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7.1 Influence of Blood Flow on Gene Expression 

The aim of this thesis was to determine the effect of changes in shear stress on alterations in 
gene expression, and the role of this on the subsequent development of cardiovascular 
malformations.  
 

7.1.1 Gene Expression and Shear Stress 
In vitro it had already been demonstrated that genes respond to changes in shear stress1-3. In 
vivo, however, it was not clear whether shear stress-related gene expression was important 
in cardiovascular development. The changes in blood flow, predominantly in the inner 
curvature of the embryonic heart, and the concomitant cardiovascular malformations 
caused by venous clip4,5 strongly suggested that genes that are important in cardiovascular 
development would respond to alterations in shear. At first, it was not known to which 
shear stress levels the chicken endocardial cells are subjected. We have previously 
demonstrated6 that in the outflow tract (OFT) of Hamburger and Hamilton (HH)7 stage 15 
chicken embryos the maximum wall shear stress is 50 dyne/cm2, or 5 Pa. This is comparable 
with adult human shear stress levels in arteries, which can be up to 7 Pa8. In addition, due to 
the low Reynolds number (Re), which indicates the ratio between forces of inertia and forces 
of viscosity, embryonic blood (Re<1) will have its maximum velocity shifted to the inner 
curvature of a vessel. This was also shown in the inner curvature of the cardiac OFT6. 
The gene expression patterns of endothelin-1 (ET-1), lung Krüppel-like factor (KLF2) and 
endothelial nitric oxide synthase (NOS-3) during normal chicken cardiovascular 
development are very specific, and can be linked to the patterns of shear stress (Chapter 2). 
The KLF2 expression pattern from the HH18 heart in Chapter 2 is comparable with the shear 
distribution pattern demonstrated in the HH14 heart in Chapter 3, confirming that KLF2 can 
be used as a high shear stress marker in the chicken embryo. In Chapter 6 we show that this 
KLF2 expression is invertedly correlated with the presence of primary cilia, indicating that 
these cilia are present in low shear areas. 
In early development our genes of interest displayed somewhat similar patterns to each 
other, showing overlap in the atrioventricular canal (AVC) and OFT (Chapter 2). Despite the 
suggested non-shear-dependent expression of ET-1 and NOS-3 in these regions and stages, 
we demonstrated that an alteration in blood flow caused changes in the expression of these 
genes (Chapter 3). After venous clip, ET-1 was decreased in the heart, whereas NOS-3 was 
increased like KLF2, which confirmed that not only flow patterns were altered, but also 
shear stress. However, another factor that may be changed by altered hemodynamics is 
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cyclic stretch, caused by pressure pulsations. Since this mechanical force has no effect on 
KLF2 and ET-1 gene expression9,10 (Hierck, unpublished data 2005), it can be neglected. Our 
data suggest that the constitutive expression of the genes in normal early development is 
more important than shear-regulated expression. When shear stress is suddenly altered, 
however, the shear-dependent regulation overrules. 
In vitro studies have demonstrated that high steady laminar shear stress increases both KLF2 
and NOS-33,11,12, and that it down-regulates ET-113,14. The similar alterations in expression 
levels after venous clip demonstrate that in the heart shear stress is locally increased. The 
fact that shear stress may change differently in specific regions can be demonstrated by the 
temporarily decreased flow in the dorsal aorta after venous clip15. The down-regulated KLF2 
and NOS-3, and increased ET-1 expression confirm that shear stress is decreased in this 
vessel (Chapter 3). Recently, Dekker et al.10 have shown that the flow-regulated expression 
of NOS-3 and ET-1 is highly dependent on KLF2 in human umbilical vein endothelial cells. 
