1k2k3

[
k1(k2 ·k3) + 2 perm

]]}
,

where K ≡ k1 +k2 +k3 and9 PR,0 = H2/(8π2εM2
Plcs,0). Before we proceed, some

comments are in order:

• For steps in the potential, one also has to calculate the contribution to
the three-point function coming from similar cubic operators. It is easy to
track the polynomials in ki arising from the different operators if one pays
attention to the form of the mode functions (3.2.39). This way, we noticed
that the result for steps in the potential in [124, eq. 3.32] is missing a term,
so it should display as follows:

G
k1k2k3

=
1

4
εstepD

(
Kτf
2β

)[(
k2

1 + k2
2 + k2

3

k1k2k3τf
−Kτf

)
Kτf cos(Kτf ) (3.2.41)

−

(
k2

1 + k2
2 + k2

3

k1k2k3τf
−
∑
i6=j k

2
i kj

k1k2k3
Kτf +Kτf

)
sin(Kτf )

]

This is indeed good news, since the missing term (+Kτf ) above was the
source of a small discrepancy found by the authors of [124] with respect to
previous results [121], of order 10− 15% on large scales. We have checked
that this discrepancy vanishes when the extra term is introduced.

• We consider sharp features (βs � 1) peaking in τf and define the new
variable y through τ = τf e

−y/βs , as we did for the power spectrum. There
are two kinds of functions appearing in (3.2.40): polynomials and oscillating

9Notice that the definition of PR,0 in section 3.2.1 did not include cs,0, since in the SRFT
approach it is taken to be one.
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functions. For the latter, we substitute τ ' τf (1 − y/βs) and do not
expand further, in order to keep the Fourier transforms. For the former, the
zeroth order approximation τ ' τf (as in [124]) provides excellent results10,
although we take the next order and evaluate them at τ ' τf (1 − y/βs)
to test for not-so-sharp features. We will therefore calculate the first
order correction to previous results. Furthermore we consider, apart from
the operator RṘ2 (proportional to s), two extra contributions Ṙ3 and
Ṙ(∇R)2 (proportional to u) and show that they all contribute at the same
order, independently of the sharpness βs. This is because, although s is
proportional to the sharpness βs, it is also proportional to the derivative
of the shape function, F ′, defined in eq. (3.2.25). On the other hand,
u is proportional to the shape function, but the Fourier transform of F
introduces an additional factor βs relative to the Fourier transform of F ′,
cf. eqs. (3.2.27)–(3.2.29) and (3.2.42)–(3.2.45).

• The integrals in (3.2.40) contain Fourier transforms of the shape function
F and its derivative, given the definitions in (3.2.24) and (3.2.25). The
symmetric and antisymmetric envelope functions arising from the Fourier
transform of F ′ were already defined in (3.2.27)–(3.2.29). For completeness,
we will give the complementary definitions obtained when integrating by
parts: ∫ ∞

−∞
dy F (y) cos

(
θk
βs
y

)
= − βs

2θk
DS , (3.2.42)∫ ∞

−∞
dy F (y) sin

(
θk
βs
y

)
=

βs
2θk
DA , (3.2.43)∫ ∞

−∞
dy y F (y) cos

(
θk
βs
y

)
=

1

2

(
βs
θk

)2(
K
dDA
dK

−DA
)
, (3.2.44)∫ ∞

−∞
dy y F (y) sin

(
θk
βs
y

)
=

1

2

(
βs
θk

)2(
K
dDS
dK
−DS

)
, (3.2.45)

where again θk = Kcs,0τf and the slight change of notation between these
definitions and those in (3.2.27)–(3.2.29) is given by K ↔ 2k. We also
imposed that F asymptotically vanishes when integrating by parts, which
will be the case in this calculation; that is, cs asymptotically approaches
cs,0.

Taking into account the comments above, we calculate the bispectrum to
leading order (3.2.40) for the particular case in which cs,0 = 1, so that we can
compare to the SRFT method described in section 3.2.1. We will express the

10As opposed to the power spectrum, in this case we only have polynomials with positive powers
of kτ , and therefore evaluating them at kτf is already a good approximation for sufficiently
sharp features.
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bispectrum in terms of the normalised scale-dependent function fNL(k1,k2,k3)
defined by:

