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1
Cosmological inflation: its realisations

and observables

In this first chapter I give an overview of cosmological inflation, which will
gradually become more concrete and focused on the topics that are treated in
depth in the remaining chapters. Thus, I provide the basic ingredients necessary
to follow the articles [1–4] presented in the main body of this thesis. Throughout
this manuscript, unless specified, I will work in units of ~ = c = 1 and will set the
Planck mass to Mp = (8πG)−1/2 = 1.

1.1 Introduction: an expanding universe

Cosmological inflation is a paradigm that was invented over thirty years ago
[5–10]. It is defined as an era of accelerated expansion of the very early
universe. The key observation that led to this idea was that the universe is
highly homogeneous and isotropic on large scales. This was an assumption that
physicists called “cosmological principle” and that was later confirmed by the
observation of the Cosmic Microwave Background (CMB) radiation by Penzias
and Wilson [11] in 1965. This radiation is, roughly speaking, a picture of the
photon temperature distribution in two dimensions corresponding to the time
when the photons decoupled from the hot plasma (380000 years after the ‘Big
Bang’), as I will explain in detail in section 1.3. The spectrum of this radiation is
that of a perfect black body with temperature 2.73K, and deviations from this
average temperature are only of one part in 105.

An important question that comes when observing such a homogeneous
radiation was that, patches of the universe that in principle were never causally
connected have the same temperature, how is this possible? If gravity was always
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Cosmological inflation: its realisations and observables

attractive, then the initial size of the universe would be larger than the causally
connected patch at that time. Given the observations, the initial state of the
universe should be such that all the causally disconnected regions have roughly
the same temperature. Either the initial conditions were inexplicably given just
like that, or there is a mechanism underneath that explains them. Of course
physicists pursued the second alternative.

In addition to the high degree of homogeneity and isotropy, the universe is
extremely flat, which is also very unnatural for a decelerating universe, since it is
an unstable stage. Having seen this, it seems rather natural to ask which initial
conditions led to such a ‘perfect’ universe. The main motivation for inflation was
to propose a mechanism such that these characteristics were predicted, rather
than accepted as very unlikely initial conditions, and it turns out that inflation
has succeeded tremendously in this respect. In this thesis I will not focus on
the detailed description of the initial condition problems, and refer to those
interested in them to the excellent reviews and textbooks [12–16]. The key feature
of inflation that solves these problems of initial conditions is the accelerated
expansion. Furthermore, we will see that inflation yields the generation of
primordial density perturbations, which explain the tiny inhomogeneities of the
CMB temperature, and that later on generated the large scale structure observed
nowadays.

The plan of this chapter is the following: I will briefly review the geometry
of an expanding universe and the conditions for an accelerated expansion. The
natural candidate to drive such an expansion is a scalar field, whose quantum
fluctuations originate the primordial density perturbations that seeded the
growth of structure, as I will explain at the beginning of section 1.2. The
correlation functions of the primordial curvature perturbation contain valuable
information that remains frozen for a long time and whose evolution can be
tracked down until the time when the CMB is emitted, which allows us to
study the footprints of the quantum fluctuations during inflation. At the end
of section 1.2 I provide the standard well-known predictions for the two- and
three-point correlation functions. But one of the most important successes of
inflationary cosmology is the predictive power and the stunning agreement with
CMB measurements. Especially in the last decade cosmologists have been very
fortunate to count on the WMAP, Planck and BICEP experiments, which have
given us the opportunity to test our theories. In section 1.3 I briefly explain the
physics of the CMB, I will review the (very exciting) current experimental status,
and I will explain how the CMB data help us constraining the incredible amount
of inflationary models. We will see that there is still much room for a rich variety
of inflationary setups, and in particular I have explored in this thesis the effect of
additional degrees of freedom, which naturally arise in UV completable theories.
Therefore, it is natural to ask ourselves whether it is possible or not to detect,
and under which circumstances, those additional particles that play inflation
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1.1. Introduction: an expanding universe

along with the inflaton. In section 1.4 I focus on inflationary scenarios embedded
in supergravity and the tools that enable us to give a simpler, yet consistent,
theoretical description. Finally, in section 1.5 I explain how the inflaton field
feels the presence of additional heavy fields and how this affects the observable
predictions.

1.1.1 The Friedmann - Lemâıtre - Robertson - Walker uni-
verse

The series of works [17–22] gave name to what we know today as the Friedmann-
Lemâıtre-Robertson-Walker (FLRW) universe. It is basically described by a
space-time that is homogeneous and isotropic for each time slice, with distance
between two comoving observers proportional to the scale factor a(t). The line
element in the FLRW metric can be written in spherical coordinates as follows:

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)]
, (1.1.1)

where k gives the spatial curvature, as can be read from the spatial Ricci scalar
R(3) = 2k/a2. The constant k can take values +1,−1 and 0, that describe
space-times with positive curvature, negative curvature, and flat, respectively.
Since all the observations are in excellent agreement with a flat universe, in this
thesis I will only describe flat FLRW space-times with k = 0, which in cartesian
coordinates can be simply written as:

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
. (1.1.2)

An important quantity derived from the scale factor is the Hubble parameter

H(t) ≡ ȧ

a
, (1.1.3)

which measures the expansion rate of the universe. Along this manuscript, for
convenience I will often measure time using the conformal time τ ≡

∫
dt/a(t),1 in

terms of which the FLRW metric is conformally flat, which means that it can be
expressed as a conformal transformation of the Minkowski metric. Then, using
the conformal time the metric reads:

ds2 = a2(τ)
(
−dτ2 + dx2 + dy2 + dz2

)
. (1.1.4)

This settles the description of the space-time in which inflation occurs. The other
essential ingredient we need to describe the cosmology is the matter, which is

1The conformal time is usually written as η instead of τ , but I will reserve the former to
denote the second order slow-roll parameter that will appear repeatedly in the text.
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Cosmological inflation: its realisations and observables

specified through the energy-momentum tensor Tµν . The energy (or matter)
content and the geometry of the space-time satisfy the Einstein equations:2

Gµν ≡ Rµν − 1
2gµνR− Λgµν = Tµν , (1.1.5)

where Rµν is the Ricci tensor, R is the Ricci curvature scalar, and Λ is the
cosmological constant term. The Λ-term represents the vacuum energy and can
always be written as a constant contribution to the energy momentum tensor,
thus from now on I will set Λ = 0, and later on the cosmological constant will be
often given by the value of the scalar potential at the vacuum.

On large scales the cosmic fluid is well approximated by a perfect fluid,
characterised by its energy density ρ, pressure p, and velocity uµ, and for which
the energy-momentum is

Tµν = (p+ ρ)uµuν + p gµν . (1.1.6)

The conservation of the energy-momentum tensor follows from the Bianchi identi-
ties applied to the Einstein tensor Gµν , which in terms of energy and pressure
gives the continuity equation:

ρ̇ = −3H(p+ ρ) , (1.1.7)

which is nothing else than the conservation of energy for a perfect fluid in
a homogeneous and isotropic universe. In addition to the previous equation,
the Einstein equations (1.1.5) for a FLRW universe filled with a perfect fluid
characterised by eq. (1.1.6) are well known as the Friedmann equations, which
read:

H2 =

(
ȧ

a

)2

=
ρ

3
, Ḣ +H2 =

ä

a
= −1

6
(ρ+ 3p) . (1.1.8)

One can combine the previous equations to obtain a very useful expression:

Ḣ = −1

2
(p+ ρ) . (1.1.9)

It is clear then that once the equation of state of the fluid p(ρ) is given, the
evolution of the scale factor a(t) and of the fluid are determined. The most
interesting situations in cosmology are characterised by p = wρ. For instance, for
radiation one has wrad = 1/3⇒ ρrad ∼ a−4, for matter wmat = 0⇒ ρmat ∼ a−3,
and for vacuum energy or a cosmological constant wΛ = −1⇒ ρΛ ∼ const. Notice
that the universe is (positively) accelerated when

w < − 1
3 ⇒ ä > 0 (inflation) . (1.1.10)

An accelerated expansion solves the homogeneity puzzle, as illustrated in figure

2See appendix A for conventions.
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Inflation
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Figure 1.1 – Diagram illustrating the solution to the horizon problem. If there
exists a sufficiently long period of accelerated expansion before the Big Bang, two
apparently disconnected regions were in reality connected before. This explains why
the CMB radiation has an almost perfectly uniform temperature distribution.

1.1, because it makes possible the creation of our universe from a causally
connected domain, even if outside this domain the universe is initially very
inhomogeneous. This is because the physical size of the perturbation grows faster
than the curvature scale (H−1). Due to the same reason, the flatness problem is
also solved by a period of accelerated expansion. The evolution of the curvature
dictates that positive acceleration drives the curvature to zero, and becomes an
attractor of inflation.