Our results from the heart and the dorsal aorta from Chapter 3 show that this may also be 
the case in vivo, since KLF2 and NOS-3 react similarly to an increase or decrease in shear, 
and ET-1 responds opposite to KLF2. However, at one region in the heart the changes in 
KLF2 and ET-1 were not complementary, implying that ET-1 may also be influenced 
independently of KLF2 and directly by shear stress. KLF2 was decreased in the downstream 
slope of the AVC, indicating a decrease in shear. But ET-1 was also down-regulated. Because 
the Reynolds number of chicken embryonic blood is approximately 0.5, forces of inertia 
cannot be completely ignored6. Since 0.5 is smaller than the value (2100) that determines 
whether flow is laminar (Re<2100) or turbulent (Re>2100), chicken embryonic blood flow is 
laminar, but due to inertia disturbances may appear. In combination with the widening 
geometry of the heart downstream from the narrow AVC, and the pumping function of the 
heart, laminar vortices or oscillations may occur, resulting in a shear stress gradient with 
lower mean shear and a concomitant decrease in KLF2 expression. ET-1 decreases with both 
steady and oscillating laminar flow11, indicating that flow is probably oscillatory or vortical 
in this particular region after clip. Measurements with micro-Particle Image Velocimetry 
(μPIV) should provide the precise flow pattern. 
 

7.1.2 Shear Sensing 
It is clear that alterations by venous clip cause changes in shear stress and shear-related gene 
expression, but the question remained how shear stress is sensed by the endothelial cells. 
Several shear stress sensors were postulated previously, such as cell surface ion channels, 
cell-cell contacts, cell-matrix molecules,  and membrane structures (reviewed by Traub and 
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Berk16 and Resnick et al.17). These potential shear stress sensors are all directly or indirectly 
linked to the cytoskeleton (Reviewed by Helmke and Davies18). Primary cilia have also been 
described to act as shear sensors on adult kidney epithelial cells19, and in the early 
embryonic epithelial cells of Hensen’s node20,21. In Chapter 6, we have demonstrated that 
primary cilia are also present on chicken endothelial and endocardial cells. Because these 
cilia are connected to the cytoskeleton22, they are considered to be shear sensors in 
endothelium and endocardium with the cytoskeleton as central transducer (Chapter 6). Cilia 
are present in low shear areas, such as the atria and ventricles. In high shear regions cilia are 
disassembled23. In the latter areas the endothelial cells are aligned in the direction of the 
flow with a different composition of the cytoskeleton compared with low flow-exposed 
endocardial cells8,24. Therefore, in low shear areas cilia are needed to sense changes in shear 
stress and to transmit these changes to the cytoskeleton. In the ventricles, the presence of 
primary cilia was invertedly related with the expression of KLF2. Cilia were present in the 
deeper parts of the trabeculations, whereas KLF2 was expressed at the tips of the 
trabeculations, where shear stress is higher (Chapters 2 and 6). In the atrial septum, 
however, KLF2 expression overlapped with the presence of cilia. We suggested that this was 
because of the micro flow patterns due to the fenestrations in the septum. The presence of 
primary cilia overlaps with ET-1 expression in the top of the atrium cranial to the entry of 
the sinus venosus, and in the most proximal and most downstream part of the AVC 
(Chapters 2 and 6). This confirms that ET-1 is expressed in low shear areas. However, cilia 
are present in the complete atrium and in the cryptes of the ventricular trabeculations, 
where ET-1 is sporadically expressed. The level of shear stress may be of such a magnitude 
that cilia are present, but that ET-1 is not expressed. A threshold in shear stress levels may 
exist for genes to respond to. Furthermore, in the sinus venosus ET-1 is expressed (Chapter 
2), whereas cilia are only observed occasionally on these endothelial cells. This difference in 
the number of cilia on endothelial or endocardial cells was ascribed to the heterogeneity of 
these cells25,26 (Hierck, unpublished data 2005; Chapter 6). 
