
Carbon starvation in the filamentous fungus Aspergillus niger
Nitsche, B.M.

Citation
Nitsche, B. M. (2012, October 23). Carbon starvation in the filamentous fungus Aspergillus
niger. Retrieved from https://hdl.handle.net/1887/20011

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/20011

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/20011

Cover Page

The handle http://hdl.handle.net/1887/20011 holds various files of this Leiden University
dissertation.

Author: Nitsche, Benjamin Manuel
Title: Carbon starvation in the filamentous fungus Aspergillus niger
Date: 2012-10-23

https://openaccess.leidenuniv.nl/handle/1887/1�
http://hdl.handle.net/1887/20011

Chapter 2

e use of open source bioinformatics
tools to dissect transcriptomic data
Benjamin M. Nitsche1 , Arthur F.J. Ram1,2 , Vera Meyer1,2,3

1 Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
2Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA, Delft, The Netherlands
3 Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany

Abstract
Microarrays are a valuable technology to study fungal physiology on a transcriptomic level. Various
microarray platforms are available comprising both single and two channel arrays. Despite differ-
ent technologies, preprocessing of microarray data generally includes quality control, background
correction, normalization and summarization of probe level data. Subsequently, depending on the
experimental design, diverse statistical analysis can be performed, including the identiöcation of dif-
ferentially expressed genes and the construction of gene co-expression networks. We describe how
Bioconductor, a collection of open source and open development packages for the statistical pro-
gramming language R, can be used for dissecting microarray data. We provide fundamental details
that facilitate the process of getting started with R and Bioconductor. Using two publicly available
microarraydatasets fromAspergillus niger, wegivedetailedprotocols onhow to identify differentially
expressed genes and how to construct gene co-expression networks.

MethodsMol Biol. 2012;835:311-31

28  2

Introduction

e open source and open development project Bioconductor (Gentleman et al., 2004) (http:
//bioconductor.org/) is actively developed and maintained by members of the academic com-
munity, thus providing scientists with leading edge computational biology tools. Bioconductor
is well suited for the academic environment where it can be used for research and education.
Rather than providing a graphical user interface,most Bioconductor packages depend on com-
mand line input. erefore, getting started with Bioconductor requires some effort, especially
for those having limited computational background.

In the following, we give a step-by-step tutorial on how Bioconductor can be used for tran-
scriptomic data analysis and provide the reader with the most important theoretical back-
ground on the statistics involved. We use two Affymetrix microarray datasets that were re-
cently published for Aspergillus niger (Jørgensen et al., 2010; Martens-Uzunova et al., 2006).
e datasets as well as all Bioconductor packages are publicly available, allowing the read-
er to repeat each step of the analysis. We start with a brief description on how the statisti-
cal programming language R (R-Team, 2008) (http://www.r-project.org/), Bioconductor core
packages and additional Bioconductor packages can be installed. For the identiĕcation of dif-
ferentially expressed genes, we demonstrate how to import CEL ĕles and associate them with
phenotypic labels, how to preprocess microarray data and asses its quality, how to perform
multi-way comparisons and ĕnally, how to export the data. For the construction of gene co-
expression networks, we subsequently import CEL ĕles, assess the data quality and preprocess
the CEL ĕles, perform non-speciĕc ĕltering and construct gene co-expression networks.

Materials

In the examples described thereaer, the open source and open development packages from
the Bioconductor project (Gentleman et al., 2004) (http://bioconductor.org/), which use the
statistical programming language R (R-Team, 2008) (http://www.r-project.org/), are used for
the analysis of transcriptomic data. e following packages available from the Bioconductor
homepage are required: affy (Gautier et al., 2004), affycoretools (MacDonald, 2008), affyPLM
(Bolstad et al., 2005), limma (Smyth, 2004), geneĕlter (Gentleman et al., 2006) andmakecdfenv
(Irizarry et al., 2006).

Both transcriptomic datasets used for demonstration purposes were recently published for
A. niger and have been deposited at public databases. e ĕrst dataset (Jørgensen et al., 2010)
used for the identiĕcation of differentially expressed genes comprises nine Affymetrix mi-
croarrays corresponding to three different time points during maltose-limited retentostat cul-
tivations and is available via its accession number GSE21752 at the NCBI Gene Expression

http://bioconductor.org/
http://bioconductor.org/
http://www.r-project.org/
http://bioconductor.org/
http://www.r-project.org/

       29

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2011). e sec-
ond dataset (Martens-Uzunova et al., 2006) used for the construction of gene co-expression
networks comprises 29 Affymetrix microarrays from multiple time points aer transfer of
mycelial biomass from fructose to a variety of carbon sources: rhamnose, xylose, sorbitol,
galacturonic acid, polygalacturonic acid and sugar beet pectin. e dataset is available at the
EMBL ArrayExpress database (http://www.ebi.ac.uk/arrayexpress/) via the accession number
E-MEXP-1626.

