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CHAPTER 9 SUMMARY & DISCUSSION 

Parts of this chapter have been published in Current Topics in 

Microbiology and Immunology 300 (1995) pp57-94
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One of the mechanisms used by HCMV to downregulate cell surface 
expression of the MHC class I complex involves the dislocation of newly 
synthesized class I heavy chains into the cytosol, where they are degraded by 
the proteasome 1,2. Misfolded ER proteins have been found to be degraded 
via the same route that HCMV uses to dispose of MHC class I molecules 
(reviewed in 3,4). The ubiquitin system plays an important role in this process 5-

10. In this thesis, the role of ubiquitin in the US2- and US11-dependent 
dislocation of MHC class I heavy chains has been studied. In this chapter, the 
results of this exploration are summarized and discussed. 

MHC class I is only one of many immune evasion targets in CMV infection 

Different species of CMV have developed different strategies to elude 
the immune system. This is exemplified by the diversity of immune evasion 
strategies identified for human and murine CMV 11,12, and recently, also for rat 
CMV 13 (Chapter 2). All these CMV species downmodulate MHC class I 
expression at the cell surface. As mentioned in the introduction (Chapter 1),
HCMV downregulates MHC class I cell surface expression through multiple 
mechanisms, including retention in the ER 14-17, dislocation to the cytosol 
1,2,18,19 and hindrance of class I maturation by the inhibition of peptide 
translocation by TAP 20-23. MCMV, on the other hand, downregulates class I 
at the cell surface by preventing the export of class I complexes from the 
post-ER/early Golgi 24,25 and by lysosomal degradation 26. RCMV adopts yet 
another strategy in that it only delays MHC class I maturation without any 
obvious degradation, resulting in a temporary downregulation at the cell 
surface (Chapter 2).

The downregulation of MHC class I molecules at the cell surface of 
RCMV-infected cells is observed during the first 24 hours of infection 
(Chapter 2). Immune escape during the early stage of infection could be 
important for the survival and replication of cytomegaloviruses in mammalian 
cells27-29. In cells infected with cytomegaloviruses, it has been shown that the 
first immune evasion genes are expressed as early as 4 hours after infection 
30,31. At later time points, MHC class I presentation is restored by the action of 
INF  and TNF 32,33. Direct targeting of MHC class I molecules may, 
therefore, be the preferred first line of defense of the herpes virus at this early 
time point but it is not ideal in the long run, since downregulation of MHC 
class I at the cell surface is an unsubtle way of immune evasion and may 
attract the attention of NK cells 34-36.

The role of E3 ligases in the dislocation and degradation of ER 
(glyco)proteins

In the introduction it has been described how ubiquitin plays a role in 
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the degradation of ER proteins, in particular, US2- and US11-mediated 
degradation of class I heavy chains (Chapter 1). Not only the proteasomal 
degradation of class I molecules, but also their retrograde transport to the 
cytosol is dependent on ubiquitination. This is illustrated by experiments in 
which ubiquitination is blocked by a temperature-sensitive mutation in the 
ubiquitin activating enzyme (E1). At the restrictive temperature, the class I 
heavy chains are retained in the ER membrane. Other substrates, including 
mutated ribophorin I and TCR  chains, are retained in the ER when 
ubiquitination is inhibited 5,37. Shamu and colleagues have shown that 
ubiquitinated MHC class I species could be found attached to the ER of cells 
transfected with US11 8. By expressing US11 and class I in these cells we were 
able to prove that US11-mediated dislocation also depended on a functional 
ubiquitin system (Chapter 3) 7.

