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Introduction

Helicobacter pylori infection of the stomach causes a chronic gastritis that is associated 
with the development of peptic ulcer disease and gastric cancer. Chronic in� amma-
tion and malignancy are diseases that are accompanied by excessive degradation of 
the extracellular matrix. Matrix metalloproteinases are zinc-dependent proteinases 
that are involved in these processes because of their capability of digesting various 
structural components of the extracellular matrix. The list of their known substrates 
has expanded over the years to a broad range of extracellular proteins including other 
proteinases, proteinase inhibitors, receptors, clotting factors, cytokines, growth factors 
and chemotactic molecules. Enhanced matrix metalloproteinase levels and activities 
have been described in Helicobacter pylori-induced gastritis and in gastric cancer. 
In this thesis several studies are described that assessed the putative role of matrix 
metalloproteinases in chronic Helicobacter pylori-induced gastritis and gastric cancer. 

Extracellular proteolysis

Extracellular proteolysis plays an important role in cell-cell and cell-matrix interac-
tions of physiological processes like mammary gland involution, ovulation, blastocyst 
implantation, cellular migration and angiogenesis, but also in pathological conditions 
like in� ammation as well as invasion and metastasis of malignant tumours [1-8]. 
Whereas in physiological conditions this proteolysis is controlled and self-limiting, in 
in� ammation and metastasis there appears to be an excessive or unbalanced produc-
tion of proteolytic enzymes. These proteolytic enzymes play an important role in the 
remodelling and breakdown of the extracellular matrix (ECM). The ECM, consisting of 
basement membranes and interstitial stroma, is composed of a large number of com-
ponents that interact with each other and with the di� erent cell types present. Col-
lagens are the most abundant ECM constituents besides adhesive glycoproteins like 
laminin, � bronectin, elastin and proteoglycans-glycosaminoglycans like hyaluronic 
acid and heparan sulphate [9-11]. Proteinases can be classi� ed in four main groups: 
1) Cysteine proteinases (e.g., cathepsin-B, -H, -L and -N); 2) Aspartyl proteinases (e.g., 
cathepsin-D); 3) Serine proteinases (e.g., cathepsin-G and -E, elastase, kallikrein, 
thrombin, trypsin, plasmin, plasminogen activators); and 4) Metalloendopeptidases. 
These metalloendopeptidases include the thermolysins, insulinases and metzincins 
(zinc-dependent proteinases). Metzincins can subsequently be subdivided into 
matrix metalloproteinases (MMPs, matrixins), adamalysins (ADAMs; a disintegrin and 
metalloproteinases, and ADAMTSs; a disintegrin and metalloproteinases with throm-
bospondin motifs), astacins and serralysins [12-14].
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Matrix metalloproteinases

The matrix metalloproteinase (MMP) gene family consists of a group of proteolytic 
enzymes capable of degrading components of the ECM during physiological pro-
cesses like pregnancy, parturition [15], development, growth and wound-healing 
[16], as well as in pathological conditions like rheumatoid arthritis [17], pulmonary 
emphysema [18], osteoarthritis [19], skin disorders [20] and malignancy [21]. MMPs 
share the following functional properties: 1) they contain a zinc ion at their active site 
and can be inhibited by chelating agents; 2) they are almost all secreted in a latent 
zymogen form that needs activation by partial proteolytic cleavage to become active; 
3) they are inhibited by tissue inhibitors of matrix metalloproteinases (TIMPs); and 4) 
they share common amino acid sequences and cleave at least one component of the 
ECM [22]. Depending on their structure and substrate preference, the MMP family is 
divided into collagenasescollagenases (MMP-1, -8, -13 and -18), stromelysins stromelysins (MMP-3, -10, -11 and 
-28), matrilysinsmatrilysins (MMP-7 and -26), gelatinasesgelatinases (MMP-2 and -9), elastases (MMP-12, -19 
and -20) and membrane-type MT-MMPs (MMP-14, -15, -16, -17, -24 and -25). Some 
relevant characteristics of the speci� c MMPs and TIMPs studied as described in this 
thesis are summarized in Table 1 and discussed below.

CollagenasesCollagenases. The collagenases can degrade structural type I to III collagens only. 
Neutrophil collagenase or collagenase-2 (MMP-8) is one of the collagenases regarded 
as being synthesized exclusively by polymorphonuclear neutrophils before emigration 
from the bone marrow. In polymorphonuclear leucocytes it is stored in and released 
from secretory granules and its expression is stimulated by tumour necrosis factor-α. 
In addition, MMP-8 mRNA has been detected in mononuclear � broblast-like cells in 
rheumatoid synovial � broblasts and endothelial cells. Doxycycline has been shown to 
down-regulate MMP-8 induction, at both the mRNA and protein levels [17].