Both transcriptomic datasets are based on the Affymetrix chip dsmM_ANIGERa_coll
511030F. e corresponding chip description ĕle (CDF) can be downloaded from the NCBI
GEO database via the GEO accession number GPL6758.

Methods

Installation

Before installing Bioconductor packages, the statistical programming language R has to be
installed. R installation packages and platform speciĕc help ĕles are available for Linux, Mac
OS and Windows at the Comprehensive R Archive Network (CRAN: http://www.r-project.
org/). Aer successful installation, the R command window can be accessed via its application
icon or by typing R at the command prompt (see Note 1). To install the Bioconductor core
packages, make sure to have an Internet connection and type at the R command window (see
Note 2):� �
> source (" h t tp : / / b ioconductor . org / b i o c L i t e . R ")
> b i o c L i t e ()� �
Further packages have to be installed:� �

> b i o c L i t e (" a f f y c o r e t o o l s ")
> b i o c L i t e (" makecdfenv ")
> b i o c L i t e (" limma ")� �
For Affymetrix chips, analysis of raw data usually starts with CEL ĕles. ey contain the

information from intensity calculations of the pixel values from the raw image data (DAT
ĕles) obtained with the chip scanner. To be able to import the Affymetrix raw data from CEL
ĕles, Bioconductor requires information about the corresponding Affymetrix chip which has
to be provided as a chip-speciĕc package. While those packages can be downloaded for many
popularAffymetrix chips, they ĕrst have to be built for custom-made arrays such as theA. niger

http://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/arrayexpress/
http://www.r-project.org/
http://www.r-project.org/

30  2

chip.eAffymetrix chip description ĕle (CDF) provides all information required for building
the package.

To build the CDF package, ĕrst download the dsmM_ANIGERa_coll511030F CDF archive
ĕle via its GEO accession number GPL6758 from the GEO database (http://www.ncbi.nlm.
nih.gov/geo/) and decompress it (see Note 3). Create a new directory (from now on re-
ferred to as working directory, WD), copy the CDF ĕle to the WD and rename it into
“dsmM_ANIGERa_anColl.CDF”. At the R command line, deĕne the WD with the function
setwd (see Note 4 and Note 5), load the required package makecdfenv with the library com-
mand and build the chip speciĕc package with the make.cdf.package function:� �
> setwd (" abso lu te path to WD/ ")
> l i b r a r y (" makecdfenv ")
> make . cd f . package (" dsmM_ANIGERa_anColl . CDF " , s p e c i e s = " A s p e r g i l l u s n i ge r

")� �
e newly built package is saved in a new folder in the WD (WD/dsmmanigeraancollcdf/).

Next, open a new command prompt window, change to the WD and install the package (see
Note 1):� �
> R CMD INSTALL dsmmanigeraanco l l cd f� �

Computation of differentially expressed genes

e identiĕcation of differentially expressed genes will exemplarily be shown on a tran-
scriptomic dataset recently published for A. niger (Jørgensen et al., 2010). e data has been
deposited at the NCBI GEO database and can be downloaded via its accession number:
GSE21752. A. niger was cultivated under controlled conditions in carbon-limited retentostat
cultures, which is a speciĕc form of continuous cultivation. e biomass was retained in the
bioreactor, while old medium was removed and fresh deĕned medium was fed at a constant
rate. With increasing cultivation time, the biomass speciĕc availability of the sole limiting car-
bon sourcemaltose decreased and the fungus underwent carbon starvation.e RNAused for
microarray hybridizations derived from three different time points: Batch phase referred to as
day 0 (d0), day 2 and day 8 of retentostat cultivation (d2 and d8, respectively).With three repli-
cate cultures, the number of microarrays adds up to a total of nine. Below, we describe how
to identify sets of genes that are differentially expressed comparing d2 versus d0, d8 versus d0
and d8 versus d2.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/