By inspecting the Friedmann equations (1.1.8) one can see that p < −ρ/3
produces an accelerated expansion. One could first consider H = const and
therefore exponential expansion. However, perfect exponential expansion would
never end, so we will need small deviations that will be parameterised by

ε ≡ − Ḣ

H2
, (1.1.11)

such that the condition for an accelerated universe translates now into ε < 1.
Inflation must last sufficiently long to stretch a small domain to the size of the
observable universe, and also to flatten the possible initial inhomogeneities to
the level observed in the CMB. The duration or amount of inflation is usually
measured as a function of the number of e-folds, N , which is roughly speaking
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Cosmological inflation: its realisations and observables

the amount of times that the universe expands by a factor e, and its definition is:

dN = H dt =
da

a
. (1.1.12)

Typically the solution of the flatness and horizon problems demands an amount
between 60 and 70 e-folds of inflation. This also implies that the value of ε at the
beginning of inflation should be approximately one percent or less. In the next
section we will see how we can achieve accelerated expansion long enough.

1.2 Inflating the universe with a scalar field

The natural candidate to drive inflation is a scalar field φ, which easily describes
the energy density and pressure of a perfect fluid in terms of its kinetic energy and
a scalar potential V (φ). In this case the field φ drives inflation and is therefore
called the inflaton. If one takes the action for a scalar field in a FLRW metric and
calculates the energy-momentum tensor, it is easy to see that the energy density
and the pressure are given by:

ρ = 1
2 φ̇

2 + V (φ) , p = 1
2 φ̇

2 − V (φ) . (1.2.1)

Also, the equation of motion for a homogeneous scalar field in a FLRW background
is

φ̈+ 3Hφ̇+ Vφ = 0 , (1.2.2)

where the subindex in Vφ denotes derivative with respect to the scalar field.

Slow-roll conditions

Let us make a brief interlude to define the slow-parameters that must be small
in order to achieve a sufficiently large amount of inflation. As can be seen from
eq. (1.1.9), the universe undergoes quasi-exponential expansion if the equation of
state of the fluid is p ' −ρ, which in view of (1.2.1) translates into

1
2 φ̇

2 � V (φ) (slow-roll) . (1.2.3)

Since the kinetic energy must be much smaller than the potential, the name
slow-roll is obvious. Using the Friedmann equations (1.1.8) and substituting
the energy density and pressure for our scalar field (1.2.1), one clearly sees that
slow-roll requires ε� 1 for a sufficiently large amount of time. The condition of
small ε lasting long enough is usually expressed in terms of a second slow-roll
parameter η, however in the literature there is no clear consensus on how to define
this parameter3. Some of the alternatives that make sense are the following:

η1 = − ε̇

Hε
, η2 = − Ḧ

HḢ
, η3 = − φ̈

Hφ̇
. (1.2.4)

3When dealing with multiple scalar fields, there are even more possible definitions, as I will
explain in section 1.5.1.

10



1.2. Inflating the universe with a scalar field

Figure 1.2 – Typical scalar potential for slow-roll inflation. Accelerated expansion
(inflation) ends when ε = 1, and reheating starts when the inflaton oscillates around
the minimum.

The first two are related through the equality:

η1 = η2 − 2ε . (1.2.5)

There is still an alternative definition of the first slow-roll parameter ε in terms of
the scalar potential. This definition is somewhat intuitive since it involves the
slope of the potential, which must be very small compared to the height of the
potential, and therefore one can define

εV ≡
1

2

(
Vφ
V

)2

= ε

(
3− η3

3− ε

)2

. (1.2.6)

Let me make an important point here. In the above expression, it is clear that
the usual slow-roll limit ε, η3 � 1 implies εV ' ε � 1, but it is important to
notice that the opposite is not true. In fact, one can have ε > 1 and still get
εV < 1. In this thesis I will always be using the kinematical parameter ε instead
of the potential parameter εV .

For completeness, I will define yet another potential slow-roll parameter which
has to do with the curvature of the scalar potential. The same way that for
slow-roll one needs a small slope, for it to last long enough one needs small
curvature, and therefore it is convenient to define

ηV ≡
Vφφ
V

=
3

3− ε

[
ε+

(
1− ξ

3

)
η3

]
, with ξ ≡ −

...
φ

Hφ̈
, (1.2.7)

which will actually be more relevant for the multiple-field case, where it is related
to the eigenvalues of the mass matrix coming from the Hessian of the potential.
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Cosmological inflation: its realisations and observables

This discussion will be enough to go on, and I will go into more subtleties later
in the multiple-field case. Let us establish the standard single-field slow-roll
conditions as ε, η3 � 1.

In the following I will consider the quantum mechanical picture of inflation,
which is an essential step to describe the origin of primordial inhomogeneities.

1.2.1 Quantisation and mode equations

The fluctuations of the inflaton field can be written as δφ(x, t) = φ(x, t)− φ0(t),
with φ0(t) the homogeneous part satisfying the background equation of motion
(1.2.2). The spatial dependence is just telling us that different regions of the
universe will inflate by slightly different amount, which will produce fluctuations
in the local densities and eventually originate the temperature fluctuations of the
CMB. Let us write the action for the inflaton field:

S =

∫
d4x a3(t)

[
1

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
. (1.2.8)

When perturbing the action above, we find 5 scalar modes, responsible for the
gravitational instability and structure formation, 4 vector modes, which decay
very quickly and therefore are not important, and 2 tensor modes, which are
the gravitational waves, whose analysis are out of the scope of this thesis. If
we focus on the scalar modes, invariance under the transformations t→ t+ c0,
xi → xi + ∂ic remove two scalar modes. The Einstein equations remove two more
scalar modes, and we are finally left with only one scalar degree of freedom. There
are many different gauge choices, but we will just content ourselves with studying
the comoving gauge [23], in which δφ = 0, and thus the perturbations are put in
the metric:

δgij = a2(1− 2ζ)δij + grav. waves , (1.2.9)

where ζ is the so-called curvature perturbation, since the spatial curvature scalar
is R(3) = 4∇2ζ/a2. The beauty of this gauge resides in the fact that it explicitly
exposes the conservation of the curvature perturbation on large scales outside the
Hubble horizon (superhorizon scales), that is:

ζ̇k = 0 for k � aH . (1.2.10)

A careful treatment of the perturbed Einstein equations is not relevant for this
thesis, and the purpose of this subsection is just to show the quadratic action
in terms of the canonical variables. Thus, I will assume that we have solved
the perturbed Einstein equations, rewritten the quadratic action in conformal
time, and changed variables to obtain canonical kinetic terms. This leads to the
following quadratic action:

S2 =
1

2

∫
dτ d3x

[
v′2 − (∇v)2 +

z′′

z
v2

]
, (1.2.11)
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1.2. Inflating the universe with a scalar field

where the prime denotes derivative with respect to conformal time, and v =
zζ = a

√
2ε ζ. This action can be seen as that of a harmonic oscillator with a

time-dependent mass. Expanding in creation and annihilation operators:

v(τ,x) =

∫
d3k

(2π)3/2

[
a−k vk(τ)eik ·x + a+

k v
∗
k(τ)e−ik ·x

]
. (1.2.12)

Now we can promote v, its canonical conjugated momentum π, and a−, a+ to
operators, such that

[v̂(τ,x), π̂(τ,y)] = iδ(x− y) ,
[
â−k , â

+
k′

]
= δ(k− k′) (1.2.13)

are the canonical commutation relations. We will assume from now on that they
are operators and drop the hats. Now that we have quantised the system, let us
derive the equations of motion in Fourier space from the action (1.2.11):

v′′k (τ) +

(
k2 − z′′

z

)
vk(τ) = 0 . (1.2.14)

This is called the Mukhanov-Sasaki equation [24, 25]. For the simplest case of
a quasi-de Sitter universe with ε ' const � 1, we have z′′/z ' 2/τ2, where we
have used τ ' −(aH)−1. 4 Before displaying the solution, let us fix the initial
conditions, and the standard choice is to impose that for τ → −∞ (beginning of
inflation) the mode function corresponds to a Minkowski state:

lim
τ→−∞

vk(τ) =
1√
2k

e−ikτ . (1.2.15)

This is known as the Bunch-Davies vacuum [26], and although other choices are
possible and are actually endowed with a rich phenomenology (for instance, see
[27–30]), in this thesis I will always consider a Bunch-Davies vacuum state. Then,
the solution to the mode equation is

vk(τ) =
e−ikτ√

2k

(
1− i

kτ

)
. (1.2.16)

It can be easily checked that for subhorizon modes (k � aH) the curvature
perturbation ζ = v/a

√
2ε has oscillating solutions, while for superhorizon modes

(k � aH) it is constant. The very important consequence of this is that the
curvature perturbation remains frozen after crossing the Hubble horizon, which
allows us to obtain information from the inflationary epoch by looking at the
statistical properties of the CMB, as illustrated in figure 1.3. In what follows, I
review the standard predictions of single-field slow-roll inflation for the two- and
three-point functions of the curvature perturbation, also known as the primordial
power spectrum and bispectrum.