MatrilysinsMatrilysins. Matrilysin (MMP-7) or puputative matrix metallopproteinase-1 (PUMP-1) 
lacks a speci� c extracellular matrix-binding domain and is therefore the smallest of the 
MMP gene family, with a molecular weight in its inactive form of 28 kDa. The zymogen 
is activated by 4-aminophenylmercuric acetate, trypsin, plasmin and stromelysin-1 
(MMP-3), but not by tissue collagenase (MMP-1), gelatinase-A (MMP-2) nor gelatin-
ase-B (MMP-9). MMP-7 can activate pro-MMP-1 and pro-MMP-9 but not pro-MMP-2 
nor pro-MMP-3. It has strong stromelysin-like activity and degrades insoluble elastin, 
type IV collagen, laminin-1, � bronectin, proteoglycan and gelatins [27].

Gelatinases. Gelatinase-A (MMP-2) and gelatinase-B (MMP-9) are originally called 
gelatinases, enzymes which degrade denatured collagens (gelatin), although both 
gelatinases can degrade native collagens including type IV (basement membrane) 
and type V collagen and elastin as well. MMP-2 has been demonstrated in a variety 
of normal and malignant cells whereas MMP-9 is mainly expressed by alveolar mac-
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rophages, monocytes, keratinocytes, polymorphonuclear leucocytes and malignant 
cells [28, 29].

Tissue inhibitors of metalloproteinases

Tissue inhibitors of metalloproteinases (TIMPs) are ubiquitous and naturally occurring 
inhibitors of MMPs that inhibit the MMP proteolytic activity by forming noncovalent 
1:1 stoichiometric complexes resistant to heat denaturation and proteolytic degrada-
tion [for review see 25]. Up to now, four TIMPs have been described, TIMP-1, -2, -3 and 
-4, with molecular weights ranging from 21 to 28.5 kDa. TIMPs di� er in solubility, inter-
action with proenzymes (pro-MMPs) and regulation of expression. Whereas TIMP-1, -2 
and -4 are present in soluble forms, TIMP-3 is tightly bound to the matrix. Apart from 
binding to MMPs, TIMPs are also able to form complexes with the pro-MMPs in� uencing 
the MMP activation process. TIMP-2 is a constitutive protein, whereas TIMP-1 expres-
sion is in� uenced by external stimuli including growth factors, serum, phorbol esters, 
cytokines and erythropoietin. It has become apparent that apart from regulation of 
MMP activity, TIMPs are also involved in various other biological processes including 
cell-growth, apoptosis and angiogenesis. For example, TIMP-1 and -2 have been 
shown to potentiate the e� ect of erythropoietin on erythroid stem cell proliferation 
and di� erentiation. Moreover, TIMP-1 and -2 are able to induce the growth of normal 
and malignant cells and are associated with resistance against apoptosis in malignant 
cells. In addition, TIMP-1 has been shown to potentiate steroidogenesis. Moreover, 
TIMPs are also able to inhibit angiogenesis, partly by MMP inhibition, and are involved 
in embryogenesis by controlling the MMP-mediated remodelling of the extracellular 
matrix during blastocyst implantation. In tumours of various origins, downregulation 
of both TIMP-1 and -2 has been associated with increased invasiveness, while overex-
pression was associated with reduced tumour growth and metastasis. 

Detection of matrix metalloproteinases 

MMPs can be detected by various techniques including zymography, in situ zymogra-
phy, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, mRNA in 
situ hybridization and quantitative RT-PCR analysis, Western blotting and quantitative 
activity assays, including radiolabelled collagen substrate degradation assays and bio 
immuno assays (BIAs). Gelatin zymography allows quanti� cation of the active and 
the pro-enzyme form but is primarily suitable for measurement of gelatinases [30] 
and does not provide information at the cellular level. This disadvantage has been 
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overcome with the introduction of in situ zymography, that enables visualisation of 
activity of the gelatinases MMP-2 and -9 [31-34] and of MMP-7 [35] on frozen tissue 
sections. MMPs and their TIMPs can be localized by immunohistochemistry and mRNA 
in situ hybridization analysis without possibilities for quanti� cation and detection of 
enzyme activity [36, 37]. In general, most ELISAs measure the grand total of pro-en-
zyme, active- and inhibitor-complexed forms of the respective MMP [38]. Enzymatic 
activities of MMPs can also be measured in blood samples and tissue homogenates 
using speci� c biochemical immunosorbent activity assays (BIA) [39, 40].