       31

Importing CEL öles into R

Create a new WD and download the raw data (CEL ĕles) from the NCBI GEO database (http:
//www.ncbi.nlm.nih.gov/geo/) via the dataset accession number GSE21752. Next, decompress
(seeNote 3) the data and copy the CEL ĕles into the WD. Open the R command line, load the
packages that will be used for data analysis with the library function and deĕne the WD using
the function setwd (see Note 4 and Note 5):� �
> l i b r a r y (" a f f y ")
> l i b r a r y (" a f f y c o r e t o o l s ")
> l i b r a r y (" a f fyPLM ")
> l i b r a r y (" limma ")
> setwd (" abso lu te path to WD/ ")� �
Before importing the CEL ĕles into R, generate a ĕle that allocates phenotypic labels to

them. It consists of tab-separated columns and should be saved in the WD as a plain text
ĕle named “phenotypic_labels.txt”. e required sample information can be obtained from
the NCBI GEO database via the corresponding dataset accession number (GSE21752). e
content of the phenotypic label ĕle should look like:� �
sample Fi leName Ta rge t
d0 . 1 GSM542228 . CEL d0
d0 . 2 GSM542335 . CEL d0
d0 . 3 GSM542336 . CEL d0
d2 . 1 GSM542337 . CEL d2
d2 . 2 GSM542338 . CEL d2
d2 . 3 GSM542339 . CEL d2
d8 . 1 GSM542340 . CEL d8
d8 . 2 GSM542341 . CEL d8
d8 . 3 GSM542342 . CEL d8� �
Use the function read.table to import the text ĕle and assign (see Note 6) the phenotypic

labels to the variable pData, which represents a data frame with row names equal to the unique
ĕle names. Subsequently, call the function ReadAffy to import the raw data from all annotated
CEL ĕles:� �
> pData <− read . t ab l e (" pheno t yp i c _ l abe l s . t x t " , row . names = 2 , header =

TRUE)
> rawData <− ReadAf fy (f i l enames = rownames (pData) , verbose = TRUE)� �

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/

32  2

Figure 2.1− RNA degradation plot
For each array of the retentostat dataset (GSE21752), mean probe intensities are plotted ordered from 5' to 3' end.
For assessment of RNA quality, it is important that the 5'/3' intensity ratios are comparable between samples rather
than the actual values. Typical 5'/3' ratios dependon theAffymetrix chip used (Bolstad et al., 2005;MacDonald, 2008).

Quality assessment and preprocessing

We recommend checking the average integrity of RNA transcripts, because RNA is very sensi-
tive to degradation by ribonucleases. For this purpose, make a degradation plot showingmean
intensities of the probes ordered from 5' to 3' end of their target transcripts. e 5'/3' ratio of
mean probe intensities should be comparable between the samples, as shown in Figure 2.1 (see
Note 7). e following code will create a degradation plot (see Note 8):� �
> plotDeg (rawData , f i l enames = pData$sample)� �
Next, use the Robust Multi-array Average (RMA) package (Irizarry et al., 2003) for prepro-

cessing probe level data. e function rma performs background correction, quantile normal-
ization and robust median polish to summarize intensities of probe sets to expression values.
Background correction aims to differentiate speciĕc from non-speciĕc hybridization signals.
For this purpose, Affymetrix chips are designed to provide pairs of nearly identical probes
for hybridization, so called perfect match (PM) and mismatch (MM) probes. e MM probes
are identical to the PM probes, except for their central nucleotide at position 13, which is

       33

changed to its complement. e Affymetrix MAS5.0 algorithm for background correction us-
es the intensities of both probes to correct for non-speciĕc hybridization signals. However, it
has been shown that MM probes in many cases give stronger signals than their corresponding
PM probes indicating that besides non-speciĕc also speciĕc hybridization occurs (Naef et al.,
2002).erefore, RMA does not useMMprobe intensities but applies a global empirical mod-
el for the distribution of PM probe intensities for background correction. Especially for lowly
expressed genes, the RMA algorithm for background correction has been shown to be supe-
rior to MAS5.0 (Irizarry et al., 2003). Before normalization, differences in probe intensities
between arrays are due to biological and technical differences. e later is mainly introduced
during labeling and hybridization, which normalization aims to compensate for. Aer nor-
malization, differences in probe intensities between arrays should in theory exclusively be due
to biological differences. e quantile normalization performed by RMA makes probe inten-
sity distributions comparable between the set of arrays under investigation. Finally, RMA ĕts a
robust multi-array model to summarize the probe intensities of each probe set into an expres-
sion value. Use the rma function to preprocess the probe level data and compute expression
values.e results are organized as an object of the class ExpressionSet. To allocate phenotypic
labels to the ExpressionSet object eset, call the function new:� �
> ese t <− rma (rawData)
> phenoData (e se t) <− new (" AnnotatedDataFrame " , data = pData)� �
To show the effect of quantile normalization, generate two box plot diagrams for the raw and