〈Rk1
Rk2
Rk3
〉 = (2π)3δ(k1 + k2 + k3)∆BR

= (2π)7δ(k1 + k2 + k3)
3

10
fNL(k1,k2,k3)P2

R,0M
6
Pl

k3
1 + k3

2 + k3
3

k3
1k

3
2k

3
3

, (3.2.46)

and we will use the following identities for a triangle of vectors {k1,k2,k3}:

k1(k2 ·k3) + 2 perm =
1

2

[
k3

1 + k3
2 + k3

3 −K(k1k2 + 2 perm) + 3k1k2k3

]
,

k2
1(k2 ·k3) + 2 perm =

1

2

[
k4

1 + k4
2 + k4

3 − 2(k2
1k

2
2 + 2 perm)

]
,

k2
1(k2 + k3)(k2 ·k3) + 2 perm =

1

2

[
K(k4

1 + k4
2 + k4

3)− (k5
1 + k5

2 + k5
3)

−K(k2
1k

2
2 + 2 perm)− k1k2k3(k1k2 + 2 perm)

]
.

Finally, the bispectrum contribution due to variations in the speed of sound as
considered in the cubic action (3.2.35), to first order in the size of the feature σ∗,
and to first order in the polynomial expansion τ ' τf (1− y/βs) reads:

fNL(k1,k2,k3) =
5

24

σ∗
k3

1 + k3
2 + k3

3

(3.2.47)

×

{
cos (Kτf )

{
τ2
f

k1k2k3

K

[
(k3

1 + k3
2 + k3

3) +K(k1k2 + 2 perm)− 3k1k2k3

]
DA

+
τf
K

[
K(k4

1 + k4
2 + k4

3)− (k5
1 + k5

2 + k5
3) +K(k2

1k
2
2 + 2 perm)

− 4k1k2k3(k1k2 + 2 perm) + 3
k1k2k3

K
(k3

1 + k3
2 + k3

3)− 9
k2

1k
2
2k

2
3

K

]
DS

− 3τf
k1k2k3

K

[
(k3

1 + k3
2 + k3

3) +
1

3
K(k1k2 + 2 perm)− 3k1k2k3

]dDS
dK

− 1

K2

[
3K(k4

1 + k4
2 + k4

3)− 2(k5
1 + k5

2 + k5
3)− 4K(k2

1k
2
2 + 2 perm)

− 2k1k2k3(k1k2 + 2perm)
]
DA

+
1

K

[
2K(k4

1 + k4
2 + k4

3)− 2(k5
1 + k5

2 + k5
3)− 2k1k2k3(k1k2 + 2perm)

]dDA
dK

− 1

τfK2

[
(k4

1 + k4
2 + k4

3)− 2(k2
1k

2
2 + 2 perm)

](
DS −K

dDS
dK

)}
+ sin (Kτf )

{
{DS ↔ DA , τf ↔ −τf}

}}
,

where the sin(Kτf ) in the last line contains the same terms as the cos(Kτf ), but
changing DS ↔ DA and τf ↔ −τf , as indicated. This is the formula we want to
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compare with (3.2.6), after proper normalisation. Below, we show the comparison
for different functional forms of the speed of sound.

3.2.5 Comparison of bispectra

In this section we compare the bispectrum obtained using the SRFT method
(3.2.6) with that using the first order approximation for sharp features (3.2.47).
As a first example, one can reproduce our test case of gaussian reductions in the
speed of sound, cf. (3.3.1), by taking:

F = e
−β2

s

(
ln

τ
τf

)2

⇒ 1− c−2
s = −σ∗ e

−β2
s

(
ln

τ
τf

)2

+O (σ∗)
2
, (3.2.48)

where the correspondence between this set of parameters and the one used in [1] is
σ∗ ↔ −B, τf ↔ τ0, and βs ↔

√
β. Thus, we will corroborate that the predictions

for the bispectrum presented in the previous chapter are solid and consistent with
similar methods. In this case F is symmetric in the variable y = −βs ln τ

τf
and

therefore only the symmetric envelope function DS contributes, which is given by

DS = −2Kτf
βs

√
π exp

(
−
K2τ2

f

4β2
s

)
, DA = 0 . (3.2.49)

In figure 3.4 we show the excellent agreement between the results obtained with
(3.2.6) and (3.2.47) for the equilateral limit k1 = k2 = k3. We have checked that
for other configurations in momentum space, such as the folded or the squeezed
shapes, the agreement is very similar. Note that in figure 3.4 we are plotting the
absolute difference in fNL and comparing with the total envelope of the signal11.
At small scales one can see that the relative difference compared to the total
signal is high, due to the fact that the approximation for sharp features starts to
fail for large values of Kτ . However, the absolute signal is insignificant at such
small scales.