 Several E3s were screened for their potential involvement in US11-
dependent degradation. A RING mutant of the mammalian HRD1 (Chapter

4) did not influence US11-mediated degradation, despite the fact that we were 
able to show inhibition of degradation of two other ER degradation 
substrates, TCR-  CD3- , with this RING mutant (Chapter 4)38. Besides 
HRD1, we also screened TEB4, the mammalian homologue of doa10p, for 
involvement in US11-dependent degradation (Chapter 5). In a search for the 
genes responsible for the degradation of the cytosolic yeast mating factor- 2,
Doa10 was identified as a novel S. cerevisiae E3 ubiquitin ligase 39. Doa10 is a 
multi membrane-spanning RING finger-containing ubiquitin ligase that 
resides in the ER and the nuclear envelope 39. It promotes the ubiquitination 
of proteins with a degradation signal denoted Deg1, which is also present 
within the N-terminal 62 residues of yeast mating factor- 2. Doa10 acts in 
conjunction with the E2 enzymes Ubc6 and Ubc7 39.

Doa10 harbors an unusual RING-finger configuration 39. Proteins 
containing this RING-CH motif have earlier been associated with 
transcriptional regulation and DNA binding 40-43, and designated as PHD- or 
LAP- domain containing proteins44 41. These proteins do not function as E3 
ubiquitin ligases. Aravind and colleagues 45, however, were able to discern 
structural differences, apart from cystein and histidine composition, making it 
possible to discriminate between RING-HC-containing proteins that act as 
ubiquitin ligases and PHD/LAP domain-containing proteins with other 
functions. This refinement places Doa10 in the family of E3 ligases and not in 
the PHD/LAP domain-containing group of proteins. 

Since Doa10 is localized in the ER membrane, it was sensible to test 
whether Doa10 is involved in the degradation of ER proteins. Indeed, the 
degradation of the short-lived ER-resident E2 enzyme Ubc6 was markedly 
inhibited in a Doa10delta yeast mutant 39. Degradation of Pma1-D378N and 
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Ste6-166, both misfolded forms of yeast plasma-membrane proteins, takes 
place from the ER and also depends on Doa10p 46,47. It was found that the 
degradation of either of these proteins is independent of Hrd1p. The 
degradation of CPY*, which has been shown to depend on Hrd1p, was not 
influenced by Doa10 46-48. These results suggest that Hrd1p and Doa10 
cooperate in yeast ER protein degradation, each serving a distinct subset of 
ER-substrates. However, when human CFTR was ectopically expressed in 
yeast, its degradation depended on both Hrd1p and Doa10. This was 
illustrated by the strong effect of deleting both E3s, whereas deleting either of 
them separately yielded only modest effects on the degradation of CFTR 49.
These data implicate that Hrd1p and Doa10 are capable of complementing 
each other in the degradation of a single substrate. W hen Hrd1p and Doa10 
are both deleted, yeast cells become extremely sensitive to ER stress, as well as 
to cadmium treatment. Deletion of just one of the two genes only has modest 
effects 39. Hrd1p and Doa10p are also linked to the Cdc48p-Npl4p-Ufd1p 
complex. A temperature-sensitive mutation in Npl4p causes the 
malfunctioning of the Cdc48p-Npl4p-Ufd1p complex. The resulting 
accumulation of ubiquitinated proteins in the (ER-) membrane can be 
suppressed by deleting both Doa10 and Hrd1p 50. Together, these findings 
illustrate that both proteins have a complementary role in the degradation of 
ER proteins and the neutralization of ER stress in yeast. 

W e identified TEB4 as the mammalian homologue of yeast Doa10p 
(Chapter 5) 51. It had originally been characterized as a transcript of the Cri-
du-chat critical region on chromosome 5. It appears to be well-conserved, as 
genes with a high degree of homology to TEB4 occur in many species. TEB4 
contains 13 predicted transmembrane regions and has a RING-CH domain 
near its N-terminus. It exhibits UBC7-dependent E3 ligase activity in vitro,
which is also ubiquitin lysine 48-specific (Chapter 5) 51. W hile it promotes its 
own degradation in a RING-finger and proteasome-dependent fashion 
(Chapter 5) 51, other substrates for TEB4 have not been found as yet. W e 
tested the effect of over-expression of TEB4 and its RING-finger mutant on 
US11-dependent dislocation of MHC class I molecules, and on the 
degradation of UBC6.  No effect on the degradation of either of these 
substrates (Hassink et al. unpublished) was observed. The putative role for 
TEB4 in ER protein degradation is, however, supported by its homology with 
S. cerevisiae Doa10p 39, its ER localization, the large number of 
transmembrane regions, the involvement of lysine 48 of ubiquitin in its E3 
ligase activity, the in vitro dependence on UBC7, and its RING domain-
dependent degradation by the proteasome (Chapter 5) 51.