In the normal situation no primary cilia are present in the inner curvature, because shear 
stress is always high in this area, and KLF2 is expressed (Chapters 2 and 6). After venous 
clip, shear stress is even increased, implying that cilia are not the shear sensors in this region 
after this intervention. We propose that the cytoskeleton functions as a shear 
sensor/transducer in these high shear areas (Chapter 6). In the pharyngeal arch artery (PAA) 
system, primary cilia were only detected in the proximal part of the 6th pair of PAAs. The 
restricted presence of cilia in the PAA system can be explained by the regional differences in 
endothelial cell response to shear stress, but also by the fact that most of the blood from the 
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embryonic circulation goes to the brain (Chapter 6). Also after venous clip more blood flows 
to the head (Hogers, unpublished results), suggesting that an increase in the number of cilia 
in the 4th arch arteries may be present. However, no alterations in gene expression were 
detected in the PAA system after clip (Chapter 3). In the region where the two cardinal veins 
enter the sinus venosus, KLF2 expression is absent, but ET-1 expression was shifted, 
possibly due to a local decrease in shear in the right part and an increase in shear in the left 
part of this area. Therefore, in spite of the preference of primary cilia to be present on 
endocardial cells instead of endothelial cells, the number of cilia may be increased in the 
right part of this region, which would be additional proof for altered shear in this area. 
 

7.2 Mechanism of the ET-1 Pathway in the Venous Clip Model 

In Chapters 4 and 5, infusion experiments are described, where ET-1 and ET-1-receptor 
antagonists were infused into the extra-embryonic circulation. These experiments were 
performed to investigate whether a disturbance in the ET-1 pathway results in similar 
abnormalities as in venous clip. Infusion experiments are, however, different from the 
venous clip model, since the infusion experiments cause a bolus of ET-1 or its receptor 
antagonists, whereas in the venous clip model gene expression is affected for a longer 
period of time, and more genes will be disturbed. However, we demonstrated that the ET-1 
pathway is involved in the venous clip model, since disturbances in this cascade resulted in 
similar, but less severe, functional and morphological abnormalities (Chapter 4). 
It has been described before that the proportion endothelin-A (ETA) and endothelin-B (ETB) 
receptors may differ between different vascular beds in the adult27. In the embryo this is also 
the case. At HH18, ETA receptor mRNA is absent in the vitelline vessel wall, whereas that of 
the ETB receptor is expressed in abundance in both endothelium and media of the vessel 
wall (Chapter 5). In the embryonic chicken heart both ETA and ETB receptor mRNAs are 
strongly present (Chapter 4). This implies that the ET-1 pathway in the peripheral vitelline 
circulation is mechanistically different from the intra-embryonic circulation (Chapter 5). 
Since cardiac malformations arise after venous clip, a possible mechanism for ET-1 in the 
venous clipped heart will be described (Fig. 7.1). This description is in part specific for a 
region where cushions are present, because ET-1 is predominantly decreased in the inner 
curvature along the AV and OFT cushions after clip (Chapter 3). In Figure 7.1 a cilium is 
shown. This does not represent the cushion areas, but the low shear regions where these 
primary cilia are present and sense changes in flow that are transmitted to the cytoskeleton 
(Chapter 6). The increase in shear stress in cushion areas leads to an increase in KLF2 
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expression3 (Chapter 3) (Fig. 7.1a). Through KLF2, or directly by shear stress, NOS-3 
expression is upregulated and ET-1 is decreased in the endocardial cells10,13,28 (Fig. 7.1b). This 
decrease in ET-1 mRNA also leads to a down-regulation of ET-1 protein release9,13,29 (Fig. 
7.1c1,2). Normally, ET-1 is predominantly secreted at the abluminal side30,31 toward the 
cardiac jelly and myocardium (Fig. 7.1c1).  
 
 

 
Figure 7.1. Scheme demonstrating the effects of venous clip on shear stress (a), gene expression (b), and cardiovascular 
processes, predominantly by ET-1 (c-k), and by NOS-3 (m,n). +, processes are stimulated by venous clip; -, processes 
are inhibited; CJ, cardiac jelly; CM, cardiomyocyte; EC, endothelial/endocardial cell; EMT, epithelial to mesenchymal 
transformation; FB, fibroblast; SMC, smooth muscle cell. 