As a second example, we propose a shape function with an antisymmetric
part:

F = e
−β2

s

(
ln

τ
τf

)2

+βs ln
τ
τf ⇒ 1−c−2

s = −σ∗
(
τ

τf

)βs
e
−β2

s

(
ln

τ
τf

)2

+O (σ∗)
2
,

(3.2.50)

11We point out that the total envelope of the signal is not given by DS or DA alone. The
total envelope is a combination of both functions, their derivatives, and the polynomials of ki
that appear in (3.2.47).
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Figure 3.4 – LEFT: bispectrum fNL signal in the equilateral limit with the normal-
isation indicated in (3.2.46), given by a symmetric reduction in the speed of sound
as in (3.2.48) (TOP) and an asymmetric reduction as in (3.2.50) (BOTTOM),
calculated with the SRFT formula (3.2.6) (solid) and with the sharp approximation
(3.2.47) (dashed). RIGHT: absolute difference between the signals showed in the
left plot (solid), together with the envelope of the signal (dashed). The gray strips
represent the approximate scales of the first four acoustic peaks of the CMB tem-
perature spectrum. The parameters are σ∗ = 0.04, βs = 25.5, ln(−τf ) = 6. This
gives |s|max ' 0.42 for the symmetric case and |s|max ' 0.55 for the asymmetric
case. Note that in both cases the relative difference with respect to the envelope is
large only at very small scales, which in any case will be indistinguishable at the
observational level. We are also within the limit |s|max < 1, where these signatures
are reliable but sharp enough so that the sharp approximation works.

for which the symmetric and antisymmetric envelope functions read:

DS = −2Kτf
βs

√
π exp

(
β2
s −K2τ2

f

4β2
s

)
cos

(
Kτf
2βs

)
, (3.2.51)

DA = −2Kτf
βs

√
π exp

(
β2
s −K2τ2

f

4β2
s

)
sin

(
Kτf
2βs

)
. (3.2.52)

We show in figure 3.4 the equilateral bispectrum signal produced by the asymmetric
shape (3.2.50), again derived using (3.2.6) and (3.2.47). As one can see in figure
3.4, the agreement is also remarkable for functions with an antisymmetric part.
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3.3 Parameter space and details of the search

In the previous chapter we studied a test case consisting of a gaussian reduction
in the speed of sound [1]. The functional form is inspired by soft turns along a
multi-field inflationary trajectory with a large hierarchy of masses, a situation
that is consistently described by an effective single-field theory and uninterrupted
slow roll [102, 103, 106–108, 136]. We parameterised the reduction in the speed
of sound as a gaussian in e-folds N of inflation:

u = 1− c−2
s = B e−β(N−N0)2 = B e

−β
(

ln τ
τ0

)2

, (3.3.1)

where β > 0 is the sharpness, B < 0 is the amplitude, and N0 (or τ0) is the instant
of maximal reduction. Assuming slow-roll, the conformal time τ is related to the
e-folds of inflation through ln (−τ) = (Nin −N)− ln (ainH0), where ain = a(Nin)
and Nin is the time when the last ∼ 60 e-folds of inflation start. Notice that
the quantity Nin is irrelevant, since all the quantities in e-folds are defined with
respect to Nin.

3.3.1 Choice of parameter space

In the previous chapter we already gave a brief description of the constraints on
our parameter space (see eqs. (2.2.5)), and now let us elaborate on this matter,
which will serve as to connect with the adiabatic condition (1.5.35). There are
two main criteria that we followed in order to determine the parameter regions
that we explored:

(a) The angular scales probed by Planck (` = 2 − 2500) roughly correspond
to certain momentum scales crossing the Hubble sound horizon during the
first NCMB ' 7 e-folds of the last ∼ 60 e-folds of inflation. If the data
resembles features due to a reduced speed of sound, they are most likely to
be found in this “CMB window”, so we choose to ‘look under the lamppost’.
This means that the sharpness β and the position N0 are chosen so that
the reduction happens well within this window. As a by-product, we avoid
degeneracies with the spectral index ns and the optical depth τreio due to
very wide reductions.12

(b) The SRFT calculation of the power spectrum and the bispectrum is valid
for mild and moderately sharp reductions of the speed of sound. Also, the
slow-roll contributions to the bispectrum are disregarded with respect to the
terms arising from the reduced speed of sound [111]. This means that the
amplitude |u| and the rate of change s ≡ ċs

csH
must be much smaller than one,

12 Note that the lamppost is actually bigger, since any feature happening in a particular
window propagates in the primordial power spectra to a bigger region. E.g. modes that leave
the horizon after the reduction in cs has finished are also affected by it. Thus, it would be
interesting to extend our search to larger values of |τ0|.
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while being (at least one of them) much larger than the slow-roll parameters.
As a bonus, later in the text we will argue that |s| � 1 is tightly related to
an adiabatic evolution [106].