Regulation of matrix metalloproteinases

MMPs are tightly regulated at di� erent levels, including gene expression, secretion, 
activity, and clearance [41].

1) Gene expression. The expression of most MMPs is regulated at the transcrip-
tional level, by growth factors (e.g., epidermal growth factor and transforming growth 
factor-β), cytokines (e.g., tumour necrosis factor-α and interleukin-1), hormones [42-
44], bacterial endotoxins, stress and oncogene activation [45, 46]. Apart from soluble 
factors, also cell-cell and cell-matrix interactions in� uence the expression of MMPs. 
For example, extracellular matrix metalloproteinase inducer (EMMPRIN), formerly 
called tumour cell-derived collagenase stimulatory factor, is a glycoprotein located on 
the outer surface of human tumour cells which interacts with � broblasts to stimulate 
expression of several matrix metalloproteinases in � broblasts [47, 48]. Various single 
nucleotide polymorphisms (SNPs) in gene promoter regions of MMPs have been 
shown to in� uence transcriptional activity resulting in altered protein levels. The 
-1306 C/T transition in the MMP-2 promoter sequence, for example, disrupts a Sp-1 
binding site resulting in remarkably decreased promoter activity [49]. The -1562 C/T 
transition in the promoter region of the MMP-9 gene, on the other hand, results in 
higher promoter activity. This is due to preferential binding of a putative transcription 
repressor protein to the C allelic promoter [50].

2) Secretion in the latent form. MMPs are secreted in a latent proenzyme form, 
with the exception of MMP-11, MMP-28, and the membrane bound MT-MMPs. The 
other MMPs need to be activated in order to interact with the extracellular matrix. 
Several proteolytic activators, including the plasminogen activator/plasmin system, 
kallikreins, neutrophil elastase and trypsin, are involved in the activation of MMPs 
[51]. Unlike other MMPs, pro-MMP-2 is constitutively expressed by many cell types 
and activation occurs at the cell surface [52]. This activation appears to involve an 
interaction with MT1-MMP and TIMP-2 to form a membrane-bound complex that 
regulates the activation of pro-MMP-2 [53]. Pro-MMP-9 is not constitutively expressed 
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and its production and secretion can be induced and modulated by various factors. 
For example, pro-MMP-9 is synthesized by di� erentiating neutrophils in the bone 
marrow, stored in speci� c granules of circulating neutrophils, and released following 
neutrophil activation by in� ammatory cytokines [54, 55].

3) Regulation of activity. TIMPs, the primary inhibitors of MMPs, form inhibitory 
complexes with most active MMPs [56, 57]. TIMP-1 also binds to pro-MMP-9, whereas 
TIMP-2 forms complexes with pro-MMP-2 [58]. TIMPs inhibit MMPs locally whereas 
alpha-2-macroglobulin, an abundant plasma protein, acts as a general non-speci� c 
endoproteinase inhibitor [59]. Recently, the transformation suppressor factor RECK, 
a membrane-anchored glycoprotein, was found to contain 3 protease inhibitor-like 
domains that negatively regulate MMP-2, -9 and MT1-MMP activity and inhibits tu-
mour invasion and metastasis. Furthermore, down-regulation of RECK by oncogenic 
signalling leads to the excessive activation of MMPs thereby promoting malignant 
behaviour of cancer cells. In several types of tumours, a positive correlation between 
RECK expression and survival of the patients has been described [60-62].

4) MMP catabolism and clearance. Although MMPs are found in urine, the degra-
dation and excretion pathways of MMPs and TIMPs in the body have not been fully 
elucidated [63]. Little is known about autoproteolysis of active MMPs, but certain 
cleavages clearly diminish MMP-activity [54]. Some MMPs are also found in associa-
tion with accessory proteins, like lipocalins, which could serve as protection against 
autolysis.