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7.2.1 ET-1 in Cushion Development 
It has been reported that ET-1 stimulates the proliferation of mesenchymal cells32, probably 
also in the cardiac jelly, where it, in addition, may influence the extracellular matrix by 
regulating the synthesis of fibronectin33,34 and collagen35,36 (Fig. 7.1d). However, this may 
only occur in the early stages, since ET-1 mRNA was only present in the endocardial 
cushions of up to stage HH24, where it still overlapped with KLF2 expression (Chapter 2). 
This possible role in cushion development of ET-1 may explain the overlap with KLF2 and 
the concomitant apparent non-shear dependent expression. 
ET-1 is also secreted luminally (Fig. 7.1c2) and can flow through the complete cardiovascular 
system, where it is quickly cleared by the ETB receptor37-39. This was described for the ETB 
receptor in the lungs and kidneys of adult guinea pigs and rats. Since these organs are not 
well developed yet at HH18, ET-1 may bind to the ETB receptor in the complete 
cardiovascular system in early embryonic development. Because ET-1 can stimulate 
proliferation and migration through the ETB receptor, it can contribute to 
neovascularisation40,41 (Fig. 7.1e). In cushion tissue, the processes of proliferation and 
migration participate in the formation of the valves. Therefore, and because valve formation 
is impaired in Edn-/- mice, it may be involved in epithelial to mesenchymal transformation 
(EMT)42,43, and in transdifferentiation, which was shown for endothelial cells of the dorsal 
aorta43 (Fig. 7.1e). However, ETB receptor mRNA, and most likely ETB receptor protein, are 
not present along cushion tissue from approximately HH22 onward (Chapter 4), implying 
that ET-1 will not have an influence on the mentioned processes after HH22. Since after 
venous clip ET-1 is down-regulated, proliferation, migration, EMT, and extracellular matrix 
synthesis will diminish (Fig. 7.1d,e), resulting in the observed impaired development of the 
endocardial cushions44, which was also shown in ET-1-/- mice42. In the preseptation stages, 
hypoplastic AV cushions were the most common malformation in clipped embryos. Less 
mesenchymal cells were present, which were accumulated directly under the endocardial 
lining of the AV-cusions44. This suggested that proliferation was impaired as well as 
migration, in which we postulate that the ET-1 pathway played a role. The fact that these 
malformations were not observed in periseptation stages was ascribed to the high 
embryolethality between HH22 and HH24. Embryos with severe malformations of the AV 
cushions were not able to survive, and were selected out at HH2444. In the infusion 
experiments these embryos may have been missed, since the readouts were at HH24 and 
HH35. Another explanation has been mentioned above; these were bolus-infusions leading 
to a disturbance of only one pathway. After venous clip, more genes are affected and for a 
longer period of time. 
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Another role for ET-1 in cushion development is in the OFT septation. ET-1 is strongly 
expressed from HH24 to H27 in normal OFT-mesenchyme (Chapter 2), and OFT septation 
defects are described in the venous clip model44. This suggests that ET-1 is involved in 
defects of OFT septation after venous clip, since a decrease in ET-1, if this expression is 
shear-dependent, will result in hampered development and myocardialisation of the OFT 
cusion40,41,43,45. However, infusion of ET-1 and receptor antagonists did not result in 
malformations of OFT septation (Chapter 4). The lack of abnormalities in OFT septation in 
the infusion experiments may again be due to the limited effects of the bolus infusion. Not 
only valve and OFT-septation defects were observed after venous clip, also ventricular 
septum defects (VSDs) were present, an abnormality formed among others by impaired 
cushion development and fusion. The decrease in ET-1 may also explain these 
malformations. 