RMA processed data. First, use the function par to deĕne a new window in which two plots
can be placed next to each other (see Note 9). Subsequently, generate two box plot diagrams
with the function boxplot. e two box plots nicely illustrate the effect of RMA preprocessing.
As a result of quantile normalization, the arrays have nearly identical median intensities and
comparable intensity distributions aer RMA preprocessing compared to the raw data (see
Figure 2.2).� �
> par (mfrow = c (1 , 2))
> boxp lot (rawData , l a s = 2 , cex . a x i s = 0 . 5 , main = " raw data ")
> boxp lot (eset , l a s = 2 , cex . a x i s = 0 . 5 , main = "RMA preprocessed data ")� �
Next, convert the ExpressionSet object eset, to a matrix with RMA expression values (see

Note 10) using the function exprs and assign the resulting matrix to the variable e. e matrix
has nine columns (one for each CEL ĕle) and 14,554 rows, each containing probe speciĕc
RMA expression values. e probes still include Affymetrix control probes beginning with

34  2

Figure 2.2− Boxplots of raw and RMA processed data
For each array of the retentostat dataset (GSE21752), boxplots show the log intensity distributions of raw and RMA
processed data. As a result of quantile normalization, the log intensity distributions are comparable after RMA pro-
cessing (Irizarry et al., 2003).

“AFFX”. To remove them, use the function grep (see Note 11) and obtain an index referring
to all probes that are starting with “AFFX”. Subsequently create the matrix e.anig containing
exclusively A. niger speciĕc probes (see Note 12):� �
> e <− expr s (e se t)
> subIndex <− grep (" AFFX " , featureNames (e se t))
> e . an ig <− e[− subIndex ,]� �
Before starting the comparative analysis, do a simple test to exclude errors during the allo-

cation of phenotypic labels to the CEL ĕles. Using the function plotPCA, perform a principal
component analysis (PCA) and plot the ĕrst two principal components against each other.
Array data deriving from replicate time points is expected to cluster together. e PCA plot
clearly shows that replicate array data from d0, d2 and d8 clusters together and that the three
clusters are well separated (see Figure 2.3). Errors during the allocation of phenotypic labels
to the CEL ĕles can therefore be excluded.

       35

Figure 2.3− Principle component analysis (PCA)
For each array of the retentostat dataset (GSE21752), the örst two principle components are plotted against each
other. Ideally, replicate arrays should cluster together and clusters of replicate arrays should be well separated. PCA
plots can thus be applied to exclude errors during the allocation of phenotypic labels and to assess the reproducibil-
ity.

� �
> par (mfrow = c (1 , 1))
> plotPCA (e . anig , groupnames = l abe l s , pch = c

(" 0 " , " 0 " , " 0 " , " 2 " , " 2 " , " 2 " , " 8 " , " 8 " , " 8 ") , c o l = rep (" b l a ck " , 9) , legend =
FALSE)� �

Multi-way comparisons

When analyzingmicroarray data, multiple-hypothesis testing has to be taken into account (see
Note 13). Diverse methods have been suggested to correct p-values for multiple testing among
which the Benjamini and Hochberg (BH) false discovery rate (FDR) (Benjamini et al., 1995)
is commonly used. However, multiple testing correction decreases the statistical power (see
Note 14), which in many cases is anyway low due to small sample sizes. Different methods
have been suggested to compensate for that. A reduction of the number of hypothesis tests
to be performed by non-speciĕc ĕltering of probes with low information content is one pos-
sibility. If the non-speciĕc ĕltering is independent from the following hypothesis tests, it has
been shown to increase the statistical power (Bourgon et al., 2010). e standard deviations
or mean values of probe intensities over all arrays (neglecting phenotypic labels) could be
used for non-speciĕc ĕltering. An alternative approach could be the computation of moder-
ated (Baron et al., 1986) instead of normal statistics. One such approach is implemented in
the eBayes method from the Limma package (Smyth, 2004), where a global variance estimator

36  2

borrows information from all genes to infer probe-speciĕc variances. A combination of non-
speciĕc ĕltering and moderated statistics is obviously an interesting approach. However, it has
been shown to potentially decrease the statistical power and therefore either, non-speciĕc ĕl-
tering with normal t-statistics or moderated t-statistics with unĕltered data are recommended
(Bourgon et al., 2010).