Membrane-associated RING-CH (MARCH) proteins 52, such as 
murine gammaherpesvirus 68 mK3 and Kaposi sarcoma herpesvirus encoded 
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kK3 and kK5, inhibit the expression of MHC class I complexes and the co-
stimulatory molecules ICAM-1 and B7.2 on the cell surface 52-59. These E3 
ligases mediate ubiquitin-dependent internalization of receptor molecules and 
their degradation in an endolysosomal compartment. Neither TEB4 nor its 
RING-finger mutant affected the surface expression of such immuno-
modulatory molecules as MHC class I, Fas, TfR, CD4, and B7.2 (Hassink et 
al. unpublished), suggesting that TEB4 does not share this function with some 
of the other MARCH proteins. 

The role of ubiquitin in protein dislocation 

The observation that the process of retrograde transport of ER 
proteins to the cytosol is dependent on ubiquitination 8(Chapter 3) 5,7, not 
only raises questions concerning the E3 responsible for this process but also 
with regard to the specific role of ubiquitin-conjugation in this process. It is 
reasonable to assume that the degradation substrates become poly-
ubiquitinated themselves 6. However, ubiquitination of substrates before their 
dislocation is difficult to envisage for ER-lumenal substrates or proteins that 
lack lysines in their cytosolic domains. Yet ubiquitination is essential for the 
retrotranslocation of ER-lumenal substrates like CPY* 60 and mutated 
ribophorin I 5. Two observations may provide hints for the explanation of this 
apparent paradox. First, it has been suggested that the dislocation may be 
divided into two distinct steps 61. Substrates that were initially lumenal could 
thus be ubiquitinated while associated to the cytosolic side of the ER 
membrane. This then may be essential for their actual release into the cytosol, 
which is thought to be directed by the p97-Ufd1-Npl4 complex 61,62,131.

The second observation that may explain the role of ubiquitin in 
dislocation of ER proteins involves TCR  and MHC class I heavy chains, 
well-known ER degradation substrates, each containing a number of lysines. 
However, removal of the lysines from the cytosolic tail of MHC class I heavy 
chains does not influence their dislocation or degradation 6. Moreover, 
removal of all the lysines from the TCR  chain results in dislocation and 
proteasomal degradation with kinetics indistinguishable from that of wild-type 
TCR 63. These data indicate that although these proteins possess lysines 
accessible to the ubiquitination machinery, these are not important for the 
removal of the proteins to the cytosol. Ubiquitination may still take place at 
the N-terminus of the lysine-less TCR  chains to facilitate their release from 
the ER membrane. This would require their relocation to the cytosolic side of 
the ER membrane prior to ubiquitination. Yet, we have recently provided 
evidence that the N-terminus is also dispensable for ubiquitin-dependent 
dislocation. An MHC class I heavy chain with all its lysines mutated to 
arginines and its N-terminus blocked by the fusion of lysine-less ubiquitin 
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molecule to this N-terminus 64,65, was dislocated to the cytosol as the wild-type 
molecule in the presence of HCMV US11 (Chapter 6). As a result of the lack 
of ubiquitination sites, however, proteasomal degradation of the mutant heavy 
chains was much slower, resulting in the appearance of a deglycosylated 
intermediate in the absence of proteasomal inhibition (Chapter 6). In US2-
expressing cells, these lysine-less heavy chains were not dislocated but 
remained stable in the membrane despite the fact that they could be found 
associated with US2 molecules (Chapter 6). In this respect, US2-mediated 
dislocation resembles HIV Vpu-induced dislocation of CD4 66. These 
experiments established that the ubiquitin machinery uses different target 
NH2 groups to discriminate between the dislocation of ER substrates and the 
degradation of dislocated substrates by proteasomes, thus illustrating that 
dislocation and degradation are separate events. Furthermore, these data 
indicate that fundamental differences may exist between US2- and US11-
mediated dislocation. But most importantly, the experiments suggest that 
dislocation of ER proteins to the cytosol does not necessarily involve 
ubiquitination of the substrate itself. Instead, ubiquitination of an adaptor 
molecule in trans may be an essential step in the dislocation reaction. This 
compels us to form a new hypothesis about the process of dislocation.