4A much more general and detailed treatment will be given in chapter 3, where we consider
non-canonical kinetic terms and deviations from the quasi-de Sitter stage. However, the zero
order solutions displayed here are the pillar over which more general solutions are constructed.
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Cosmological inflation: its realisations and observables

Figure 1.3 – Scheme of the evolution of the comoving Hubble horizon (blue)
in relation to perturbations of a given wavelength (red). During inflation the
perturbations exit the horizon and remain frozen, and after reheating they re-enter
the horizon, preserving the information of the inflationary epoch. Then they evolve
together with the photon-baryon fluid, and the density perturbations leave their
imprints on the photon temperature distribution, that is observed in the CMB when
the photons are released. Figure adapted from [13].

1.2.2 Standard predictions: correlation functions

Once we have the solution of our mode equations (1.2.14), it is possible to
calculate the correlation functions of the adiabatic curvature perturbation ζk.
Any distribution, and in particular that of the CMB temperature, is completely
specified by its correlation functions. As it happens, the CMB temperature
distribution is almost gaussian as far as we know [31, 32], and therefore the
two-point function, i.e. the power spectrum, almost completely specifies the
spectrum of perturbations. However, the three-point function (bispectrum) and
higher order correlation functions play an important role in breaking degeneracies
among different inflationary models, and therefore it is important to know as
much as possible about them, even if they are small, because they represent
departures from a perfect gaussian spectrum. The definitions of the primordial
power spectrum and bispectrum are:

〈ζkζk′〉 ≡ (2π)3δ(k + k′)Pζ(k) , (1.2.17)

〈ζk1ζk2ζk3〉 ≡ (2π)3δ(k1 + k2 + k3)Bζ(k1,k2,k3) . (1.2.18)

It is often convenient to define the dimensionless scalar power spectrum

PR(k) ≡ k3

2π2
Pζ(k) . (1.2.19)
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1.2. Inflating the universe with a scalar field

The power spectrum can be evaluated at horizon crossing, i.e. k = aH, since the
curvature perturbation freezes then. Taking the solution to the mode equations
(1.2.16) and performing the commutation operations in terms of creation and
annihilation operators, one finally obtains [26]:

PR(k) =
H2

8π2ε

∣∣∣∣
k=aH

, (1.2.20)

which is scale-invariant except for the slight time dependence of H2 and ε. To
evaluate this scale dependence one can do the following computation [33]:

ns − 1 ≡ d lnPR
d ln k

' −2ε+ η1 +O(ε2) , (1.2.21)

where I have neglected higher order slow-roll corrections. The scalar spectral tilt
ns measures the deviation of the scalar power spectrum from scale invariance. The
deviation from scale invariance is a strong probe of inflation, since that is one of
its most general predictions, and furthermore ns < 1 also indicates that inflation
comes to an end. It has been recently confirmed by the Planck collaboration [34]
with more than 5σ c.l. that this is the case:

ns = 0.9603± 0.0073 (1σ c.l.) . (1.2.22)

Later in section 1.3 I will go into the details of the experimental status
regarding the power spectrum and bispectrum measurements. Since ns is
roughly speaking an ‘average’ of the tilt of the power spectrum, oscillations
on top of the flat shape are allowed, and as we will see in chapters 2 and
3, these features may come together with some other interesting predictions
for the bispectrum. The possibility of having non-trivial shapes fitting
the data better than the standard result reviewed above is worth exploring
in detail, since it may hint at additional degrees of freedom apart from the inflaton.

As for the primordial bispectrum, I will review the main results and leave
further details for chapter 3, where I compute in full detail the complete
bispectrum for a feature model. The first estimations of the bispectrum in
slow-roll single-field models were given in [35–38], while the complete calculation
was made in [39]. In these works it was stated that the bispectrum is of order of
the slow-roll parameters and therefore very suppressed.

In order to calculate the bispectrum one has to expand the action in fluctuations
of the inflaton field δφ around the homogeneous solution φ0 to cubic order, where
the non-linearities (interactions) arise. The expectation value we want to calculate
can be computed using the in-in formalism [40, 41] and is given by:

〈ζ3〉 = 〈U−1
int ζ

3Uint(t, t0)〉 , Uint = T exp

[
−i
∫ t

t0

dt′Hint(t
′)

]
, (1.2.23)
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Cosmological inflation: its realisations and observables

where Hint is the interaction Hamiltonian, which for the cubic terms equals −Lint.
Taking the first order approximation for the exponential above, the expectation
value is then

〈ζ3〉 = −i
∫ t

t0

dt′ 〈
[
ζ3(t′), Hint(t

′)
]
〉 . (1.2.24)

After a lengthy calculation5, one obtains the following result [39]:

B(k1, k2, k3) =
(2π)4PR2ε

8k3
1k

3
2k

3
3

A , (1.2.25)

where

A = (1− 2η3

ε
)
∑
i

k3
i +

∑
i 6=j

kik
2
j +

8

K

∑
i>j

k2
i k

2
j , (1.2.26)

and K ≡ k1 + k2 + k3. This result implies that the bispectrum in the standard
single-field slow-roll paradigm is suppressed by the slow-roll parameters. There
are different scenarios that depart from these simplest models, for instance non-
Bunch-Davies initial vacuum state, non-canonical kinetic terms, sharp steps in the
scalar potential, or multiple fields during inflation can in principle enhance the
non-gaussianity. As I will show in chapters 2 and 3, the influence of heavy fields
during inflation may give rise to scale-dependent features in the power spectrum
and bispectrum that are in reasonable agreement with the CMB data. In the next
section I explain how from the CMB temperature anisotropies we can extract
information about the quantum fluctuations of the inflaton field, and I will give
an overview of the current experimental status.

1.3 The Cosmic Microwave Background Radia-
tion

The CMB radiation is a tremendously exciting subject for early universe
cosmologists, since it contains the footprints of inflation. In this section I give
a qualitative explanation on how and why this is the case, and a more precise
discussion on this issue can be found for instance in [42]. Although the details of
the physical processes involved and the precise results are not essential for the rest
of this thesis, I believe that is important to posses a qualitative understanding of
the CMB physics in order to comprehend the relevance of the results presented in
the following chapters. Throughout this section I will often refer to a sketch of
the different eras involved in the transition from inflaton fluctuations to CMB
temperature anisotropies, shown in figure 1.3. I will describe the events and
physical phenomena that explain the shape of the temperature spectrum, and

5In chapter 3 I explain in detail the procedure that one must follow to calculate the bispectrum
using the in-in formalism. Although the calculation is performed for a particular feature model,
the same methodology applies to any case.
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1.3. The Cosmic Microwave Background Radiation

Recombination Reionisation

z�1100 z�10 t

1

Xe

Figure 1.4 – Fraction of ionised hydrogen atoms as a function of time. At recom-
bination, hydrogen is neutralised and the photons can travel freely, then the CMB
is emitted. When stars are formed, the UV photons emitted from them reionise
the universe, but it has already diluted enough so that only about 10% of the CMB
photons scatter, as parameterised by the optical depth.

in the last part I will review the experimental status of power spectrum and
bispectrum measurements.

Right after the Big Bang, the universe is at such a high temperature that
hydrogen is ionised, which in particular means that electrons are freely floating
around. That is the reason why we cannot see the photons of that time, because
they were scattering off those electrons and their mean free path was of a few
centimetres. Eventually, after approximately 380000 years, the universe drops its
temperature to about 0.3 eV, which is sufficiently low for the hydrogen atoms to
bind, and therefore recombination occurs. The figure 1.4 illustrates this process.
Then the mean free path of the photons rapidly increases and quickly becomes
larger than the Hubble horizon. At this point the photons can travel freely
towards us, this moment is known as decoupling. These are the CMB photons.

The CMB radiation as measured by the Planck collaboration [32] can be seen
in figure 1.5. As mentioned in the beginning of this chapter, the remarkable
property of this radiation is that the temperature is basically uniform, fluctuations
being only of order ∆T/T ∼ 10−5. This outstanding homogeneity can be
explained by having a period of inflation before the Big Bang, as shown in figure
1.1: since recombination happens very close in time to the Big Bang, regions
separated by more than two degrees in the sky do not have time to be in causal
contact. Roughly speaking, what inflation does is to extend this period further to
the past, so that these regions were in causal contact.

Now, if we look back at figure 1.3, in order to understand how the inflaton
fluctuations translate into the CMB temperature anisotropies, one has to follow
the evolution of dark matter and the photon-baryon fluid in the presence
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Figure 1.5 – CMB temperature anisotropies as measured by the Planck collaboration,
released on 21 March 2013 [32]. The temperature fluctuations are of one part in
100000, and the statistical properties of the distribution contain unique information
about quantum fluctuations during inflation.

of gravity throughout the radiation and matter eras. Basically, the inflaton
fluctuations can be written in terms of metric perturbations, as we saw in
eq. (1.2.9). Therefore, before recombination, the density and velocity of the
baryon-radiation plasma will oscillate according to an equation for a harmonic
oscillator in the presence of a gravitational potential. The beautiful physics
involved is governed by the Boltzmann equation, the continuity equation and the
Euler equation for our cosmic fluid. The CMB temperature distribution is then
given as a function of the gravitational potential, the photon density fluctuations,
and the velocity of the baryon-radiation plasma at recombination, which are at
the same time determined by the inflationary perturbations, the Hubble constant,
and the densities of baryons, cold dark matter, and dark energy.