It is very convenient to use the limma package formulti-way comparisons ofmicroarray da-
ta. It can even be used for multi-factorial experimental designs (seeNote 15). Compute mod-
erated t-statistics on the unĕltered data by calling multiple limma functions. Indicate which
experimental conditions should be compared to each other by deĕning a contrasts matrix with
the function makeContrasts:� �
> f <− f a c t o r (pData$Target , l e v e l s = l e v e l s (pData$Target))
> des ign <− model . ma t r i x (~0 + f)
> colnames (des ign) <− l e v e l s (pData [, 2])
> f i t <− lmF i t (e . anig , des ign)
> c on t r a s t s <− makeContras ts (d2 − d0 , d8 − d2 , d8 − d0 , l e v e l s = des ign)
> f i t 2 <− c on t r a s t s . f i t (f i t , c o n t r a s t s)
> f i t 2 <− eBayes (f i t 2)� �
To better understand the concept of the contrasts matrix, have a look at how R represents

it. Type at the R command line:� �
> con t r a s t s� �
Next, make Venn diagrams to get an overview of the sets of genes that are differentially

expressed comparing d2 to d0, d8 to d2 and d8 to d0. First, use the function decideTests to
decide whether or not genes are differentially expressed controlling the FDR at 0.005:� �
> r e s u l t s <− dec i deTe s t s (f i t 2 , a d j u s t . method = " f d r " , p . va lue = 0 . 0 0 5)� �
e results matrix consists of three columns, one for each comparison deĕned in the con-

trasts matrix, and rows for each probe. e numbers indicate if a gene is not differentially
expressed (0), upregulated (+1) or downregulated (-1). To get an impression of the results
matrix, take a look at rows 120 to 130:� �
> r e s u l t s [1 2 0 : 1 3 0 ,]� �

       37

Figure 2.4− Venn diagrams
Venn diagrams showing the relations between sets of up- and downregulated genes identiöed comparing day 0
(d0), day 2 (d2) and day 8 (d8) of retentostat cultivation.

Finally, use the information of the results matrix to generate two Venn diagrams (see Fig-
ure 2.4) for the up- and downregulated genes:� �
> par (mfrow = c (1 , 2))
> vennDiagram (r e s u l t s , i n c l ude = " up " , main = "UP , FDR q−va lue < 0 . 0 0 5 " ,

cex = 0 . 8)
> vennDiagram (r e s u l t s , i n c l ude = "down " , main = "DOWN, FDR q−va lue <

0 . 0 0 5 " , cex = 0 . 8)� �
Next, obtain some of the results from the moderated t-statistics that were computed with

the limma package. Extract the p-values and assign them to the matrix p.values (seeNote 16).� �
> p . va l ue s <− f i t 2 $ p . va lue� �
In order to have distinct column names when combining different data later, change the

column names of the p.value matrix. Use a for loop (seeNote 17) to access column by column
of the p.value matrix. In each cycle of the for loop, the function paste (see Note 18) is used to
generate a new columnname by preceding the corresponding columnname from the contrasts
matrix with “pValue”.

38  2

� �
> f o r (i i n 1 : nco l (c o n t r a s t s)) {
> colnames (p . v a l ue s) [i] <− pas te (" pValue . " , colnames (c o n t r a s t s) [i] , sep =

" ")
> }� �
To obtain FDR q-values, use the function p.adjust and correct the p-values for multiple hy-

pothesis testing. For each column of the p.value matrix, apply the Benjamini and Hochberg
method to compute FDR q-values, combine them to a new matrix fdr.values using the func-
tion cbind (see Note 19) and change their column names:� �
> f d r . v a l ue s <− NULL
> f o r (i i n 1 : nco l (p . v a l ue s)) {
> f d r . v a l ue s <− cbind (f d r . va lues , p . a d j u s t (p . v a l ue s [, i] , method = "BH "))
> colnames (f d r . v a l ue s) [i] <− pas te (" qValue . " , colnames (c o n t r a s t s) [i] , sep