 

7.2.2 ET-1 in the Cardiac Wall 
Abluminally secreted ET-1 can, besides affecting cushion development, bind to its receptors 
on cardiac fibroblasts, smooth muscle cells (SMCs), or cardiomyocytes. Through the ETA 
receptor it induces contraction of cardiomyocytes46,47 and SMCs through both ETA and ETB 
receptors48 (Fig. 7.1f,g). In addition, through the ETA receptor it stimulates proliferation of 
cardiac fibroblasts49,50 (Fig. 7.1h) and SMCs51-53, and hypertrophy of cardiomyocytes54-57 (Fig. 
7.1f). In vascular smooth muscle cells35 and cardiac fibroblasts36, ET-1 induces collagen 
production (Fig. 7.1f,h). In the latter cell type, collagenase activity is inhibited through the 
ETA receptor, and the ETB receptor is also involved in production36 (Fig. 7.1i). 
In cardiomyocytes, ET-1 has through the ETA receptor a positive influence on inotropy, 
lusitropy, and distensibility58,59 (Fig. 7.1f). These are the contraction force, the rate of 
relaxation of myocytes, and the amount of stretch or expansion of the myocardium, 
respectively. However, the ETB receptor also plays a role in inotropy and lusitropy, since 
the endocardial ETB receptor was demonstrated to elicit a small negative effect of both (Fig. 
7.1j,k), and the myocardial receptor a slight positive effect60 (Fig. 7.1g). The endocardial ETB 
receptor is, furthermore, involved in vasodilation of SMCs61. On chronotropy, i.e., the 
contraction rate of the heart, ET-1 has an overall positive influence62,63 (Chapter 5), however, 
it can exert a negative chronotropic effect through the ETA receptor63 (Fig. 7.1f), which in 
chicken embryos of HH18 was not observed in our experimental setup (Chapter 5). Through 
the ETB receptor, ET-1 elicits a positive effect (Chapter 5), which is desensitised by repetitive 
application of ET-1, resulting in an overall negative chronotropy64. It is not known whether 
ETB receptors in the endocardium, the myocardium, or both are involved (Fig 7.1g,j,k). In 
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addition, the chronotropic effects also differ in species, since sinoatrial node cells from the 
rabbit display negative chronotropic effects induced by ET-1, whereas these cells from 
guinea pigs and rats showed positive chronotropic effects64,65. Infusion of ET-1 in a vitelline 
vein of chicken embryos, resulted in an increase in heart rate (Chapter 5). Therefore, we pose 
that ET-1-induced chronotropic effects in chicken embryos are similar to those in rats and 
guinea pigs (Fig. 7.1f,g,j,k). Because after venous clip ET-1 is decreased in the heart, all these 
processes may be impaired (Fig. 7.1f-k). 
 

7.2.3 ET-1 in Cardiac Function and Morphology 
The immediate effects Stekelenburg-de Vos et al.15 demonstrated after venous clip could not 
be due to a decrease in ET-1 mRNA, since mRNA production takes more time, and may 
come from the immediate increased or decreased release of functional ET-1 protein. Heart 
rate was decreased for up to 2-3 hours after clip, which means that chronotropy is 
diminished. Because of the overall positive chronotropic effect of ET-162,63 (Fig. 7.1f,g,j,k), the 
decrease in chronotropy implies that the immediate ET-1 protein release is down-regulated 
by venous clip. A down-regulation of ET-1 protein may also explain the decreased mean 
dorsal aortic blood flow, peak acceleration (a measure for cardiac contraction force), and 
stroke volume, since contraction and inotropy will be impaired as well (Fig. 7.1f,g,j,k). 
Due to the flow and shear stress changes, ET-1 mRNA is down-regulated for at least 3 hours 
after venous clip, resulting in a decreased protein release as described above. We postulate 
that the ventricular wall is less developed, since hypertrophy of cardiomyocytes, 
proliferation of cardiac fibroblasts, and collagen production by cardiac fibroblasts (Fig. 