All these effects can be effectively implemented by the transfer functions,
which incorporate the evolution of the density perturbations between the times of
horizon crossing and recombination. These are normally calculated with computer
programs, as we did in the works presented in chapters 2 and 3, however in
this section the aim is to provide an insight on the physics that determines the
evolution from primordial to CMB anisotropies.

When observing the temperature fluctuations, we expand in spherical harmon-
ics, which is the most natural way to decompose a two dimensional distribution:

δT

T
(Ω) =

∑
`,m

a`mY`m(Ω) ⇒ a`m =

∫
dΩY ∗`m(Ω)

δT

T
(Ω) , (1.3.1)
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Horizon crossing Recombination

∆Γ

t

Figure 1.6 – Photon density fluctuations since the metric perturbations re-enter the
horizon until recombination. All the wavelengths start with the same phase because
the photon density fluctuations are proportional to the curvature perturbation, which
is frozen on superhorizon scales. The peak structure of the CMB power spectrum
is partly due to this, otherwise the fluctuations of different wavelengths would be
randomly distributed and they would average to zero, giving no peaks at all.

and the CMB power spectrum is therefore determined by

C` =
1

2`+ 1

∑
m

〈a∗`ma`m〉 . (1.3.2)

The CMB power spectrum as measured by Planck [34] is showed in figure
1.7. One of the aims of this section is to explain the relationship between
the primordial power spectrum (1.2.20) and the CMB power spectrum
(1.3.2). In the following, I give a rough description of the physics that
determines the several peculiarities of the CMB power spectrum (see figure
1.7), and a more detailed treatment of the subject can be found for instance in [15].

First of all, the peak structure is due to the fact that photon energy density
fluctuations are proportional to the curvature perturbation. As argued above,
the curvature perturbation remains frozen on superhorizon scales, and therefore
when it re-enters the Hubble horizon, all photon wavelengths oscillate with the
same phase. This behaviour is exemplified in figure 1.6. The same argument
applies to the gravitational potential and photon velocities. If this were not
the case, i.e. if the perturbations originated inside the horizon, the phases
would be randomly distributed and they would average to zero, destroying
then the peak pattern observed in the CMB temperature spectrum (see figure 1.7).

Second, there is an important transition happening in the first peak, that is
the matter-radiation equality. As one can observe in figure 1.3, the first modes
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exiting the Hubble horizon (low-k), will re-enter during the matter-dominated
era. These modes contain more information about the inflationary era, since
they do not have much time to evolve until recombination occurs, or no time at
all. Unfortunately, the uncertainty for low ` measurements, known as cosmic
variance, is large in this region. This uncertainty is due to the fact that we only
have 2` + 1 measurements for each `, and therefore it is inevitable to have an
error of ∆C`/C` ∼ (2` + 1)−1/2. The maximum of the first peak corresponds
to the matter-radiation equality, and subsequent modes of higher ` re-enter
the horizon in the radiation-dominated era. Thus, these modes contain more
information about the evolution of the cosmic fluid, and can be used to calibrate
the cosmological parameters that characterise our cosmological model.

Another pattern we see in the peaks is that odd peaks are enhanced with
respect to even peaks (before the exponential suppression, explained below), and
moreover the valleys do not go down to zero. This is because the oscillating
part of the CMB power spectrum contains two cosine functions6, one having a
period two times larger than the other, and therefore the odd peaks interfere
constructively, while even peaks interfere destructively. However, since there is a
relative phase shift between them, the interference is not perfect. In addition,
the almost constant positive contribution represents the hydrostatic equilibrium
inside the gravitational potential and enhances the whole spectrum.

Last, the peak structure is damped by two different phenomena: Silk damping
and the finite thickness effect. The former is due to the fact that the photons
can transfer energy from one region to another over distances determined by

6In order to see this, note that the temperature fluctuations observed at the present conformal
time τ0 coming from the direction l are given by [15]:

δT

T
(τ0,x0, l) =

∫
d3k

(2π)3/2

[(
Φ +

δ

4

)
k

−
3δ′k
4k2

∂

∂τ0

]
τr

eik[x0+l(τr−τ0)] ,

where τr is the conformal time at recombination, Φ the gravitational potential, and δ the
radiation energy density fluctuation. When we calculate the average over all angular directions

C(θ) =
〈 δT
T

(l1)
δT

T
(l2)

〉
=

1

4π

∞∑
`=2

(2`+ 1)C`P`(cos θ)

and expand the sine function arising from the product of exponentials:

sin [k|l1τ1 − l2τ2|]
k|l1τ1 − l2τ2|

=
∞∑
`=0

(2`+ 1)j`(kτ1)j`(kτ2)P`(cos θ) ,

we arrive at the following expression for the multipole moments:

C` =
2

π

∫
k2dk

∣∣∣∣ [Φk(τr) +
δk(τr)

4

]
j`(kτ0)−

3δ′k(τr)

4k

dj`(kτ0)

d(kτ0)

∣∣∣∣2 ,
which, when evaluated on small angular scales gives several non-oscillatory and oscillatory terms
which result into the peak structure described in the text.
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their mean free path. In other words, photons travel from hot to cold regions,
mixing and scattering, with the final result of homogenising the temperature
distribution and therefore this effect is seen as an exponential suppression7. As
for the finite thickness effect, it refers to the finite duration of recombination. It
is clear that due to this, there is an uncertainty as to the precise moment when a
given photon last scatters. This affects inhomogeneities with scales smaller than
the duration of recombination, which will be therefore strongly suppressed8.

In summary, all these effects can be estimated analytically [42] in terms
of cosmological parameters: the amplitude and spectral tilt of the primordial
power spectrum, the Hubble constant today, the optical depth, the baryon
and cold dark matter densities, the dark energy (or vacuum) density, and the
curvature of the universe, which is rather assumed to be zero, in agreement with
all experiments. In principle, the plateau for `� 200 and the first three acoustic
peaks can determine most of the cosmological parameters. But including the
damping scales introduces further dependence on the cosmological parameters
and a precise determination of these requires the inclusion of higher peaks in
the analysis. Moreover, there are several subdominant effects which I have not
mentioned here, but that become relevant for very precise measurements of
the CMB temperature spectrum and other observables. As mentioned before,
the transfer functions that implement these effects are normally computed
with Boltzmann solvers. Pioneering work on this subject was made in [43]
and the two main codes used nowadays are Camb [44] and Class [45, 46].
With all this rich phenomenology and tools at hand, one computes the CMB
temperature fluctuations δT/T given the initial conditions from inflation
and the cosmological parameters. Then one compares the calculated CMB
temperature spectrum in a given cosmological model to the observed one, and
determines the cosmological parameters that reproduce the data best. In addition,
one can test particular models of inflation where additional parameters are
introduced, and find a fit for those parameters that reproduces well the data.
In chapter 2 we present a well motivated model for which we performed this search.

Although there are another CMB observables, such as cross-correlated spectra
and polarisation, I will focus on the power spectrum and bispectrum, which are
the observables studied in this thesis. Regarding the bispectrum, the same physics
determines its properties, as for the temperature spectrum. It is clear that the
densities of baryons and cold dark matter, the optical depth, along with the
expansion of the universe and the initial conditions coming from the inflationary
era, are the ingredients that determine the evolution of the energy density of

7This suppression appears as a friction damping term in the equations of motion of the
photon energy density fluctuations, that becomes important for scales of the order of the photon
diffusion scale.

8The exponential suppression is the result of the infinite product of probabilities that a
photon suffers Thomson scattering during the finite interval in which recombination occurs.
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the photons and therefore the correlation functions of the CMB temperature
distribution. In the next section I review the current status of power spectrum
and bispectrum measurements, which will be relevant for chapters 2 and 3.

1.3.1 CMB power spectrum and bispectrum: experimental
status

Let us now have a quick overview on the current status regarding the CMB
power spectrum and bispectrum. First of all, the standard cosmological model
ΛCDM is normally parameterised in terms of six cosmological parameters.
On the one hand, the amplitude As and spectral index ns of the primordial
power spectrum. On the other hand, the primordial perturbations evolve in a
flat FLRW universe parameterised by the densities of baryonic and cold dark
matter, Ωb and Ωcdm, and the current expansion rate H0. The damping due
to reionisation is parametrized by the optical depth τreio. For the analyses
that we review here, the curvature is assumed to be zero, and the density of
dark energy is then the critical density minus baryonic and cold dark matter
densities. The latest data release by Planck [47] confirms once more that our
universe is dominated by dark energy (68%), it has a substantial amount of
cold dark matter (27%), and there is a small fraction of baryonic matter (5%).
The precise results of these and the other cosmological parameters are given in [47].