We took a very conservative definition for the total width of the reduction
(in e-folds): ten standard deviations, ∆N = 10/

√
2β. Then, from (a), the

position N0 and the sharpness β should satisfy 5
√

2β < N0 < NCMB − 5
√

2β and
10
√

2β < NCMB. As to the perturbative regime, the rate of change s of the speed
of sound (3.3.1) reads:

s(N) =
dcs
csdN

= −Bβ(N −N0) e−β(N−N0)2

1−B e−β(N−N0)2
. (3.3.2)

Since we have to impose |s| � 1 for all values of N , it suffices to impose this
condition at the point where |s| takes its maximum value |s(N∗)| = |s|max,
determined by:

N∗ = N0 ±
1√
2β

√
1 +O(B) ' N0 ±

1√
2β

, (3.3.3)

which approximately corresponds to one standard deviation of our gaussian,
and we have used that |B| � 1. Then the condition |s|max � 1 translates into
β � 2e

B2 + O(B−1). Altogether, the allowed region of our parameter space is
taken to be the one indicated in chapter 2 by eqs. (2.2.5).

Notice that, as explained above in (b), the bound |B| � O(ε, η) can be
avoided if |s|max � O(ε, η). For computational purposes, we use the parameter
ln(−τ0) instead of N0 for the data analysis. The range for this parameter is taken
to be more strongly restricted than by (2.2.5c):

4.4 ≤ ln(−τ0) ≤ 6 , (3.3.4)

The features in the power spectrum and bispectrum are linearly oscillating, as
well as those tested in one of the searches for bispectrum features by the Planck
collaboration [48, sec. 7.3.3]. The oscillatory frequency is determined by τ0, and
the range of frequencies covered in Planck’s bispectrum analysis is equivalent to
the interval ln(−τ0) ∈ [4.43, 5.34], which motivated us to search in the interval
given above. Hence, our search is slightly larger than theirs in this respect, as
explained in detail in section 2.5.

3.3.2 Perturbative unitarity and adiabatic evolution

In the works [168, 169], consistency conditions regarding inflationary models
that produce features were studied. In particular they derive several bounds
from the requirement that the theory describing the features is in the weak
coupling regime. In this section we clarify what these bounds mean in the context
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of soft transient reductions in the speed of sound, in particular for our test case [1].

In [169], they establish a hard upper bound on the sharpness of the feature,
based on the loss of unitarity when the loop contribution to a correlation function
becomes of the same order as the tree level correlator:13 βCBM . 160, where
βCBM (labelled by the initials of the authors of [169]) defines the sharpness of the
feature: βCBM ≡ 1/(H∆t).

Our sharpness parameter β is related to that of [169] by β = 50β2
CBM, where

we took the conservative definition of the width to be ten standard deviations, as
explained in section 3.3.1. This imposes the following bound on our sharpness
parameter:

lnβ . 14 . (3.3.5)

Since we restricted our search to 2 < lnβ < 7.5, the fits we found in that region
[1] are perfectly consistent with the bound given above. Even if we take the crude
definition for the width of only one standard deviation, the correspondence would
be β = β2

CBM, and the bound would translate to lnβ . 10, which still leaves us
in a safe region. The analysis of [168] goes along the same lines as that of [169],
and similar results are obtained. They also identify additional scales above which
the theory breaks down. Given that we a priori constrained our search to a
region of the parameter space where the perturbative and adiabatic regimes are
respected, it remains by far within the bounds derived in [168, 169], and there-
fore the predictions obtained are consistently interpreted by the underlying theory.

It was also found [168, 169] that the best fit so far for steps in the potential in
the CMB [113, 142, 167] does not lie within the allowed theoretical bounds. This
calls into question the consistency of the framework in which these predictions
are derived. More interestingly, this motivates a new theoretical framework able
to consistently describe those predictions, since the data is blind to whether a
theory is internally consistent or not.