Differences between US2 and US11 dependent dislocation 

Several publications suggest that US2 and US11 differ in their 
mechanisms to dislocate heavy chains to the cytosol. To begin with, US2 
works at much lower concentrations than US11 67. This would suggest that 
US2 merely induces dislocation for newly synthesized class I molecules in 
general, were it not for the fact that US2 has rather specific substrate-binding 
requirements, which argues in favor of active participation of US2 in the 
dislocation of specific MHC class I haplotypes 68.

Unlike US2-mediated dislocation, US11-mediated dislocation of class I 
heavy chains depends on the small multi-spanning ER membrane protein 
Derlin-1, which can be found in complex with US11 but not US2 69,70.
Remarkably, the degradation of US2 itself does depend on Derlin-1 70, which 
indicates that heavy chain dislocation and US2 dislocation are separate events 
and renders an earlier hypothesis that US2 functions by dislocating in 
complex with the heavy chain highly unlikely.

US2 and US11 also differ in their recognition patterns. US2 has a 
broader specificity in that it also targets MHC class II molecules for 
degradation 71-74. It would be interesting to ascertain whether US2 uses the 
same binding surface for the recognition for both class I and II 68.

Finally, US2 and US11 differ in the requirements concerning cytosolic 
domains. The cytosolic tail of the heavy chain may be used as a recognition 
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beacon for cytosolic factors like the proteasome or the p97-Ufd1-Npl4 
complex. Whereas the cytosolic tail of the heavy chain is required for US11-
dependent dislocation 75,76, depending on the experimental circumstances, the 
heavy chain tail can be omitted in US2-mediated dislocation 68,76. Looking at 
the cytosolic domains of US2 and US11 themselves, on the other hand, the 
situation is reversed. The tail of US2 is required for heavy chain dislocation, 
but the tail of US11 is not 73,77. It could be the case, therefore, that in US11-
dependent dislocation the tail of the heavy chain is used to interact with 
proteasomes or p97 complexes, whereas in US2-mediated dislocation this 
function is performed by US2 itself.

Communication between the lumen of the ER and the cytosol 

It is clear that US2 and US11-dependent dislocation depend on a 
functional ubiquitin system, the proteasome and the p97 complex (Chapter 3,
5) 62,78. How these three cytosolic components work together with the luminal 
side of the ER is not clear. The dependence on functional proteasomes, for 
instance, varies with the circumstances on the luminal side of the membrane, 
which is exemplified by experiments in 2m-negative cells. 2m binding is one 
of the prerequisites for MHC class I molecules to egress to the Golgi and 
beyond 79-81. The folding of heavy chains occurs in 2m negative cells, but, in 
contrast to maturation in 2m positive cells, a significant portion of the newly 
synthesized heavy chains in 2m negative cells is found in a reduced state 
(Chapter 7) 82. In U373 astrocytoma cells in which 2m expression was 
knocked down by RNAi, it has been shown that US2 requires 2m for the 
dislocation of heavy chains when the proteasome is inhibited 78. In 2m
negative FO-1 melanoma cells without proteasome inhibitor, however, both 
US2 and US11 are able to target heavy chains for dislocation, suggesting that, 
in principle, lack of 2m is not sufficient to inhibit US2- and US11-mediated 
dislocation (Chapter 7). Yet again, a difference was found between US2 and 
US11 when the proteasome was inhibited. US11-dependent dislocation of 
human heavy chains and normal ER-associated degradation of human heavy 
chains due to lack of 2m were much more sensitive to proteasomal inhibition 
than US2-dependent dislocation (Chapter 7) 82. The different outcomes of 
the two experiments suggest that 2m positively influences the degradation of 
heavy chains by US11. In either case, the proteasome has a strong influence 
on the efficiency of US2- and US11-mediated dislocation, as has been 
observed for many other cases of ER-associated degradation. These data 
indicate that the dislocation of ER proteins is not driven by a single 
component, but that the efficiency of the dislocation process is influenced by 
several components.
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Dislocation in progress 