Human neutrophil lipocalin

Lipocalins are a group of small extracellular proteins with great diversity at the 
sequence level. The lipocalins are member of an overall structural superfamily: the 
calycins. The other groups are the fatty-acid-binding proteins, a group of metallopro-
tease inhibitors, triabin and the avidins [64]. Lipocalins bind to a spectrum of small hy-
drophobic molecules and to speci� c cell-surface receptors and form complexes with 
soluble macromolecules. Lipocalins are supposed to function as transport proteins. 
They appear to be involved in biological processes like retinol transport, invertebrate 
cryptic coloration, olfaction, pheromone transport and prostaglandin synthesis. 
They also play a role in the regulation of cell homeostasis, the modulation of the 
immune response, and, as carrier proteins, act in the clearance of endogenous and 
exogenous substances [65]. Neutrophil gelatinase-associated lipocalin (NGAL), also 
named human neutrophil lipocalin (HNL), siderocalin or lipocalin-2 (lcn2), is a 25 kDa 
glycosylated protein constitutively expressed in myelocytes and stored in secondary 
granules of human neutrophils [66]. NGAL is present as a monomer, homodimer, or 
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as a heterodimer with neutrophil gelatinase [67]. It is highly induced in epithelial cells 
during in� ammation or malignant conditions [68-74]. Because accumulation and in� l-
tration by neutrophils is a prominent feature of the in� ammatory process in ulcerative 
colitis, it has been suggested that NGAL may serve as a speci� c marker of intestinal 
neutrophil activation in ulcerative colitis [75]. In neutrophils, NGAL colocalizes with 
lactoferrin, whereas the gelatinases are localized in speci� c gelatinase granules [67, 
76]. Interaction of NGAL with activation and enzymatic activity of gelatinase could 
initially not be shown [77]. The expression of NGAL in epithelial cells is totally de-
pendent on NF-κB and also depends on a NF-κB-binding co-factor that is induced by 
interleukin-1β but not by tumour necrosis factor-α and is required for transcription of 
the NGAL gene [78]. It has been shown that NGAL can act as a bacteriostatic agent by 
sequestering siderophore bound iron and preventing its uptake by microorganisms 
[73, 79, 80]. Therefore, NGAL seems to play a role also in the innate immunity by reduc-
ing the availability of iron for microbial growth [78].

Helicobacter pylori infection and gastric neoplasia

Gastritis is in� ammation of the stomach and is caused by infectious agents, drugs, and 
autoimmune and hypersensitivity reactions. Gastritis in childhood is very common in 
non-industrialized countries but uncommon in the Western world. The prevalence of 
gastritis increases with age, reaching a prevalence of approximately 60% in indus-
trialized to 100% in non-industrialized countries at the age of 60 [81-83]. The most 
frequent cause of (chronic) gastritis is Helicobacter pylori (Helicobacter pylori (Helicobacter pylori H. pylori), a Gram-negative 
bacterial species that preferentially colonizes human gastric mucosa resulting in a 
chronic gastritis [84, 85]. After eradication of H. pylori, the gastric mucosa is restored 
to normal [85]. In the majority of patients with peptic ulcer disease H. pylori is the H. pylori is the H. pylori
causative factor [86-88] and eradication of H. pylori prevents recurrence of peptic H. pylori prevents recurrence of peptic H. pylori
ulcers [89]. H. pylori has also been associated with gastric carcinoma [90], gastric H. pylori has also been associated with gastric carcinoma [90], gastric H. pylori
mucosa associated lymphoid tissue (MALT), lymphoma [91] and Ménétrier’s disease 
[92]. H. pylori gastritis progresses gradually over the years from the non-atrophic form H. pylori gastritis progresses gradually over the years from the non-atrophic form H. pylori
into the atrophic form. Atrophic gastritis and intestinal metaplasia are premalignant 
conditions for gastric cancer except for cancers of the gastrointestinal junction. Of 
gastric carcinomas, 80% are related to H. pylori gastritis. H. pylori gastritis. H. pylori H. pylori infection is currently 
associated with an approximately two-fold increased risk of developing gastric cancer 
[93]. In addition to H. pylori gastritis, another 10% of gastric carcinomas are related to H. pylori gastritis, another 10% of gastric carcinomas are related to H. pylori
atrophic gastritis of the autoimmune type [94, 95]. A possible mechanism through 
which H. pylori infection could induce carcinogenesis is via the accompanying in� am-H. pylori infection could induce carcinogenesis is via the accompanying in� am-H. pylori
matory response, which gives rise to the production of mutagenic substances like 
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nitric oxide [96]. Although H. pylori appears to be the most frequent cause of (chronic) H. pylori appears to be the most frequent cause of (chronic) H. pylori
gastritis [84, 85], only a minority of people who harbour this organism ever develop 
cancer. This process of gastric carcinogenesis seems to be in� uenced by di� erences in 
in� ammatory response due to genetic diversity of both H. pylori isolates as well as host H. pylori isolates as well as host H. pylori
genes [97]. Four di� erent genetic loci have been identi� ed in the H. pylori genome with H. pylori genome with H. pylori
the potential to interact with host molecules that induce epithelial responses with 
carcinogenic potential: CagA, VacA, BabA, and SabA. CagA, derived from the cytotoxin 
associated gene, is injected in the host cells by the bacterium. CagA+ strains enhance 
the risk for severe gastritis, atrophic gastritis, and distal gastric cancer compared with 
that incurred by cag- strains [98, 99]. One of the mechanisms involved is an enhanced 
NF-κB mediated interleukin-8 induction and in� ammatory neutrophilic response in 
human gastric tissue by H. pylori cagA+ strains compared to cag- strains [100]. VacA
encodes a secreted bacterial cytotoxin that induces multiple structural and functional 
alterations in cells leading to gastric in� ammation, haemorrhage, and ulcers [101, 
102]. H. pylori strains with a type s1/m1 H. pylori strains with a type s1/m1 H. pylori vacA allele are associated with enhanced 
gastric epithelial cell injury [103] and gastric cancer risk compared with vacA s2/m2 
alleles [104]. BabA2 encodes for an adhesin that binds the Lewisb histo-blood-group 
antigen on gastric epithelial cells. The presence of babA2 is associated with cagA and 
vacA s1 and H. pylori strains with all three genes induce the highest risk for gastric H. pylori strains with all three genes induce the highest risk for gastric H. pylori
cancer [105]. Sialyl-Lewisx antigen is a tumour antigen that is upregulated in gastric 
in� ammation binding to gastric epithelial cells by the H. pylori adhesin sabA [106].