An important and evident conclusion of these analyses is that very sharp
features are problematic from the theoretical point of view. In addition, one
could speculate that if the data finally points to inflationary scenarios with large
field excursions, a (slightly broken) symmetry should protect the background, and
then we would not expect to find sharp features in the potential. This further
motivates the study of moderately sharp features, which are still safely described
by an underlying theory.

The previous results were obtained in the framework of the effective field
theory of inflation [98] taking into account only the time dependence of the

13This calculation is possible thanks to the fact that for the case of a feature in the Hubble
parameter the n-order Lagrangian acquires a particularly simple form [105].
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Hubble parameter, and neglecting the variation of the rest of coefficients M4
n,

which accompany the quadratic and cubic operators. First of all, it is not clear
whether similar conclusions would hold considering changes in the M4

n coefficients.
It is possible to construct the nth-order Lagrangian for the case of changes in
the Hubble parameter and group all the terms together in a single vertex (for
example πn) by successive integration by parts. However, this is in general very
difficult for changes in the M4

n coefficients, since the number of degrees of freedom
is larger. In the absence of a UV theory that gives us a recipe for consistently
calculating M4

n, any estimate on how they determine the perturbative regime
must be made with extreme caution.

Last but not least, the intuition in terms of scattering amplitudes is borrowed
from the standard quantum field theory techniques which assume time-independent
vertex coefficients. Intuitively, this will be applicable to time-dependent coefficients
if they obey an adiabatic condition of the form |λ̇/λT | � 1, where T is the time
scale of the scattering process. Within this regime, higher order interactions
should be suppressed. Although this might relax the strong coupling bound
coming from the scattering amplitudes, it is not clear how time dependence would
affect the other strong coupling scales, as treated in detail in [168].

3.3.3 Validity of the effective single-field theory in the light
of BICEP2

In this section we study the relationship between the rate of change of the speed
of sound and an adiabatic evolution, or in other words, how strong a turn can be
without invalidating the single-field description. Particle production due to sudden
turns has been previously studied (see e.g. [166] and references therein), and
it constitutes an important consistency check for a valid single-field description.
However, the situation has become much more exciting in the light of the new
results of BICEP2 [55], which pose an interesting challenge for effective single-field
theories, as we will explain below. Let us first review the adiabatic condition in
the context of integration of a heavy mode, as in section 1.5.2. The validity of
the effective single-field theory is subject to the adiabatic condition [106]:

|F̈R| �M2
eff|FR| , (3.3.6)

where FR is the isocurvature fluctuation, associated to the heavy mode, which we
integrate out to get an effective single-field description for the adiabatic curvature
perturbation. Meff is the effective mass of the heavy field, determined by the
turning rate in field space, the curvature of the scalar potential in the heavy
direction, and the curvature of the field manifold (see e.g. [107]). The above
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condition can be recast in terms of background quantities as follows14 [106]:∣∣∣∣ ddt ln
(
c−2
s − 1

)∣∣∣∣�Meff . (3.3.7)

In a slow-roll regime, the conformal time is τ ' −1/(aH0), and therefore H0 dt =
−dτ/τ . Using this relation, we can rewrite the adiabatic condition (3.3.7) as
follows:

|s| � 1

2

(
1− c2s

)Meff

H0
. (3.3.8)

Since in this paper we are focusing on the regime |s| < 1, it is worth evalu-
ating when the adiabatic condition (3.3.8) is automatically satisfied given the
requirement of not-so-sharp turns |s| < 1. One can see that

if c2s < 1− 2H0

Meff
, then |s| < 1 =⇒ Adiabatic . (3.3.9)

Given that in a valid EFT one should have Meff � H0, it is clear that the
condition |s| < 1 will ensure an adiabatic evolution. In terms of the effective mass,
from (3.3.9) one can see that when the effective mass satisfies the lower bound

Meff &
2H0

|u|
, (3.3.10)

the regime |s| < 1 automatically implies that we are in an effective single-field
regime15. Note that these considerations apply to any effectively single-field in-
flationary scenario in which a large hierarchy of masses and slow-roll are respected.

Now let us turn the discussion to the possibilities one has to achieve an
effective single-field regime in the light of the new BICEP2 results. In this
context, the main concern raised by their results is that a large tensor-to-scalar
ratio sets the inflationary scale to a value close to the GUT scale, and therefore
the energy gap in which the inflaton and the possible additional UV degrees of
freedom must cohabit is not very large. Given this, having a large hierarchy of
masses does not seem so easy.