The fact that the lumenal portion of the heavy chain does not need to 
be ubiquitinated in order to be dislocated by US11 also raises the question 
whether heavy chains are extracted via their N-termini or their C-termini 
(Chapter 6). Several studies hypothesized that US11-dependent dislocation 
occurs from the N-terminus to the C-terminus, but this was based on the 
finding that ubiquitination of the heavy chain is required for its dislocation 
and that lysines in the cytosolic tail of the heavy chain are not required, 
suggesting that ER luminal-positioned lysines are used 3,8,69. Extraction via the 
N-terminus, however, is more complicated than C-terminal extraction as it 
involves a second contact with the membrane. Furthermore, the molecule has 
to bend and probably even unfold to make this possible. By determining the 
relative amounts of differently situated epitopes within dislocating heavy 
chains that were exposed to the cytosol during pulse labeling in the presence 
of US11, we observed that TM-proximal regions appeared in the cytosol prior 
to the N-terminus (Chapter 8). This suggests that, in the case of US11-
mediated dislocation of heavy chains, extraction starts at the C-terminal end 
of the class I molecule.

In 2m-negative cells, in which heavy chains are prone to ER-
associated degradation, a relatively high number of heavy chains were 
observed to be in a reduced state (Chapter 7). Conversion of heavy chains to 
a reduced state may be a prerequisite for efficient dislocation. Co-precipitation 
of Sec61  with dislocated MHC class I heavy chains in the presence of US2, 
as well as studies with Sec61  mutants, suggest that the Sec61 complex acts as 
a dislocation channel 1,83-85. In this model, TRAM could facilitate the re-entry 
of multi-spanning membrane proteins into the translocon. The translocon has 
a diameter of only 40-60 Å 86, implying that substrates using this channel will 
probably have to be unfolded by ER resident-chaperones prior to dislocation. 
However, a number of studies suggest that this is not the case. MHC class I 
molecules with an N-terminally fused GFP can be detected fluorescently 
active in cytosol in the presence of US2, suggesting that the fusion protein 
was dislocated in a folded state 87. Another study shows that fusion of a 
dihydrofolate reductase (DHFR) domain to the N-terminus of MHC class I 
does not inhibit dislocation in the presence of metotrexate 88, which induces 
rigid folding in the DHFR domain. Both these studies point to dislocation in a 
folded state and require a more flexible diameter of the pore, as has already 
been suggested by others 89-92. We attempted to establish whether the ER-
dislocation mechanism was also able to facilitate the dislocation of larger 
substrates by generating large degradation-prone complexes in the lumen of 
the ER, consisting of an antibody that recognized a tag within an MHC class I 
heavy chain (Chapter 8). The expression of HA tag-containing MHC class I
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heavy chains in anti-HA antibody-producing hybridoma’s resulted in the 
formation of class I-antibody complexes. We have been unable to obtain 
stable transfectants of these constructs in these hybridoma’s, which may be 
related to toxicity of the class I heavy chain-antibody complexes for the cell 
(Chapter 8). Our transient experiments revealed, that the IgG heavy chains 
were more unstable in cells expressing HA-containing MHC class I heavy 
chains than in wild-type class I heavy chain transfectants (Chapter 8). This 
suggests that the IgG-MHC heavy chain interaction induced dislocation of 

Figure 1.  formation of the US11 dislocation complex. See text for explanation.
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both molecules simultaneously and might imply that the IgG- and MHC- 
heavy chains are dislocated. 

A model for US11-dependent dislocation 

As mentioned earlier, the observation that US11-mediated dislocation 
is not dependent on ubiquitination of the MHC class I molecules combined 
with the observation that the dislocation process itself is dependent on 
ubiquitination, suggests that ubiquitination of an adaptor molecule in trans may 
be required. MHC class I-US11 complexes do not only co-precipitated with 
Derlin-1 and p97 69,70, but also with HRD1 and HERP 93-95 (van Voorden 
unpublished).