MMPs in gastrointestinal immunity, in� ammation, infection and 
carcinogenesis

MMPs are tightly regulated and under normal conditions are involved in physiological 
tissue turnover and the host immune response. They play a role in matrix remodel-
ling, the recruitment of in� ammatory cells into the intestinal wall and other organs, 
cytokine and chemokine processing and defensin activation. MMP-9, for example, 
is secreted during neutrophil migration across the basement membrane, whereas 
TIMP-1 is able to inhibit this process [107]. MMP-3 is involved in the cellular immune 
response against intraluminal colonic pathogenic bacteria by facilitating the migra-
tion of T-helper lymphocytes into the intestinal lamina propria [108]. The gelatinases 
are also necessary for migration of dendritic cells out of the skin and of T-cells across 
the basement membrane [109]. Several MMPs, including the gelatinases, can release 
active tumour necrosis factor-α from the membrane-anchored precursor [110] and 
can both activate pro-interleukin-1β or inactivate active interleukin-1β [111, 112]. 
Defensins are MMP-7 activated antibiotic peptides that kill bacteria by membrane dis-
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ruption. It has been shown that certain bacterial components can stimulate epithelial 
MMP-7 secretion, indicating its role in the early defence mechanism against infection 
[113]. 

Under pathological conditions, including gastrointestinal in� ammation, infection 
and malignancy, enhanced levels and activities of MMPs have been described resulting 
in an imbalance in breakdown and remodelling of the extracellular matrix [114, 115]. 
In in� ammatory bowel diseases, for example, enhanced expression of MMPs, either on 
the protein or mRNA level, or immunohistochemically, has been described to be asso-
ciated with the severity of in� ammation [116-118]. Protein and mRNA levels of MMP-2 
and especially MMP-9 were markedly enhanced in in� ammatory bowel tissues, with 
the highest concentrations in severely in� amed tissues. Polymorphonuclear leuco-
cytes appeared to be the main source of MMP-9, whereas MMP-2 was predominantly 
located in the extracellular matrix [116]. Epithelial cells at the edge of gastrointestinal 
ulcers are strongly positive for matrilysin (MMP-7), probably because of their putative 
role in re-epithelization [119]. It has been demonstrated that activated lamina propria 
T-cells, for example elicited by luminal antigens, can cause a pathological chronic 
in� ammatory response leading to intestinal damage by stimulating MMP secretion 
[120]. Enhanced MMP levels and activities have also been described in necrotising 
enterocolitis [121], celiac disease [122], collagenic colitis [123] and diverticulitis [124].

In infectious diseases, enhanced host MMP activity or decreased TIMP expression 
has been described in response to pathogens. In addition to inducing MMP secretion 
by host cells, it has been shown that bacterial pathogens are able to activate host 
pro-MMPs by secreting proteolytic enzymes themselves [125]. H. pylori, for example, 
produces several metalloproteases including one with MMP-3 like activity [126, 127]. 