Putting in some numbers, a naive interpretation of r = O(0.1) would
support H0 ∼ 1014 GeV [172], leaving four orders of magnitude to the
Planck scale. If there is new physics at the GUT scale (or above), then
|s| < 1 and 10−2 . |u| < 1 should be safely in the effectively single-field

14We are disregarding a short transient at the start and end of the turn, where a different
condition is satisfied.

15We stress that (3.3.10) is not an adiabatic condition, it is the condition under which smooth
turns (|s| < 1) imply an adiabatic regime. Even if the lower bound (3.3.10) is violated, the
condition (3.3.7) will still ensure adiabaticity.
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regime. Then, one could conclude that reductions in the speed of sound of a few
percent are well motivated, and that the bound |s| < 1 implies an adiabatic regime.

Summarising, the new results by BICEP2, if confirmed, leave about five orders
of magnitude in which the UV degrees of freedom and the inflaton must live
together. Although the energy gap is not gigantic, one would expect the heavy
physics energy scale to be at least a hundred times larger than the Hubble scale,
and therefore the adiabatic condition is satisfied.

3.3.4 Review of our search and further analyses

In our previous work [1], summarised in chapter 2, we looked for correlated
signatures in the primordial power spectrum and bispectrum due to a gaussian
reduction in the speed of sound. Here we review the main results and provide
some more details regarding the search. Further details can be found in the
original paper [2].

We found several fits to the Planck CMB power spectrum data with an
improvement16 2 < −∆χ2

eff < 10, and calculated the predicted correlated signals
in the primordial bispectrum, whose shape turned out to be surprisingly similar
to a set of primordial bispectrum templates tested against CMB bispectrum data
by the Planck collaboration [48, sec. 7.3.3].

Thanks to this similarity, we were able to qualitatively compare some of our
predictions to some of their fits, finding a reasonable agreement [1] (see section 2.5).
But we also found interesting differences: (1) the analysis of localised oscillations
in the bispectrum performed by Planck only covers the region around the first
acoustic peak, while our features are more significant around the second and
third; (2) some of our best fits occur at values of |τ0| corresponding to oscillatory
frequencies which are slightly higher than those covered in Planck’s analysis.
Thus, an extended search for oscillatory features in the bispectrum data towards
higher frequencies and smaller scales would help in confirming or falsifying our
predictions. Although our fits are not very significant at the level of the CMB
power spectrum, the mild agreement in the primordial bispectrum is more than
encouraging, given that this prediction is solely based on a fit to the CMB power
spectrum data, and that it comes from a well motivated and consistent theoretical
framework.

Review of main results and numerical consistency check

The power spectrum features caused by a transient reduction in the speed of
sound described by eq. (3.3.1), parametrized by B, β and τ0, are combined with
the primordial spectrum of the ΛCDM Planck baseline model described in [47,

16A similar result is obtained in the Standard Clock model [173].
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sec. 2], parametrized by an amplitude As and a spectral index ns. The primordial
perturbations evolve in a flat FLRW universe parametrized by the densities of
baryonic and cold dark matter, Ωb and Ωcdm, and the current expansion rate
H0. The damping due to reionisation is parameterised by the optical depth
τreio. Those six standard plus three feature parameters describe our cosmological
model.

The features given by eq. (3.2.5) are calculated using a Fast Fourier Transform.
The resulting CMB, calculated with the Boltzmann code CLASS [45, 46], is fitted
to the ESA Planck mission temperature data of March 2013, using the likelihood
provided by the experiment [34], and the low-` CMB polarisation data of the
WMAP experiment [31]. In that fit, we use flat priors on the six cosmological
parameters and on B, lnβ and ln(−τ0). The bounds on the priors are those
defined in (2.2.5) and (2.3.1), ignoring a priori the bound |B| � O(ε, η). The
posterior probability is then maximised over the prior bounds using Markov-chain
Monte Carlo (MCMC) methods, making use of the MCMC sampler Monte
Python [152].

The resulting profile likelihood can be seen in figure 2.1. There, one can
identify five modes, or defined regions of the parameter space where the likelihood
is improved. The modes are well-isolated narrow bands of ln(−τ0), i.e. frequency
of oscillation of the primordial spectrum feature. For each of the modes showed
in the figure, the relevant parameter data is given in table 2.1: the numbers in
parentheses are the best fit values, and the parameter ranges, when given, are
68% c.l. regions. The upper limit for lnβ in the modes B and C is imposed by the
prior, as we explained in the previous chapter (see figure 2.2 for an explanation
of the plateau in ∆χ2). For the modes D and E , no parameter ranges are given,
due to their low significance and non-gaussian character; only the respective best
fits are shown.