7.1f,h,i) are hampered by decreased ET-1. A decreased thickness of the compact layer of the 
ventricular wall was shown after clip44 and after infusion of ET-1 or its receptor antagonists 
(Chapter 4), confirming the involvement of the ET-1 pathway in the ventricular wall after 
venous ligation. Furthermore, the heart will have impaired contractile, inotropic and 
lusitropic responses by diminished ET-1 (Fig. 7.1f,g,j,k). This can explain the trend in 
enhanced end-diastolic ventricular stiffnes (EED), or reduced compliance, and the reduced 
end-systolic ventricular elastance (EES), which implies a diminished contractility of 
ventricular myocardium, at HH2166. At HH24, the EES was still decreased, the EED was 
significantly increased (Stekelenburg-de Vos, unpublished results), and peak acceleration 
was down-regulated67, demonstrating the attenuated inotropy and lusitropy after clip due to 
sustained decreases in ET-1. In addition, the reduced compliance, distensibility and 
lusitropy by diminished ET-1, explains the decreased diastolic passive ventricular filling at 
HH2468. In chapter 4 we have confirmed that ET-1 is involved in this function through 
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blockade of the ETA receptor. However, infusion of ET-1 itself resulted in similar changes. 
In Chapter 5 we confirmed in chicken embryos that exogenous ET-1 preferentially binds to 
the ETB receptors in the endothelium and endocardium, instead of those in the 
myocardium69. This results in a greater effect through the endocardial ETB receptor, leading 
to enhanced negative lusitropy and a diminished effect on distensibility (Fig. 7.1f,j,k). We 
explained the increased active ventricular filling in the infusion experiments by the increase 
in receptor mRNA through the positive feedback mechanisms after blocking the receptors, 
thereby increasing the inotropic effect of the atria. However, after venous clip we encounter 
a down-regulation in ET-1 mRNA and not a blockade of receptors. Therefore, it is not 
known whether a decrease in ET-1 mRNA will also lead to an up-regulation of its receptors. 
Furthermore, up-regulating the receptors will not be effective, since the ligand, ET-1, is 
decreased. In addition, the down-regulation in ET-1 mRNA was encountered at the inner 
curvature downstream from the AV canal. In the atria, where the inotropy is expected to be 
enhanced, ET-1 was not altered 3 hours after clip (Chapter 3). Therefore, the increased active 
ventricular filling after venous clip cannot be explained by the early changes of ET-1, or its 
receptors. Due to the developmental abnormalities after the initial effect of altered gene 
expression, blood flow and shear stress may be changed (Chapter 4), and ET-1 expression 
may have been increased in the atria at HH24. 
In contrast to the unaltered dorsal aortic blood flow and stroke volume at HH24 after 
venous clip, dorsal aortic flow velocity, peak systolic and mean volumetric blood flow, and 
stroke volume were all increased at HH3467. Because of the morphological malformations, 
partly induced by the ET-1 down-regulation, a decrease, or no alteration of these parameters 
is expected. These increases in hemodynamic parameters also suggest an increase in ET-1 
production and circulating ET-1 from HH24 onward by means of compensation, which is 
also the case in adult humans with heart failure70,71. 
Proper remodelling of the inner curvature is important for normal cardiac looping72,73, a 
process that is impaired in the venous clip model. The inner curvature of the heart was not 
tight enough, thereby preventing the alignment of the individual cardiac septa, resulting in 
a VSD in 66% of the venous clip embryos44. ET-1 was predominantly decreased in the inner 
curvature, and it is involved in developmental processes (Fig. 7.1). Therefore, ET-1 may also 
play a role in cardiac looping, and in the disturbed looping after venous clip, resulting, 
together with impaired cushion development (see above), in VSDs. 
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7.2.4 Other Mechanisms Involved in Venous Clip 
Not ony the ET-1 pathway is disturbed after venous clip, but NOS-3 is also altered. In the 
heart NOS-3 is up-regulated in endocardium by the increase in shear stress (Chapter 3; Fig. 