In a number of human cancers enhanced expression of many MMPs, including 
MMP-1, -2, -3, -7, -9, -13 and -14, at the protein and mRNA levels or immunohis-
tochemically, in both primary tumours and/or metastases has been associated with 
tumour progression and poor prognosis [128]. For instance, enhanced immunohis-
tochemical expression of MMP-1, -7 and -13 has been associated with poor prognosis 
in colorectal cancer patients [129-131]. Enhanced expression of MMPs is found at the 
invasive front of tumours where malignant cells and stromal cells interact with each 
other and mutual induction of MMPs takes place. Several speci� c cellular mechanisms 
have been described that facilitate activation of local pro-MMPs and containment of 
MMP activity to the invasive front. These mechanisms include: 1) the expression of 
membrane-bound metalloproteinases; 2) the binding of soluble MMPs to membrane-
bound docking factors; and 3) cell surface receptor-mediated activation of pro-MMPs. 
Pro-MMP-2, for example, can be activated at the cell membrane after forming a 
trimeric complex with TIMP-2 and MT1-MMP (MMP-14) [53].
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Chronic in� ammation is associated with enhanced cancer risk and both chronic in-
� ammation and cancer are accompanied by enhanced MMP levels and activities [97]. 
Malignant cells, on their turn, secrete cytokines and MMPs, which stimulates in� ux 
of in� ammatory cells to the tumour site and induces (neo)angiogenesis [132]. It has 
been shown, for instance, that MMP-9 is involved in tumour-induced angiogenesis 
by releasing Vascular Endothelial Growth Factor (VEGF) [133] with tumour-related 
in� ammatory cells being the main source of MMP-9 [134].

MMPs in H. pylori-induced gastritis

Immunohistochemical studies on human gastric tissue have shown that MMP-9 
immunoreactivity is predominantly expressed by in� ammatory cells, including mac-
rophages and � broblasts [135, 136], by parietal cells [137], and to a lesser extent by 
epithelial cells with higher expression in H. pylori positive tissue compared to H. pylori 
negative tissue [135, 136]. Antral mucosa of H. pylori positive individuals showed ap-
proximately 20-fold higher MMP-9 activity compared to that of uninfected individu-
als, when measured by quantitative gelatin-zymography, probably by an increased 
number of macrophages containing a higher amount of MMP-9. Macrophages secrete 
MMP-9 in response to H. pylori [136, 138] and it has been demonstrated that H. pylori [136, 138] and it has been demonstrated that H. pylori H. pylori
can induce activation of NF-κB in gastric epithelial cell lines leading to MMP-9 gene 
transcription [135]. 

In histologically normal, H. pylori negative human gastric tissue MMP-2 immunore-
activity was observed in parietal cells and to a lesser extent in epithelial cells [137]. 
MMP-2 activity was elevated in H. pylori positive individuals compared to uninfected 
individuals, but at lower levels than MMP-9 [136].

H. pylori positive individuals expressed higher levels of MMP-7 at the protein and 
mRNA levels in their antrum and corpus when compared to uninfected individuals. 
MMP-7 immunoreactivity in epithelial cells of H. pylori positive individuals was more 
intense than in uninfected persons [138, 139]. MMP-7 expression was strongly related 
to the infestation of cag+ H. pylori strains since MMP-7 expression was demonstrated H. pylori strains since MMP-7 expression was demonstrated H. pylori
in gastric epithelial cells in 80% of cag+ colonized persons but in none of cag- or 
uninfected individuals. Cag+ H. pylori strains augment the risk for gastric cancer. In H. pylori strains augment the risk for gastric cancer. In H. pylori in 
vitro studies the increased levels of MMP-7 in in� amed gastric mucosa appeared to 
be induced by cag+ H. pylori strains dependent on activation of extracellular signal-H. pylori strains dependent on activation of extracellular signal-H. pylori
regulated kinase (ERK) 1/2 mitogen–activated protein kinase [140]. H. pylori infection H. pylori infection H. pylori
has also been reported to stimulate MMP-1, MMP-3, TIMP-3, and MMP-3/TIMP-3 
complex formation in gastric epithelial cells and in gastric mucosa [141, 142]. A strong 
interaction of interleukin-1β and H. pylori on MMP-3 secretion has been found [142]. H. pylori on MMP-3 secretion has been found [142]. H. pylori
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In H. pylori-induced ulcers higher concentrations of MMP-1 were found compared to 
NSAID (non-steroidal anti-in� ammatory drug)-induced ulcers, possibly due to the 
anti-in� ammatory e� ect of the NSAIDs used [143].