As expected, we find only small degeneracies between the feature parameters
and the ΛCDM parameters for modes A, B and C. Consequently, the best fits
and 68%c.l. intervals of the ΛCDM parameters reproduce quite accurately those
of Planck, cf. table 3.1. For the less significant modes D and E , some of the
correlations are slightly larger, since for lower ln(−τ0) the frequency of the fits
drops, getting closer to the frequency of the acoustic oscillations. Further details
on the degeneracies can be found in [2].

In order to make our results from CLASS+Monte Python more reliable, we
cross-checked them with an independent Einstein-Boltzmann solver and a different
MCMC sampler, namely CAMB [44] and CosmoMC [174]. As an example, in
tab. 3.1 we explicitly show this comparison for the most significant mode B by
varying both the primary ΛCDM parameters and the additional sound speed
reduction parameters. We find excellent agreement between these two results.
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Planck + WMAP Polarisation

Parameter CAMB CLASS Baseline [47]
100Ωbh

2 2.208± 0.027 2.214± 0.029 2.205± 0.028
Ωch2 0.1204± 0.0026 0.1203± 0.0027 0.1199± 0.0027
τreio 0.089± 0.013 0.090± 0.013 0.089+0.012

−0.014
H0 67.16± 1.14 67.29± 1.21 67.3± 1.2
ns 0.9600± 0.0070 0.9598± 0.0074 0.9603± 0.0073
ln(1010As) 3.090± 0.023 3.088± 0.024 3.089+0.024

−0.027

B −0.045+0.045
−0.034 (95%c.l.) −0.041+0.041

−0.031 (95%c.l.) —

lnβ 6.00+1.50
−3.00 (95%c.l.) 6.06+1.44

−2.18 (95%c.l.) —

ln(−τ0) 5.55± 0.06 (95%c.l.) 5.55± 0.05 (95%c.l.) —

χ2
bf 9797.25 9797.58 9805.90

Table 3.1 – CAMB+CosmoMC vs. CLASS+Monte Python consistency check:
mean values and 68% (or 95% where indicated) confidence intervals for the primary
ΛCDM parameters and the additional sound speed reduction parameters for the
mode B. We also show the parameter ranges found by the Planck collaboration [47]
for a featureless model.

Degeneracies in the modes and polarisation

The CMB temperature data is not able to restrict the maximum value of lnβ,
as one can see in figure 2.1. After some value of it, the likelihood reaches a
plateau with constant ln(−τ0) and increasing lnβ. The reason for the data
not being able to restrict lnβ and for this degeneracy is quite well explained
by figure 2.2 and figure 3.5. In the last one, we have plotted the CMB
temperature and E-mode polarisation spectra of the best fit of the mode B
(white circle in figure 2.2), together with a similar fit (grey circle in figure
2.2) that improves ∆χ2

eff marginally and saturates the s = 1 bound. Along
the direction of simultaneous increase of lnβ and |B|, the feature in the
primordial spectrum broadens towards smaller scales, while the amplitude of
the tail on the larger scales remains almost constant. Since at smaller scales
much of the primordial signal is suppressed by diffusion damping in the CMB,
no significance is gained along the degeneracy direction, causing a plateau in ∆χ2

eff.

Photon diffusion at the last scattering surface has the effect of polarising the
CMB signal through Thomson scattering, so at smaller scales the polarisation
spectrum will contain information about the primordial spectrum, complementary
to that of the temperature spectrum. Therefore, the difference at small scales
between two fits in the same plateau (for example the red and the green spectra
in figure 3.5) is larger in the polarisation spectra (TE and EE). This suggests
that the Planck polarisation data, expected to be released along 2014, may be
able to set stronger bounds on the maximum value of lnβ.
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Figure 3.5 – Comparison of the two fits indicated in figure 2.2 with a white circle
(red, dashed line) and a gray circle (green, dotted line), in the TT, TE and EE
CMB power spectra.

Local improvement at different angular scales: ∆χ2(`)

Given a fit to the CMB power spectrum of some feature model, it is interesting to
know in which ranges of multipoles the feature describes the data better than the
baseline ΛCDM model. This kind of local improvement can only be calculated
approximately, since the temperature data points at different multipoles are in
general correlated. Nevertheless, even a qualitative analysis can shed some light
on where the feature fits better the data than the baseline model.