7.1a,b), which results in an enhanced synthesis11 and possible release of NO (Fig. 7.1m). This 
stimulates the inhibition of SMC proliferation and stimulates vasodilation, negative 
inotropy, negative lusitropy and positive chronotropy58,60,74-76 (Fig. 7.1n). These actions of NO 
counterbalance the effect of impaired ET-1 through the endothelial ETB receptor60,61,64 (Fig. 
7.1j,k), but enhance the effect of disturbed ET-1 through the myocardial ETA receptor58,59, 
which, for inotropy and lusitropy, prevailed over ETB-mediated counter actions (Fig. 7.1f). 
Inhibition of NOS from day 12 to day 18 chicken embryos resulted in increased biventricular 
wall area and an increase in the left ventricular wall thickness77. This suggests that up-
regulated NOS-3 may be involved in the decreased ventricular wall thickness observed after 
venous clip (Chapter 4). Furthermore, Nos-3-/- mice are hypertensive and display bicuspid 
aortic valves, heart failure, and ASDs and VSDs78-81, demonstrating the involvement of NOS-
3 in cardiac development. However, transgenic mice overexpressing Nos-3 are hypotensive 
and show a reduced vascular sensitivity to NO82, which implies that the local 
overexpression of NOS-3 after venous clip induces less sensitivity to NO. This suggests that 
after venous clip mainly the effects of reduced ET-1 through the ETA receptors need to be 
taken into account, and that up-regulated NOS-3 is not involved in the decreased 
ventricular wall thickness after venous clip. 
KLF2 was also demonstrated to be increased after venous ligation (Chapter 3). Absence of 
KLF2 leads to abnormal thinning of the tunica media and concomitant instability of the 
vessel wall83. Whether an increase in KLF2, besides its effects through ET-1 and NOS-3, has 
itself an effect on cardiovascular development is not known. 
Other genes will also be involved in the venous clip model. Genes such as platelet derived 
growth factor-A and -B (PDGF-A, PDGF-B), vascular endothelial growth factor receptor 2 
(VEGFR2/Flk1), and most importantly transforming growth factor-β (TGF-β) are all involved 
in cardiovascular development84-88 and are shear stress responsive1,2,89,90. Expression of TGF-β 
was decreased in the OFT and AV cushions, and expression of the TGF-β type III receptor 
was completely absent at HH24 after venous clip (Hogers, unpublished results). In addition, 
TGF-β has been demonstrated to be involved in EMT91, and in other cardiovascular 
developmental processes that are impaired in venous clip88. This puts TGF-β in a position of 
an additional important factor involved in the development of cardiovascular 
malformations after venous ligation. 
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7.3 Future Research 

It is clear that ET-1 plays a major role in cardiac dysfunction and morphological 
malformations after venous clip. Therefore, the possible role for ET-1 in EMT needs to be 
investigated, including the role of TGF-β in this impaired process after venous clip. In 
addition, processes resulting in the decreased ventricular wall thickness44 (Chapter 4), such 
as hypertrophy and extracellular matrix production or deposition need to be examined. 
Investigation of whether the morphological impairments lead to the functional disturbances 
is required as well. Furthermore, the possible role of ET-1 in outflow tract septation has to 
be analysed. 
Since alterations in gene expression are an indirect way to conclude that shear stress is in- or 
decreased after clip, a direct method of shear stress calculation in the heart and vessels, by 
means of μPIV measurements, is preferred. In Chapter 5 we have demonstrated that this 
technique is very sensitive. Therefore, it will be very effective for mapping the shear stress 
distribution in the cardiovascular system of normal and experimental embryos at increasing 
stages. 
The role of the cytoskeleton and primary cilia in shear sensing and gene expression during 
embryonic development and maldevelopment also needs attention. Furthermore, it is 
important to investigate the function of shear sensing and gene expression in 
atherosclerosis, since atherosclerotic plaques develop at low and unsteady shear areas. Cilia, 
the cytoskeleton, and shear-related alterations in gene expression may play a role. 
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