Gastric carcinoma

Despite the sharp decrease in the incidence rate of gastric cancer over the last 50 
years [144, 145] gastric cancer is still the second most common cancer worldwide 
accounting for approximately 10% of all cancers and being responsible for approxi-
mately 12% of all cancer deaths [146-148]. In contrast to the decreased incidence 
rate of gastric cancer, the incidence rates of cancer of the distal oesophagus and of 
the cardia have increased signi� cantly over the last decades [149]. In 1985, the age-
standardized incidence rate per 100,000 population varied from 8.8 and 4.2 in North 
America to 74.8 and 35.2 in Japan, in men and women, respectively. The incidence 
rate for Western Europe in 1985 was 18.0 and 9.4 in men and women, respectively 
[146, 150]. The incidence rate in the Netherlands from 1989 until 1992 was 15.4 and 
6.1 in men and women, respectively (World Standardized Rate) and in this period, 
10,116 new cases of gastric cancer were registered indicating approximately 2,500 
new cases annually [151]. In 1998, the incidence rate in the Netherlands ranged from 
18 in men (1,392 new cases) to 10 in women (768 new cases) according to the Dutch 
Cancer Registry (www.kankerregistratie.nl).

The 5-year cumulative survival rate ranges from 91% in stage 1 (intramucosal) to 5% 
in stage 4 (metastatic) gastric cancer [152]. The overall 5-year survival rate ranges from 
7.4% to 16.5% [153, 154]. In the southeast of the Netherlands, the relative 5-year sur-
vival rate of patients who underwent resection was 85% for stage I and 60% for stage 
II tumours [155]. Surgical resection remains the primary curative treatment option 
in gastric cancer with 5-year survival rates of 58%-78% and 34% reported for stage 
I and II disease, respectively [156]. Postoperative chemoradiotherapy, perioperative 
chemotherapy, and postoperative chemotherapy have been shown to decrease the 
risk for recurrence and to improve the outcome for patients � t to undergo these treat-
ments [157]. The aetiology of gastric cancer seems to be multifactorial with di� erent 
relative in� uence of causal factors in di� erent geographical regions. Compared to 
U.S.-born individuals, immigrants had at least a 50% higher mortality from stomach 
cancer [158]. Epidemiological data suggest an increased risk for gastric carcinoma 
development in patients with H. pylori-associated gastritis [90, 159]. H. pylori infection H. pylori infection H. pylori
was especially associated with non-cardiac carcinomas, and a stronger association 
was observed with di� use rather than with intestinal-type tumours [160].
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MMPs in gastric carcinoma

Immunohistochemical and in situ hybridisation studies, as well as quantitative meth-
ods like gelatin-zymography and activity assays, have demonstrated that gastric car-
cinomas contain enhanced amounts of MMP-1, -2, -3, -9 and TIMP-1 [161, 162], MMP-7 
[163] and MT1-MMP [164]. Particularly MMP-1, MMP-7, MMP-9 and TIMP-2 were 
immunolocalized in carcinoma cells, whereas MMP-2 immunostaining was observed 
on advanced gastric carcinoma cells and correlated with vascular invasion by tumour 
cells [165, 166]. Pro-MMP-2 activation was present only on gastric carcinoma cells that 
expressed MT1-MMP, indicating MT1-MMP-assisted activation of pro-MMP-2 in human 
gastric carcinomas. The MMP-2 genotype appeared to in� uence the susceptibility to 
develop gastric cardiac adenocarcinoma [166].

MMP-7 was reported to be produced by gastric carcinoma cells and signi� cantly 
associated with aggressive pathological phenotypes of gastric cancer [167]. In gastric 
carcinomas, it has been shown that expression of E1AF/PEA3 (ETV4), an ets-family 
transcriptional factor, able to transactivate multiple MMP genes, correlates well with 
MMP-7 expression [168]. 

H. pylori infection of gastric carcinoma cells was reported to increase mRNA H. pylori infection of gastric carcinoma cells was reported to increase mRNA H. pylori
expression and protein levels of MMP-9 [169]. MT1-MMP [170] and MMP-1 [171] im-
munoreactivity in human gastric carcinomas were also found to be associated with 
worse prognosis, whereas increased TIMP-2 expression seems to be correlated with 
prolonged survival [172].

Outline of the studies described in this thesis

In this thesis, several studies are described on the putative role of the matrix metal-
loproteinases MMP-2, -7, -8 and -9, the tissue inhibitors of metalloproteinases TIMP-1 
and -2, and of the lipocalin neutrophil gelatinase-associated lipocalin NGAL in chronic 
H. pylori-induced gastritis and in gastric carcinoma. MMPs are the main degrading 
enzymes of extracellular matrix proteins and basement membranes and are therefore 
involved in tissue remodelling and repair as well as recruitment of in� ammatory 
cells and angiogenesis in many physiological and pathological processes, including 
in� ammation and malignancy. As introduction, a short overview is given in chapter 
1 on MMPs, TIMPs and lipocalins in general and their role in H. pylori-induced gastritis 
and gastric carcinoma in particular.