So far, the data is in remarkable agreement with the baseline ΛCDM model,
however the existence of certain anomalies in the power spectrum and bispectrum
make us think that the baseline model might well be an effective description of a
more complicated theory. More importantly, as I will show in chapters 2 and 3,
an underlying theory able to predict not only features in the power spectrum and
bispectrum, but also a direct correlation between them, would stand as a good
candidate to describe the anomalies found in the data. Despite the existence
of several data sets, I will focus on the latest results released by the Planck
collaboration on the power spectrum [34] and the bispectrum [48], since they are
the most precise at the time of writing this thesis.

The CMB power spectrum is shown in figure 1.7, which manifests the
remarkable agreement between the data and the simple 6-parameter ΛCDM
Planck baseline model [34]. Despite this, it also shows that there are many
hints of anomalies between 50 < ` < 1500. The dip around ` = 1800 has been
questioned, since it seems to be only an effect coming from the 217× 217 GHz
map [49]. The uncertainties for ` < 50 are not very significant due to the cosmic
variance, as explained above. In chapter 2 we will see that models that produce
localised oscillations can fit the data reasonably well [1], giving a prediction for
the bispectrum that also seems to be in accordance with data.

Extracting primordial information from the CMB bispectrum is rather

22



1.3. The Cosmic Microwave Background Radiation

Figure 1.7 – Planck data for the CMB power spectrum. The solid line represents
the theoretical prediction of the Planck + WMAP polarisation baseline ΛCDM
cosmological model. Note the series of hints of anomalies > 1σ in the bottom plot,
which measures the differences between the data points and the model.

complicated, since there are three directions in `-space. Thus, deconvolving the
signal is computationally very challenging and the dependence on the parameters
of the theory is much more intricate than for the power spectrum. Despite this,
it is still possible to obtain some information on primordial non-gaussianity using
the methods developed in [50–52]. The Planck collaboration performed several
analyses on the bispectrum signal [48] that I shall briefly describe below.

It is worth noticing that a detection of non-gaussianity would be a smoking gun
for models departing from the standard single-field slow-roll regime, since we saw
in eq. (1.2.25) that for these models the bispectrum is strongly suppressed. One
of the analysis of the Planck collaboration involves the search for primordial scale-
independent non-gaussianity, parameterised by fNL. They looked for particular
shapes of the triangle formed by the vectors {k1,k2,k3}, specifically for local,
equilateral and orthogonal shapes, which form an almost orthogonal basis [53, 54],
that is, they cover all the configuration space. They found that this type of
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Figure 1.8 – Reconstruction of CMB bispectrum from the Planck collaboration
[48]. The red colour means positive values and blue colour negative values. This
data reveals oscillations that are damped for ` > 1500.

non-gaussianity is small and consistent with zero:

f loc
NL = 2.7±5.8 , f eq

NL = −42±75 , forth
NL = −25±39 (1σ c.l.) . (1.3.3)

In addition, the Planck collaboration performed a search for scale-dependent
bispectrum features [48], since the reconstruction of the CMB bispectrum
data seems to indicate an oscillating signal, as shown in figure 1.8. Their
search reveals anomalies of around 3σ with respect to a completely vanishing
bispectrum. Although the search for scale-dependent features by Planck is
analysed in detail in chapter 2, here I comment the main characteristics of
their search. Essentially, they proposed primordial bispectrum templates with
oscillations and computed the CMB bispectrum signal. Then they compare with
the data and give the significance of their fits. Since this data is not public, the
best attempt one can make to validate a bispectrum is to compare with their
primordial templates. The Planck collaboration tested three types of primordial
templates in the limit k1 = k2 = k3 = k: linear oscillations in log k, linear
oscillations in k and linear localised oscillations with a gaussian envelope. As I
will explain in detail in chapter 2, we proposed a feature model that predicts
linear localised oscillations as well. As we will see, the underlying physical
mechanism is consistent and well motivated, which justifies the introduction
of additional parameters in the cosmological model. Interestingly enough, our
functional form has a remarkable resemblance with theirs, and therefore we
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were able to roughly test our templates using their analyses. The prospects are
promising, since we found a reasonable agreement in our qualitative comparison [1].

Last, it is worth mentioning the recent striking results released by the
BICEP2 collaboration [55], which claimed a detection of B-mode polarisation on
degree scales that can be attributed to primordial gravitational waves. After
this, the cosmology community has been (and still is) analysing all the possible
consequences of this detection, but in my opinion these are not yet conclusive
and the situation needs to settle down, therefore I prefer to keep a conservative
approach. Among the most common arguments, one finds that if the BICEP2
results are confirmed, the inflaton field should have traversed transplanckian
distances in order to produce a detectable tensor-to-scalar ratio [56], or in other
words, primordial gravitational waves. However, the BICEP2 results have been
questioned by several groups, see for instance [57, 58] for an analysis of the
foregrounds. Therefore, in the absence of a robust confirmation, along this
manuscript I take a cautious approach and consider these results as a possibility
worth exploring and taking into account, but nevertheless the works presented
in the following chapters do not aim to address the production of primordial
gravitational waves.

Summarising, the present data confirms the most robust predictions of the
standard inflationary paradigm with a single field and slow-roll regime. However,
there is still room for more generic models as long as they predict observable
features within the experimental bounds. If the hints of anomalies were confirmed
by future data sets, it is important to provide a well-motivated underlying theory
able to predict these features. Among these models, it is reasonable to propose
inflationary setups which are embedded in UV completable theories, such as
string theory of supergravity, since the energies at which inflation happens
might be close to the Planck scale. In addition, the presence of additional
fields (possibly representing the matter content) arises inevitably in these
theories, fortunately or unfortunately. An alternative approach is to consider
that new physics does not necessarily appear at high energies, and thus Higgs
inflation models have been recycled from an old idea [59–62] by [63] and further
studied, for instance, in [64–67]. Although this is a very well motivated scenario
worth to explore, in this thesis we will discuss the possibility of having new physics.

In the next section I will review the characteristics of these UV embeddings and
in particular the supergravity framework for inflation. Integrating out additional
fields is subject to many subtleties that I will describe in the last section of this
chapter, together with the possible observable features due to the presence of
additional degrees of freedom.
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1.4 UV completions of inflation

In this section we turn to more theoretical topics regarding the embedding of
inflation in UV completable theories. It is natural to assume that given the energy
scale at which inflation happens, a theoretical description that incorporates an
UV completion is desirable. A great amount of work has been done in this
direction, see for example the excellent reviews of inflation in string theory
[68–71] (more recently [72]) and in supergravity [73–75].

From a theorist’s perspective, embedding inflation in these theories might
seem the natural thing to do. On the other hand, the great achievement of
inflation lies on its predictive power, and therefore it is important to keep it
as simple as possible, in line with Ockam’s razor. Typically these theories
introduce a large number of degrees of freedom and consequently a large number
of parameters, losing their predictive power. In this situation one in principle has
to face an inflationary setup with a large number of fields all coupled to each
other, and still try to reduce the system to a simpler version which in the best
case scenario can be studied analytically.

Let me stress that consistently integrating out or decoupling additional
degrees of freedom is a far from trivial task. It is certainly not enough to argue
that very heavy fields can be integrated out à la Fermi without consequences,
because in a dynamical background there are plenty of effects which can excite
these heavy degrees of freedom, invalidating the naive effective theory. In
section 1.5 I will describe in detail the conditions for integrating out heavy fields
consistently.

A complete review of the impressive amount of realisations of inflation in
high-energy theories is out of range here, and therefore I will focus on the generic
features of N = 1 supergravity embeddings. In what follows I explain the
peculiarities of the scalar potential in supergravity and what problems arise from
the gravitational coupling. Details on the differential geometry concerning Kähler
manifolds can be found in appendix A. A more self-contained and technical
treatment of complex manifolds can be found for instance in [76]. I will focus on
the phenomenological aspects of inflation in supergravity, for the formal aspects I
refer to the reader to a pedagogical text on supergravity theories such as [77].