= " ")
> }� �
Next, obtain the fold changes applying the limma function topTable (see Note 20). Loop

through all comparisons deĕned in the contrasts matrix and call the function topTable to ex-
tract the log2 fold changes for the corresponding comparison. Subsequently transform the log2
fold changes to normal scale and appended them to the matrix FCs. Deĕne the column names
of the matrix FCs analogously to the examples given above.� �
> FCs <− NULL
> f o r (i i n 1 : nco l (c o n t r a s t s)) {
> top t ab l e <− topTab le (f i t 2 , coe f = i , number = 15000 , a d j u s t . method = "

BH " , s o r t . by = " none " , p . va lue = 1 , l f c = 0)
> FCs <− cbind (FCs ,2^ toptab le$ logFC)
> colnames (FCs) [i] <− pas te (" FC . " , colnames (c o n t r a s t s) [i] , sep = " ")
> }� �
Besides the RMAexpression data for the nine arrays, it is helpful to providemean expression

data for each of the three time points.Make use of the pDatamatrix, which allocates phenotyp-
ic labels to the CEL ĕles to loop through the three time points. Because the dataset consists of
triplicates, use the function unique (see Note 21) to access each time point only once. In each
cycle of the loop, call the function which (see Note 22) to obtain an index pointing to the cor-
responding columns of the expression data matrix. Subsequently, use the function apply (see
Note 23) to calculate mean expression values and convert the log2 expression data to normal
scale. At the end of each loop, extend the matrix mean by the computed mean expression data
and deĕne the column names accordingly:

       39

� �
> means <− NULL
> f o r (i i n 1 : l ength (unique (pData$Target))) {
> Index <− which (e s e t $Ta rge t == unique (pData$Target) [i])
> log2 . a <− apply (e . an ig [, Index] , 1 , mean)
> a <− 2^(log2 . a)
> means <− cbind (means , a)
> colnames (means) [i] <− pas te (" mean . " , unique (pData$Target) [i] , sep = "

")
> }� �

Exporting data

For sharing data, it is wise to export it in such away that it can be imported into any spreadsheet
program. Use the function cbind (seeNote 19) to combine the RMA andmean expression data
as well as fold changes, p-vlaues and FDR q-values into the new matrix export:� �
> expor t <− cbind (e . anig , means , FCs , p . va lues , f d r . v a l ue s)� �
Finally, use the function write.table to save the matrix export as a tab-delimited plain text

ĕle “results.txt” in the current WD:� �
> wr i t e . t a b l e (export , quote = FALSE , row . names = TRUE , co l . names = NA , sep

= " \ t " , f i l e = " r e s u l t s . t x t ")� �
Construction of gene co-expression networks

In the following, we give a short demonstration on how gene co-expression networks can be
built when starting with raw CEL ĕle data. e transcriptomic dataset used was published
in 2006 for A. niger (Martens-Uzunova et al.) and comprises 29 microarrays, which can be
downloaded from the EMBL ArrayExpress database via its accession number: E-MEXP-1626.
BrieĘy, the data derives from shake Ęask experiments in which fungal biomass from 18 hours
pre-grown cultures was transferred to seven carbon sources: rhamnose, xylose, sorbitol, fruc-
tose, galacturonic acid, polygalacturonic acid and sugar beet pectin. In total, one reference
sample was taken from the pre-culture and subsequently four samples were taken within 24
hours aer transfer for each of the seven carbon sources. us, no biological replicates are
available for the transcriptomic data. e carbon sources cover repressing (fructose) and non-
repressing (sorbitol) carbon sources as well as complex carbon sources (polygalacturonic acid

40  2

and sugar beet pectin) and commonmonomeric constituents (rhamnose, xylose and galactur-
onic acid).

Importing CEL öles

Download the expression dataset from the ArrayExpress database (http://www.ebi.ac.uk/
arrayexpress/), decompress (see Note 3) and copy the CEL ĕles into a new WD. On the R
command line, load the required libraries and deĕne the WD:� �
> l i b r a r y (" a f f y ")
> l i b r a r y (" a f fyPLM ")
> l i b r a r y (" a f f y c o r e t o o l s ")
> l i b r a r y (" g e n e f i l t e r ")
> setwd (" abso lu te path to WD/ ")� �
Next, use the function ReadAffy to import all CEL ĕles present in theWD.No phenotypic la-

bels need to be associated with the CEL ĕle names, because we are not interested in differential
expression between speciĕc conditions.� �
> rawData <− ReadAf fy (verbose = TRUE)� �

Quality assessment and preprocessing

e affyPLM package has been suggested for quality assessment of transcriptomic data and
detection of outlier arrays (Bolstad et al., 2005). First, ĕt a linearmodel to the Affymetrix probe
level data using the function ötPLM. Based on the linear model, generate two plots that are
particularly helpful to detect outlier arrays. e normalized unscaled standard error (NUSE)
and the relative log expression (RLE) plots.� �
> rawDataPLM <− f i t P LM (rawData)
> par (mfrow = c (1 , 2))
> boxp lot (rawDataPLM , main = "NUSE " , y l im = c (0 . 9 5 , 1 . 2 5) , l a s = 2 ,

wh i s k l t y = 0 , s t a p l e l t y = 0 , cex . a x i s = 0 . 5)
> ab l i n e (h = 1)
> Mbox (rawDataPLM , main = " RLE " , wh i s k l t y = 0 , s t a p l e l t y = 0 , y l im = c

(−0 .4 , 0 . 4) , l a s = 2 , cex . a x i s = 0 . 5)
> ab l i n e (h = 0)� �

http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/

       41

Figure 2.5− Quality assessment using probe level models (PLM)
Normalized Unscaled Standard Error (NUSE) and Relative Log Expression (RLE) plots for each array of the carbon
source transfer experiments (E-MEXP-1626). Outlier arrays (marked with asterisks) can be recognized by their devia-
tion from the remaining arrays (Bolstad et al., 2005).

Problematic arrays can be recognized from the NUSE plot as having elevated and more
spread intensities. In theRLEplot, problematic arrays tend to have a larger spread and amedian
different from zero (Bolstad et al., 2005). Inspecting the NUSE and RLE plots, all seven arrays
from the 24 h samples can be considered as outlier arrays (see Figure 2.5). is could be due
to secondary effects such as carbon and oxygen limitations during shake Ęask cultivation that
are independent from the carbon sources. Furthermore, the ĕrst sorbitol time point appears
to be problematic, probably because the fungus requires more time to induce the enzymatic
machinery to metabolize it and therefore, during the ĕrst time points suffers from carbon
limitation.We recommend removing these eight arrays before continuingwith further analysis
(see Note 11 and Note 12).� �
> p rob l ema t i cA r r a y s <− grep (" 2 4 | oS04 " , sampleNames (rawData))
> rawData . sub <− rawData [,− p rob l ema t i cA r r a y s]� �

42  2

Using a spike-in and dilution benchmark dataset, it was shown that the RMA algorithm
is superior to the Affymetrix MAS5.0 algorithm for the detection of differentially expressed
genes (Irizarry et al., 2003). However, as recently reviewed (Usadel et al., 2009), the prepro-
cessing method of choice for gene correlation studies is less clear. With two different ap-
proaches (Harr et al., 2006; Lim et al., 2007), it was shown that RMA preprocessing is not
suited for gene co-expression studies because of gene correlations introduced as artifacts by
the RMA algorithm. For Escherichia coli, it was reported that a combination of the MAS5.0
background correction procedure with non-linear normalization (invariantset method) and
probe summarization according to Li-Wong (Li et al., 2001) gave the best correlations between
co-transcribed operon genes (Harr et al., 2006).

To combine MAS5.0 background correction with non-linear normalization and Li-Wong
probe summarization, use the expresso function from the affy package. Assign the results,
which are organized as an object of the class ExpressionSet to the variable eset. Subsequently,
convert the ExpressionSet object to the expression matrix e and remove all Affymetrix control
probes to ĕnally obtain the matrix e.anig:� �
> ese t <− expresso (rawData . sub , bgco r r e c t . method = "mas " , pmcorrect . method

= "mas " , no rma l i ze . method = " i n v a r i a n t s e t " , summary . method = " l iwong ")
> e <− expr s (e se t)
> subIndex <− grep (" AFFX " , featureNames (e se t))
> e . an ig <− e[− subIndex ,]� �

Non-speciöc öltering

For the construction of gene co-expression networks, the expression patterns of every pairwise
combination of genes are checked for signiĕcant correlation. e number of probe pairs that
can be drawn from n probes can be calculated with the binomial coefficient

(n
2
)
and is equal to

n!
n(n−2)! . With the function choose, calculate the number of comparisons required for the e.anig

matrix:� �
> choose (nrow (e . an ig) , 2)� �
e number of comparisons is 105,248,286, which will require a lot of computing time and

memory. e number of comparisons can be reduced by not taking those genes into consid-
eration that have a low overall variability across all arrays. Removal of all genes with standard
deviation (SD) lower than the mode of the distribution of SDs has been suggested (Hahne et
al., 2008) as a good threshold for non-speciĕc ĕltering based on variability (seeNote 24). First,

       43

calculate row-wise SDs with the rowSds function, determine the mode of the distribution of
SDs with the function shorth and select all probes with SDs larger than the mode:� �
> sds <− rowSds (e . an ig)
> sds . mode <− sho r th (sds)
> e . an ig . sub <− e . an ig [sds > sds . mode ,]� �
Aer this non-speciĕc ĕltering step, the pairwise comparisons are reduced by approximately

50%. 10,647 probes are le for which a total of 56,673,981 pairwise comparisons have to be
computed.