H. pylori gastritis is recognized as an important pathogenetic factor in peptic ulcer H. pylori gastritis is recognized as an important pathogenetic factor in peptic ulcer H. pylori
disease and gastric carcinogenesis. Chapter 2 reports on the in� uence of H. pylori 
infection on gastric mucosal MMP-2 and -9 expression. In gastric mucosal biopsies 
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of individuals with or without H. pylori infection, the levels, isoforms and activity of H. pylori infection, the levels, isoforms and activity of H. pylori
MMP-2 and -9 were determined by quantitative gelatin-zymography, bioactivity assays 
(BIAs), enzyme-linked immunosorbent assays (ELISAs) and immunohistochemistry. In 
addition, the relation between gastric mucosal MMP-2 and -9 expression and severity 
of in� ammation was assessed. 

The in� uence of H. pylori eradication therapy on mucosal MMP-2 and MMP-9 levels 
is described in chapter 3. Gastric biopsies from patients with H. pylori-associated 
gastritis, that were treated with a combination regimen of acid inhibitory therapy and 
antibiotics in order to eradicate H. pylori and to reduce the risk for peptic ulcer disease, H. pylori and to reduce the risk for peptic ulcer disease, H. pylori
were evaluated for the levels, isoforms and activity of MMP-2 and MMP-9 by quantita-
tive gelatin-zymography, bioactivity assays (BIAs) and enzyme-linked immunosorbent 
assays (ELISAs).

In a number of human cancers, enhanced expression of MMPs has been described 
in primary tumours associated with tumour progression and poor prognosis. Chapter 
4 describes the initial study of levels, isoforms, and activities of MMP-2 and MMP-9 
in gastric carcinomas and corresponding normal mucosa, as assessed by quantita-
tive gelatin–zymography. These parameters were correlated with a number of 
clinicopathological parameters including TNM stage and histological classi� cations 
according to Laurén and WHO. In addition, the prognostic signi� cance of the MMP-2 
and MMP-9 levels for the overall survival of the patients was evaluated.

The results of a more comprehensive study that was carried out to endorse the 
� ndings as described in chapter 4 are presented in chapter 5. The MMP analyses in 
the same group of patients were extended and compared with those obtained with 
a new and more recent group of gastric cancer patients. Furthermore, instead of 
quantitative gelatin-zymography, bioactivity assays (BIAs) and enzyme-linked immu-
nosorbent assays (ELISAs) for MMP-2 and MMP-9 were used. Moreover, the prognostic 
value of MMP-2 and MMP-9 was compared with those of MMP-7 and MMP-8 and the 
study was expanded by determination of the inhibitors TIMP-1 and TIMP-2. In addi-
tion, because of the increasing age of the patients and the length of the follow-up, 
tumour-associated survival was evaluated. 

Neutrophil gelatinase-associated lipocalin (NGAL) is a lipocalin that has initially 
been discovered in speci� c granules of human neutrophils and was later shown to be 
expressed also by certain epithelial cells, especially in in� amed or malignant tissues. 
A part of the NGAL is present as a complex with MMP-9. In chapter 6, an analysis of 
the presence of MMP-9-NGAL complexes in tissue extracts from gastric cancers and 
their relation with survival is presented. In the same cohort of patients as used in the 
study described in chapter 5, MMP-9-NGAL complexes were measured by zymog-
raphy and by ELISA. The tumour levels of MMP-9-NGAL complex, MMP-9 and NGAL 
were evaluated for correlations with established clinicopathological parameters of 
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the gastric carcinoma patients and for their predictive value to patients’ outcome. In 
addition, immunohistochemical analysis of serial para�  n-embedded tissue sections 
and immuno� uorescence double staining were used to establish the cellular origin of 
MMP-9 and NGAL.

Single-nucleotide polymorphisms (SNPs) within MMP genes are thought to in� u-
ence the expression of MMPs and/or even seem to be associated with the susceptibil-
ity for the development of malignancy. The clinical impact of MMP and TIMP gene 
polymorphisms in our cohort of gastric cancer patients is described in chapter 7. 
The genotype distribution and allele frequencies of SNPs of MMP-2, -7, -8 and -9 and 
TIMP-1 and -2 were studied. In order to get insight into the functional and clinical con-
tribution of these MMP-related gene polymorphisms, the relationship between the 
distribution of these SNPs and the respective protein levels in tumour and adjacent 
normal tissue, as well as the relation of the SNPs with established clinicopathological 
parameters and tumour-related survival was assessed.

The di� erent studies are � nally compiled as a summarizing discussion in chapter 8, 
including a discussion on the potential role of MMP inhibition in gastric cancer.
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