1.4.1 Inflation in N = 1 supergravity

The bosonic part of the action for a set of N complex scalar fields Φa, a = 1, . . . , N ,
is constructed with the Ricci scalar R, the kinetic terms of the scalar fields T and
the scalar potential V :

S =

∫
d4x
√
−g
(

1

2
R+ T − V

)
, (1.4.1)
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where g is the determinant of the space-time metric. In the absence of gauge
fields, the couplings can be expressed entirely in terms of two functions of the
scalars: the Kähler potential K(Φ, Φ̄) and the holomorphic superpotential W (Φ).
The fields Φa and their complex conjugates Φ̄ā = (Φa)∗ span a (complex) Kähler
manifold whose metric is given by:

Kab̄ =
∂2K

∂Φa∂Φ̄b̄
. (1.4.2)

Unless specified, the partial derivatives with respect to Φa and Φ̄ā are denoted by
subindices a and ā, and the metric Kab̄ and its inverse Kab̄ are used to raise and
lower indices. The action (1.4.1) above can be expressed in terms of a single real
scalar function combination of the Kähler potential and superpotential, the well
known Kähler function, defined as:

G(Φ, Φ̄) = K(Φ, Φ̄) + log |W (Φ)|2 , (1.4.3)

which is well defined as long as W 6= 0. Throughout this manuscript, I will mostly
use G instead of K and W , since the case W = 0 is not studied here. However, it
is important to emphasise that the physical quantities, such as the scalar potential
and its derivatives, are well defined for any value of the superpotential, and in
some cases it will be interesting to take the limit W → 0. In appendix A I provide
a set of relations between quantities expressed in terms of G and in terms of K
and W . The Kähler function is invariant under Kähler transformations:

K(Φ, Φ̄)→ K(Φ, Φ̄) + h(Φ) + h̄(Φ̄) and W (Φ)→W (Φ)e−h(Φ), (1.4.4)

with h(Φ) an arbitrary holomorphic function. In terms of the Kähler function,
the kinetic terms and the scalar potential are given by:

T = Gab̄ ∂µΦa∂µΦb̄, V = eG (GaGa − 3) . (1.4.5)

Supersymmetry is spontaneously broken when the expectation value of the super-
symmetry transformations is non-zero, which for a bosonic configuration can only
happen for the transformation of the chiral fermions χa:

δεχ
a = −1

2
eG/2Gab̄Gb̄ ε , (1.4.6)

where ε is the parameter of supersymmetry transformations. Since the metric
and the exponential are positive definite, the gradient of the Kähler function Ga
defines a direction in field space known as the sGoldstino direction, which signals
supersymmetry breaking. The sGoldstino corresponds to the supersymmetric
partner of the would-be Goldstone fermion associated to broken supersymmetry.

In view of the above, when looking at the scalar potential in (1.4.5), one
notices that in order to have inflation in supergravity we ought to break

27



Cosmological inflation: its realisations and observables

supersymmetry, otherwise the scalar potential is negative and inflation cannot
be realised. Therefore, there is always a sGoldstino direction in the field space.
This will become relevant in chapter 4, where we identify the inflaton with the
sGoldstino and study the possible regimes of inflation. Also, in both chapters 4
and 5 we use the projection of the mass matrix along the sGoldstino direction in
order to get constraints on the stability of the fields.

Another characteristic feature of inflation in supergravity is the η-problem,
which has to do with the second order slow-roll parameter given by the curvature
of the potential, as in (1.2.7). Notice that the Kähler potential that gives canonical
kinetic terms is of the following form9:

K = ΦΦ̄ . (1.4.7)

The η-problem appears because of the exponential factor in the scalar potential.
Due to this, the slow-roll parameter ηV reads:

ηV = 1 + · · · , (1.4.8)

hence the inflaton acquires an approximate mass of O(H) and slow-roll inflation
does not last long enough. As will be described in more detail in chapter 4, there
are possible ways out for this problem:

• For small field regimes one can always fine-tune the superpotential in such
a way that the additional terms in (· · · ) above conspire together to cancel
the order unity contribution. This is not possible for large field regimes,
since fine-tuning is not effective for a long trajectory.

• For large field regimes, one can invoke a symmetry, which is an elegant
solution to provide flatness over a large trajectory. For instance, the Kähler
potential in (1.4.7) has a flat direction for the phase, and therefore identifying
the inflaton with the phase θ in Φ = |Φ|eiθ would solve the η-problem.
Several examples of different symmetries have been studied in [78–81]. The
superpotential then introduces a soft breaking of the symmetry that produces
the slope of the scalar potential.

Once the η-problem has been circumvented, we run into a more serious problem
that in the literature is often assumed to be solved: the stabilisation of multiple
fields. It is indeed a good first step to consider only one sector containing the
inflaton, but what about considering the other sectors? Two potentially dangerous
situations arise when considering additional fields: instabilities and isocurvature
modes, both ruining the predictions of single-field inflation.

9Alternative forms related by a Kähler transformation are also possible, for instance one
might have canonical kinetic terms for K = 1

2
(Φ + Φ̄)2 or K = − 1

2
(Φ− Φ̄)2.
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1.4.2 Decoupling in supergravity

After taking care of the inflaton sector and making sure that the slow-roll con-
ditions can be satisfied, one has to deal with the additional sectors. In order to
solve the stability problems it is necessary to guarantee that the rest of fields
remain at least heavy and stabilised during inflation. Even in that situation,
it is still possible to see their influence in the CMB if they are coupled to the
inflaton through turns in the scalar potential or non-canonical kinetic terms. The
influence of additional fields during inflation will be discussed in detail in section
1.5. Ideally, for a perfect decoupling, the rest of fields must be stabilised on
geodesic trajectories. Specifically, if we label the fields Φa = (X,Φi), with X being
the inflaton field and Φi being the additional fields, they satisfy the equation of
motion:

Φ̈i + ΓiabΦ̇
aΦ̇b + 3HΦ̇i +Kib̄Vb̄ = 0 , (1.4.9)

where Γiab = Kic̄Kabc̄ (see appendix A) and geodesic trajectories, or straight lines
on a manifold, must satisfy:

Φ̈i + ΓiabΦ̇
aΦ̇b ∝ Φ̇i . (1.4.10)

Notice that the indices a, b contain the inflaton and thus satisfying both equations
above is a very non-trivial task. A possible solution [3, 82–85] is to have a separable
Kähler function such that:

G(X, X̄,Φi, Φ̄ī) = Ginf(X, X̄) +Gother(Φ
i, Φ̄ī) , (1.4.11)

which in particular implies that the metric and the Christoffel symbols are block
diagonal in the inflaton-others field space. In this case, if the other fields remain
on a fixed position Φi0 at a critical point of the potential Vi(X,Φ

i
0) = 0, they are

consistently truncated and we can study their dynamics separately. The only
extra requirement we need is that the critical point is actually a minimum, and
not a maximum. For this one has to check that the mass matrix of the truncated
sector is positive definite. This imposes constraints on the inflationary dynamics
and on the parent supergravity, as we will see in detail in chapters 4 and 5.

Satisfying the critical condition Vi(X,Φ
i
0) = 0 is not straightforward, as can

be seen from the expression of the derivative of the scalar potential:

Vi = GiV + eG
[
Gj∇jGi +Gi

]
. (1.4.12)

There is a simple way to achieve Vi(X,Φ
i
0) = 0, and that is by having:

Gi(X,Φ
i
0) = 0 =⇒ Vi(X,Φ

i
0) = 0 . (1.4.13)

As explained above, this implies that the fields Φi preserve supersymmetry,
and therefore the point Φi

0 satisfying Gi(X,Φ
i
0) = 0 is called supersymmetric
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critical point. This configuration yields a consistent supersymmetric truncation
of the ‘non-inflating’ sector [83–85]. Notice that in view of the above, only the
inflaton breaks supersymmetry and therefore the inflaton is the sGoldstino [3].
The constraints on the inflationary dynamics and on the truncated sector are
explored in detail in chapter 4, as well as some working examples of different
inflationary scenarios that are possible in this setup.

There is yet another possible approach to achieve a decoupling of sectors
during inflation. Instead of having the inflaton and the sGoldstino directions to
be parallel, they can be orthogonal, as in the model with vanishing superpotential
during inflation proposed in [86], where they have:

DXW (X,Φi0) = 0 , DiW (X,Φi0) 6= 0 , (1.4.14)

where DaW = KaW +Wa 6= 0 signals supersymmetry breaking, and is equivalent
to Ga 6= 0 for non-vanishing superpotentials. This configuration leads to
Vi(X,Φ

i
0) = 0 for W (X,Φi

0) = WX(X,Φi
0) = 0, and therefore in this case the

supersymmetry breaking is sourced by Wi(X,Φ
i
0) 6= 0, and successful inflation

with consistent decoupling can be achieved as well. We will see in chapter 5 that
this situation is also constrained, since we derived the conditions of stability
along the supersymmetric directions as well.

Last, let me emphasise that even when one consistently truncates the theory
to the level of one dynamical complex scalar field, there are two real scalar fields
and we still must be aware of the subtleties of inflation with multiple fields: turns
in the trajectory, non-canonical kinetic terms, and isocurvature modes. This is
precisely the subject of the next section.

1.5 Effective field theories of inflation in the pre-
sence of heavy fields

In the previous sections of this chapter we have seen how single-field slow-roll
inflation models work, and how the quantum fluctuations of the inflaton field
translate into the CMB temperature anisotropies. Later on, we had an overview
of the motivations and difficulties to embed inflation in UV completable theories
such as supergravity, where, among others, the problem of field stabilisation
arises. In this section I consider the presence of multiple dynamical degrees of
freedom and I analyse the conditions under which a heavy field can be consistently
integrated out. Then I review the construction of effective single-field theories
and how we can see the effects of the additional heavy fields from the effective
single field theory point of view. Finally, we will see that even very heavy fields
can leave their imprint in the correlation functions, which will be followed by
chapters 2 and 3, where we make a statistical study of the significance of this
kind of imprints in the CMB.
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1.5.1 Inflation with multiple fields

As stressed in the previous section, in high energy theories the presence of
additional fields is common. In some of the literature these fields are, explicitly
or implicitly, assumed to be stabilised, and the theory is inconsistently truncated
to a single-field description. In addition, this assumption is sometimes incorrectly
justified by calculating the potential slow-roll parameters defined in (1.2.6) and
(1.2.7), which ignore the presence of additional fields, because they only account
for the slope and curvature of the potential in the light field direction (supposedly
the inflaton). This practise results into misleading results and completely ignores
the rich phenomenology conferred by the dynamics of these heavy fields.