We have studied the local improvements along the multipoles of the four
relevant fits, modes A to D (we show the result for mode B in figure 3.6). To do
that, we have binned the multipoles with ∆` = 20 and substituted pieces of the
best fit for each mode into the best fit of the ΛCDM baseline model. For the sake
of simplicity, we use for this analysis the preliminary fits found by keeping the
cosmological and nuisance parameters fixed to their best fit values (hence the
small difference in the total ∆χ2

eff between fig. 3.6 and tab. 2.1).
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Figure 3.6 – Gain in the likelihood of the best fit of mode B along the multipoles.
The grey area shows the local difference in each bin, and the black line shows the
accumulated difference for increasing multipoles.

The results show that mode A gains its significance mostly in the first and
third peak and loses some of it in the second; mode B (see fig. 3.6) and C gain
most of their significance in the third peak, lose some of it in the fourth peak and
improve a little again in the fifth and sixth. The mode D does not fit well the
first and second peaks, gains most of its significance in the third peak, and some
more in the fifth and sixth peaks.

3.4 Conclusions

In this chapter we have deepened our understanding about the regimes of validity
of different methods to calculate the two- and three-point correlation functions
of the adiabatic curvature perturbation. Moreover, we have shown that the fits
we found to the data are consistently described by a well motivated and robust
theoretical framework. In the following, let me summarise in more detail the
relevance of the results presented in this chapter:

A detailed understanding of the origin and detectability of transient features in
the primordial (and observed) correlation functions is now more important than it
was before the BICEP2 results [55]. A large trans-Planckian field excursion should
detect any features present in the scalar potential as well as changes in the dis-
persion relation of the adiabatic mode, if they are there, and arguably there were
hints of both in the Planck data [48, 113]. At the same time, a high inflationary
scale leaves less room for mass hierarchies in the UV completion, that would be
needed to justify the single-field effective low energy description. This is a problem
for very sharp features, as they tend to excite any higher frequency modes coupled
to the inflaton. We have argued that the regime of moderately sharp features
is particularly interesting. Most likely these cannot be detected in any partic-
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ular dataset and have to be searched for in correlations between different data sets.

In this regime, the effect of a transient reduction in the speed of sound
can be calculated with the simple SRFT approximation [111], in which the
correlations between power spectrum and bispectrum are manifest. We
emphasise that the simple expressions (3.2.5) and (3.2.6) hold provided
O(ε, η) � max

(
|1− c−2

s |, |ċs/(Hcs)|
)
� 1 and cs = 1 before and after the

feature.

In this work we have presented an alternative way to calculate both the
power spectrum and bispectrum, by consistently applying an approximation
for moderately sharp features, both to the GSR power spectrum (eq. (3.2.30))
and to the in-in calculation of the bispectrum (eq. (3.2.47)). Within this
regime, we have extended existing GSR calculations of the power spectrum
to less sharp and arbitrary shapes of the speed of sound, and found excellent
agreement with the SRFT approximation in the regime where both methods apply.

Given that the regimes of validity of the two methods are not entirely
coincident, we are now equipped with a robust machinery that will allow us to
describe features in the speed of sound for a broader region of the parameter
space. Broad features can be calculated with the SRFT approach, while sharp
features can be calculated using GSR for the power spectrum (eq. (3.2.30)) and
the in-in approach for the bispectrum (eq. (3.2.47)).

In a previous paper [1] we performed a search for such correlated features
assuming moderately sharp, mild reductions in the speed of sound of the adiabatic
mode during uninterrupted slow-roll inflation. We reported several fits to the
Planck CMB temperature spectrum data and predicted the correlated signatures
in the complete primordial bispectrum. We qualitatively compared with the
bispectrum search by Planck when possible and found reasonable agreement. We
have performed additional tests to the results of our search in [1]. Namely, we
have repeated it using independent codes and found practically equal results; we
have studied more explicitly the small degeneracies among the cosmological and
feature parameters, and proposed the CMB TE and EE polarisation spectra as a
way to break degeneracies among the latter; and finally we have investigated at
which multipoles each of our fits describe the CMB temperature data better than
the baseline ΛCDM model.

The ability to make predictions in a wider region of the parameter space of
features is of particular relevance, since new data sets may allow us to explore
it. Besides, since different experiments generally have different foregrounds and
systematics, a joint analysis could reduce the contamination of the primordial
signal on the overlapping scales. In particular, we plan to extend our search to
large scale structure surveys [175].
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