Based on these results, the following model for US11-dependent 
dislocation can be envisaged (Figure 1). The first step is the recognition of 
MHC class I heavy chains by US11, which is in complex with Derlin-1 and 
the small membrane spanning molecule VIMP 69,70. The US11-Derlin-1-
VIMP complex attracts the HERP-HRD1 complex (Chapter 6) which may 
be initiated by the ubiquitination of HERP or VIMP or other still unidentified 
components of the dislocation machinery 69. It is not certain whether the 
ubiquitination event required for dislocation is driven by HRD1, since a 
RING mutant of HRD1 is not able to inhibit US11-dependent dislocation 38.
It is, however, possible that the transmembrane regions of Derlin-1 and the 
multi-membrane spanning HRD1 form a conduit around the heavy chain as 
was hypothesized for the twin-arginine translocons used by peroxisomes and 
plant thylakoid membranes 96,97. In addition, gp78, TEB4 and other ubiquitin 
ligases with multispanning membrane domains may be recruited into the 
dislocation complex. Furthermore, the translocon components Sec61  and 
have been suggested to be part of the “dislocon” 1,85,127-130. The advantage of 
forming a dislocon after the substrate has been defined is that it may be 
adapted to the nature of the substrate, e.g. the size of the substrate 87,88. Such 
an ad hoc arrangement would allow easy embrace of transmembrane regions of 
misfolded protein substrates CFTRdelta508 98,99 and apolipoprotein B100 
100,101. An additional advantage would be that the membrane integrity would 
stay intact since, before and after dislocation, there is no pore to keep closed 
in the absence of dislocation substrates 102-105. Both the p97-Ufd1-Npl4 
complex and the proteasome might be attracted by the dislocon, or even 
stabilize it 62. Using either the ATPase activity of p97 or that of the 
proteasome, the dislocation substrate is extracted from the membrane and 
simultaneously unfolded and degraded by the proteasome. Just before 
proteasomal degradation, the N-glycanase may remove any N-linked glycans 
from the substrate 106,107. In the absence of proteasomal activity, the p97 
complex extracts the substrate from the membrane 61. In the absence of 
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ATPase acitivity in the p97 complex, the proteasome may facilitate both 
extraction and degradation 108,109.

The future 

Taken together, this thesis contributes to the partial characterization of 
an ER-route of degradation co-opted by HCMV to dispose of MHC class I 
molecules. For the future, it will be interesting to determine the exact 
definition of the dislocon and to ascertain whether there is only one type of 
dislocon in the ER or whether several different dislocon compositions for 
different groups of substrates exist. As to the value of the research described 
in this thesis in the quest for treatment of HCMV-related problems, it could 
be interesting to develop inhibitors of US2- and US11-class I interactions 110.
This may contribute to the eradication of HCMV in HIV patients and patients 
receiving immunosuppressive drugs. 

Besides CMV immune escape, this thesis deals with the role of 
ubiquitin in ER-associated degradation. After the discovery, in 1980, that 
ubiquitin was involved in protein turnover 111,112, research on ubiquitin has 
expanded significantly and ubiquitin-dependent degradation is now an 
important issue in contemporary science. This is emphasized by the fact that 
Aaron Ciechanover, Avram Hershko, and Irwin Rose were awarded the 
Nobel Prize for Chemistry in 2004 for their work on ubiquitin. Defective 
ubiquitination of ER proteins forms the basis of such diseases as Alzheimers 
disease 113-116, autosomal-recessive juvenile parkinsonism 117-120, type 2 diabetes 
mellitus 121, and rheumatoid arthritis 122,123. In addition, there are indications 
that ER stress 124-126 could be involved in the development of type 1 diabetes 
mellitus. These examples clearly illustrate the crucial importance of gaining 
fundamental insight into such cell biological issues as the role of the ubiquitin 
system in relation to the degradation of ER proteins described in this thesis. 
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