Inflationary scenarios with multiple fields have been extensively stud-
ied, an incomplete list of works where the multiple field dynamics has
been studied is [87–95] (see [96] for an excellent review). Here we will focus
on the main differences with respect to the single-field case reviewed in section 1.2.

Consider a set of N real scalar fields φa, a = 1, . . . , N , spanning a real manifold
of dimension N with metric γab. Similarly to the complex case seen in the previous
section, the kinetic terms are given by:

T =
1

2
γab ∂µφ

a∂µφb . (1.5.1)

The background equations of motion for the set of homogeneous scalar fields φa(t)
in a FLRW universe are:

Dφ̇a

dt
+ 3Hφ̇a + γabVb = 0 , (1.5.2)

where DXa ≡ dXa + ΓabcX
bdφc, and Γabc is the Levi-Civita connection associated

to the metric γab. It is useful to define a unitary vector along the trajectory:

T a =
φ̇a

φ̇
, with φ̇2 = φ̇aφ̇a . (1.5.3)

One can also define a normal vector perpendicular to the above one in N − 1
directions, but for the sake of simplicity we will specialise to the case of two fields.
The normal vector can be defined as:

Na = εabTb , (1.5.4)

where εab is the Levi-Civita totally antisymmetric symbol. The normal vector Na

then satisfies10:

NaN
b + TaT

b = δba , NaN b + T aT b = γab . (1.5.5)

10For more than two fields, we need to define the projector along the orthogonal directions to
the subspace spanned by the vectors Ta and Na, given by Pab = γab − (NaNb + TaT b).
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Then one can define the directional derivatives of the potential VT ≡ VaT a and
VN ≡ VaN

a. If we take now the projection of the equations of motion (1.5.2)
along the parallel and normal directions, we obtain, respectively:

φ̈+ 3Hφ̇+ VT = 0 , (1.5.6)

DT a

dt
= −VN

φ̇
Na . (1.5.7)

Notice that the first equation is analogous to that of a single-field setup, while
the second signals the departure from straight trajectories, which will become
relevant very soon.

Slow-roll parameters

Let us now give some definitions of slow-roll parameters in the multiple field case.
The first kinematic slow-roll parameter ε remains the same, since it is proportional
to the total kinetic energy:

ε = − Ḣ

H2
=

φ̇2

2H2
, (1.5.8)

but the second order kinematic slow-roll parameter η3 can be decomposed in
tangential and normal components as follows:

ηa ≡ − 1

Hφ̇

Dφ̇a

dt
= η‖T

a + η⊥N
a , (1.5.9)

where

η‖ = − φ̈

Hφ̇
= 3 +

VT

Hφ̇
, η⊥ =

VN

Hφ̇
=

θ̇

H
. (1.5.10)

Note that the parallel component coincides with the single-field definition
η3 in (1.2.4). Let me stress that η⊥ 6= 0 signals a turn in the inflationary
trajectory, with θ̇ being the turn rate, and that it does not necessarily have to
be small, so in that sense η⊥ is not a slow-roll parameter but a slow-turn parameter.

As for the potential slow-roll parameter εV , the definition for the multiple
field case has to incorporate the slope of the potential in all the field directions,
since the inflaton will always roll in the steepest direction, and therefore it reads:

εV =
1

2V 2
γabVaVb =

1

2

(
VT
V

)2
[

1 +

(
VN
VT

)2
]
, (1.5.11)

which can be rewritten using the definitions in (1.5.10) as follows:

εV =
ε

(3− ε)2

[
(3− η‖)2 + η2

⊥
]
. (1.5.12)
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Notice that for straight trajectories, η⊥ = 0, and the expression above reduces to
the single-field parameter, as it should. Once we have these quantities at hand,
let us turn to the phenomenological aspects.

Adiabatic and isocurvature (or entropy) perturbations

In this subsection our purpose is to explain that in the presence of multiple fields,
isocurvature (or entropy) perturbations are not necessarily suppressed, and they
might spoil the conservation of the adiabatic curvature perturbation on large
scales, as opposed to the single field case. In the following I will review the main
qualitative results of the analysis in [88].

For the purpose of this section, we will consider a set of scalar fields φa

with canonical kinetic terms, i.e. the metric of the field manifold is the identity.
I will denote field indices with the first letters of the alphabet (a, b, . . . ) and
coordinate indices with the middle letters (i, j, . . . ). When considering linear
perturbation of scalar fields, one must also consider metric perturbations, which
can be parameterised as follows:

ds2 = −(1 + 2A) dt2 + 2a∂iB dx
idt+a2 [(1− 2ψ)δij + 2∂i∂jE] dxidxj , (1.5.13)

where the partial derivatives ∂i denote derivatives with respect to the coordinates.
Considering perturbations of the scalar fields of the form φa → φa(t) + δφa(x, t),
the equations of motion in Fourier space read:

δφ̈a + 3Hδφ̇a +
k2

a2
δφa + δabVbcδφ

c = −2AδabVb (1.5.14)

+φ̇a
[
Ȧ+ 3ψ̇ +

k2

a2

(
a2Ė − aB

)]
,

where the subindices denote derivatives with respect to the fields, and the back-
ground fields φa(t) satisfy the equations of motion (1.5.2) with a trivial field metric.
Let us now define the comoving curvature perturbation (in the longitudinal gauge):

R = ψ − H

Ḣ

(
ψ̇ +HA

)
, (1.5.15)

which is related to the curvature perturbation on uniform density hypersurfaces ζ
as follows:

− ζ = R+
2ρ

3(p+ ρ)

(
k

aH

)2

ψ
k�aH−−−−→ R . (1.5.16)

We will soon see that both R and ζ remain constant at large (superhorizon)
scales for purely adiabatic perturbations. Since in this thesis we will focus on
effectively single field inflation, and we will be mostly interested on the behaviour
of correlation functions on superhorizon scales, I will often abuse the language
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and refer to both of them as adiabatic curvature perturbation.

One can also define the (gauge-independent) total entropy perturbation by
splitting the pressure perturbation in adiabatic and entropic parts:

δp =
ṗ

ρ̇
δρ+

ṗ

H
S , with S = H

(
δp

ṗ
− δρ

ρ̇

)
. (1.5.17)

It can be shown [97] that on large scales, due to local energy conservation, the
variation in the adiabatic curvature perturbation is

Ṙ = −3H
ṗ

ρ̇
S , (1.5.18)

and therefore when the pressure perturbation is adiabatic (S = 0), R is conserved
on superhorizon scales. Let us evaluate the entropy perturbation for the cases of
single-field and two-field inflation.

For single-field, since the scalar field ϕ is determined up to two integration
constants, they describe adiabatic and entropic perturbations. It can be seen that
in the longitudinal gauge the entropy perturbation can be written as:

S = − Vϕ
6πGϕ̇2 (3Hϕ̇+ 2Vϕ)

(
k2

a2
ψ

)
=⇒ Ṙ =

H

Ḣ

k2

a2
ψ

k�aH−−−−→ 0 ,

(1.5.19)
and therefore the curvature perturbation is conserved on large scales.

For two-field inflation, as explained above, one can choose a basis in field
space such that one of the directions is parallel to the trajectory (adiabatic
field) and the other direction perpendicular (entropy field). In order to facilitate
the connection with [88], I will keep their notation unchanged, except for the
quantities introduced in this text previously. The adiabatic and entropy fields
can be defined as:

φ̇ = T aφ̇a , δs = Naδφa , (1.5.20)

where φa is the vector of two fields, and the tangential and normal unitary vectors
(T a, Na) were defined in (1.5.3) and below. The entropy perturbation is then
given by:

S = − VT

6πGφ̇2
(

3Hφ̇+ 2VT

) (k2

a2
ψ

)
− 2VN

3φ̇2
δs , (1.5.21)

where an additional contribution coming from the entropy field proportional to
the turn rate11 θ̇ = VN/φ̇ appears at all scales. Due to this, the change in the

11Note the slight change of notation with respect to [88], where the turn rate is defined as
θ̇ = −VN/φ̇.
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adiabatic curvature perturbation receives an extra contribution of the form:

Ṙ =
H

Ḣ

k2

a2
ψ − 2H

φ̇
θ̇δs . (1.5.22)

Here we clearly see how the presence of an additional field might produce
superhorizon evolution of the adiabatic curvature perturbation, which is in
disagreement with experiments. Despite of this, a large effective mass for the
entropy field will suppress the entropy perturbation at superhorizon scales.

At the level of the equations of motion, both modes decouple for θ̇ = 0, as
one would expect. In fact, on large scales the entropy perturbation satisfies
a homogeneous second order equation, however the adiabatic perturbation
suffers from metric back-reaction and a source term coming from the entropy
perturbation. This can be seen in the power spectrum, since the entropy
perturbation enhances the adiabatic spectrum, but not vice versa.

To summarise, we have seen that when multiple fields participate on inflation,
the only way to suppress isocurvature or entropy perturbations is to have straight
trajectories and a heavy mass in the perpendicular direction, such that the entropy
fluctuations do not survive at late times, unless there is a particular mechanism
that avoids the generation of isocurvature perturbations. Note that non-canonical
kinetic terms may cause the same turning effects on trajectories that would
otherwise look straight. In the next subsection we will see some of these aspects
in more detail, but formulated slightly different, in such a way that it permits
us to establish direct connection with the effective field theory of inflation [98].
From now on we will focus on inflationary models that can be described by a
single field after integrating out the heavy degrees of freedom. We will discuss
the conditions under which this integration is valid and the fingerprints of the
heavy physics on the low-energy effective theory.

1.5.2 Effective single-field inflation and the speed of sound

We will now focus on inflation with a light field and a heavy field and review
the construction of an effective field theory for the light field. There has been
extensive work in the last decade in this respect, for instance see [98–110]
for work related to effective single-field theories and the integration of heavy fields.

Let us consider a set of N real scalar fields φa spanning a manifold with
metric γab. The kinetic energy of the fields is given by (1.5.1) and their equations
of motion by (1.5.2). We parameterise the perturbations around the background
solution φa0(t) as indicated in figure 1.9: the field π(t,x) represents displacements
along the background trajectory, while F(t,x) parameterises deviations off
the background trajectory along the perpendicular direction Na at the time
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Figure 1.9 – Parameterisation of perturbations along the background trajectory,
using the displacement along the trajectory, π, and the unitary vector orthogonal
to the background trajectory, Na. The displacement in the orthogonal direction is
proportional to the heavy mode F . Figure adapted from [107].

t+ π. Intuitively, one would think that π is related to the adiabatic curvature
perturbation R and F to the entropy perturbation S, and indeed this is the case,
because R = −πH [39] and F = Sφ̇0/H (see, for instance [106]). We will work
in terms of R and F to respect the notation of [106, 107].

In terms of R and F , the quadratic action reads:

S2 =

∫
d4x

[
φ̇2

0

H2
Ṙ2 − φ̇2

0

H2

1

a2
(∇R)2 + Ḟ2 − 1

a2
(∇F)2 + 4φ̇2

0η⊥ṘF −M2
effF2

]
,

(1.5.23)
where M2

eff = VNN +H2εR− θ̇2 = m2− θ̇2 is interpreted as the mass of the heavy
field F , and R is the Ricci scalar of the field manifold. The equations of motion
derived from the action above are:

R̈+
(
3 + 2ε− 2η‖

)
HṘ − 1

a2
∇2R = −2H2

φ̇0

η⊥

[
Ḟ +

(
3− η‖ − ξ⊥

)
HF

]
,

F̈ + 3HḞ − 1

a2
∇2F +M2

effF = 2φ̇0η⊥Ṙ , (1.5.24)

where ξ⊥ = −η̇⊥/η⊥H = −θ̈/θ̇H − ε is related to the turn acceleration. We can
now clearly see that the equations of motion are coupled whenever η⊥ 6= 0, or in
other words, when the inflationary trajectory traverses a turn.

Decoupling

The equations of motion (1.5.24) can be interpreted as two coupled harmonic
oscillators with a derivative coupling, for which one can propose the ansatz:

F(k, t) = f(k)eiωt , R(k, t) = r(k)eiωt . (1.5.25)
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Let us take the slow-roll (ε, η‖ � 1) and soft-turn (ξ⊥ � 1) limit, and disregard
Hubble friction terms. Under those assumptions, the equations of motion in
Fourier space can be approximated by:

R̈+
k2

a2
R = −2H

φ̇0

θ̇Ḟ ,

F̈ +
k2

a2
F +M2

effF = 2φ̇0
θ̇

H
Ṙ . (1.5.26)

Plugging the ansatz (1.5.25) into the simplified equations of motion (1.5.26) we
obtain the following equation for the frequencies:

ω4 − ω2

(
4θ̇2 +

2k2

a2
+M2

eff

)
+
k2

a2

(
k2

a2
+M2

eff

)
= 0 , (1.5.27)

whose solution is given by:

ω2
± =

1

2

[(
4θ̇2 +

2k2

a2
+M2

eff

)
±
√(

4θ̇2 +M2
eff

)2

+ 16θ̇2
k2

a2

]
, (1.5.28)

which is the result displayed in [102, 109]. Hence, the solutions for the curvature
and isocurvature modes in (1.5.25) will be a linear combination of heavy modes
of frequency ω+ and light modes of frequency ω−:

F(k, t) = f+(k)eiω+t + f−(k)eiω−t ,

R(k, t) = r+(k)eiω+t + r−(k)eiω−t , (1.5.29)

where the relation between the amplitude of different modes can be found by
substituting our ansatz in the equations of motion, and is given by:

r±
f±
' 2iHθ̇ω±

φ̇0

(
ω2
± − k2

a2

) , (1.5.30)

or equivalently:

f±
r±
' − 2iφ̇0θ̇ω±

H
(
ω2
± − k2

a2 −M
2
eff

) . (1.5.31)

At this point one can study all the different hierarchies between the parameters
k/a, Meff and θ̇, which will tell us in what limit the modes are decoupled, that
is, when f+ � r+ and f− � r− the mode F is mostly heavy with frequency
ω+ � ω−, and the mode R is mostly light with frequency ω− � ω+. This
happens in particular for Meff � k/a, θ̇, and surprisingly for θ̇ � H, k/a.
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As emphasised in [109], one would expect that for a large turn rate, the
effective mass of the heavy field decreases and therefore the modes would not
decouple. However, one observes that a large turn rate helps in mode decoupling,
i.e. the gap between the frequencies ω± increases. In the following I will describe
the conditions under which the heavy field can be integrated out, so that one can
write down an effective single field theory for the adiabatic curvature perturbation
under the effects of the heavy mode.

Integrating out F and the sound speed

We focus now on the equation of motion for the heavy mode in (1.5.24). We will
stick to the regime in which Meff � H so that we can disregard isocurvature
fluctuations, and also neglect the friction term in the equation of motion (1.5.24).
Then, in the regime where |F̈ | � M2

eff|F|, in which the kinetic terms of F can
be neglected, we can express the entropy (heavy) field in terms of the adiabatic
(light) field as follows:

FR =
2φ̇0η⊥

k2/a2 +M2
eff

Ṙ . (1.5.32)

Plugging this solution into the quadratic action (1.5.23) we find the following
effective action for the adiabatic mode (see [107] for a elaborated treatment):

Seff,2 =

∫
d4x a3ε

[
Ṙ2

c2s
− (∇R)2

a2

]
, (1.5.33)

where we have defined the speed of sound of the adiabatic mode:

c−2
s = 1 +

4θ̇2

k2/a2 +M2
eff

. (1.5.34)

Some important points are to be made here:

• Whenever the inflationary trajectory traverses a turn, from the effective
field theory point of view it appears as a reduction in the speed of sound
of the adiabatic mode. Isolated turns translate into transient reductions of
the speed of sound.

• Reductions in the speed of sound are completely consistent with a slow-roll
regime.

• Transient reductions in the speed of sound result into localised features
in the power spectrum, which is evident from the presence of c−2

s in the
quadratic action. This happens as well for higher order correlation functions.
In fact, in chapters 2 and 3 we will also show the effective cubic action and
calculate the features both in the power spectrum and bispectrum. These
can be calculated using the in-in formalism and considering the contribution
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of the reduced speed of sound as a perturbation, as we will see in detail in
chapter 3.

• Given that the speed of sound appears at all orders in the effective action,
the features in the correlation functions are correlated [111, 112].

• The validity of the effective field theory is subject to the adiabatic condition
|F̈ | �M2

eff|F|, which in terms of background quantities can be written as
[106]: ∣∣∣ d

dt
ln(1− c−2

s )
∣∣∣�Meff , (1.5.35)

which essentially implies that turns cannot be too sudden (large angular
acceleration), but they can still be strong (large angular turn rate).

To summarise the material presented in this section, we have seen that the
presence of multiple fields during inflation produces a rich phenomenology. While
the production of entropy fluctuations is dangerous, it is nevertheless possible
to suppress them if the entropy field is sufficiently heavy. In that case, one can
construct an effective single field theory for the adiabatic curvature perturbation,
where the effect of the heavy physics is parameterised in terms of a reduced
speed of sound for the adiabatic mode. The single-field description is valid as
long as turns along the inflationary trajectory are not too sudden, and transient
reductions of the speed of sound reveal themselves through localised features
in the correlation functions. This has important consequences, since it opens a
window to detect the presence of heavy fields during inflation. In fact, in chapter
2 I present the work in which we performed a search for this kind of features in
the Planck CMB data, and in chapter 3 I present an elaborated treatment of the
calculation of these features using different methods, and the consistency of the
effective field theory.
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