Building gene co-expression networks

To compute pairwise correlation coefficients, use the function cor. For each pairwise combina-
tion of columns from a given matrix, cor computes correlation coefficients as speciĕed by the
method parameter. Before the function can be applied, the matrix e.anig.sub has to be trans-
posed using the function t. In the resulting matrix e.anig.sub.t, columns (CEL ĕles) and rows
(probes) are interchanged.� �
> e . an ig . sub . t <− t (e . an ig . sub)� �
e application of different correlation coefficients for the construction of gene co-

expression networks has been discussed in a recent review (Usadel et al., 2009). e Pearson
correlation coefficient is oen used as a measure for gene co-expression. However, it is sensi-
tive to outliers and high correlation coefficients can only be obtained for linear relationships.
e Spearman rank correlation coefficient has been supposed as a good alternative.e Spear-
man correlation coefficient is less sensitive to outliers because it is not directly calculated from
the expression values but from ranks of expression values. Whereby, it can also detect correla-
tions for non-linear relationships such as the Michaelis-Menten kinetic. To calculate pairwise
Spearman correlation coefficients for the transposed matrix e.anig.sub.t, use the function cor

(see Note 25):� �
> e . an ig . sub . t . co r <− cor (e . an ig . sub . t , method = " spearman ")� �
e correlation matrix is symmetric with respect to its main diagonal. Row-column combi-

nations deĕne pairs of genes. Probes correlated to themselves are lying on the main diagonal
and both halves (above and below themain diagonal) of thematrix contain equal information.

44  2

erefore, only correlation coefficients from one half of the correlation matrix excluding its
main diagonal have to be checked and compared to a threshold.

Before checking all pairwise comparisons, set a range of critical correlation coefficients by
deĕning the minimal and maximal correlation coefficients cutoff.min and cutoff.max, as well as
the increment cutoff.increment. e code below exemplarily deĕnes a range of critical corre-
lation coefficients, for which ĕve different co-expression networks (with absolute correlation
coefficients smaller than 0.70, 0.75, 0.80, 0.85, 0.90 and 0.95) will be constructed within a for
loop (see Note 17).� �
> c u t o f f . min <− 0 . 7
> c u t o f f . max <− 0 . 95
> c u t o f f . increment <− 0 . 05� �
In order to check one half of the correlation matrix excluding its main diagonal, basically

two for-loops have to be initiated. e outer for-loop increments its counter i, used as row
index, by 1 starting with the ĕrst row until it reaches the last but one row. e inner for-loop
increments its counter j, used as column index, by 1 starting at i plus 1 until it reaches the
last column. In the inner for-loop, the row and column indices i and j are used to access the
corresponding correlation coefficient and compare it to the range of thresholds deĕned above.
For this, a third for-loop is initiated where probe pairs are linked to each other by positive
or negative correlations if the correlation coefficient is larger or smaller in case of positive or
negative values, respectively. e results are exported to ĕles in the simple interaction format
(SIF) format and saved in the WD (see Note 24).� �
> f o r (i i n seq (1 , nrow (e . an ig . sub . t . co r) − 1 , 1)) {
> p r i n t (i)
> f o r (j i n seq (i + 1 , nco l (e . an ig . sub . t . co r) , 1)) {
> f o r (c u t o f f i n seq (c u t o f f . min , c u t o f f . max , c u t o f f . increment)) {
> f i l e . name <− pas te (" network . " , c u t o f f , " . s i f ")
> i f (e . an ig . sub . t . co r [i , j] > 0 && e . an ig . sub . t . co r [i , j] > c u t o f f) {
> w r i t e (pas te (row . names (e . an ig . sub) [i] , " POSco r r e l a t i on " , row . names (e .

an ig . sub) [j] , sep = " ") , f i l e = f i l e . name , append = TRUE)
> }
> i f (e . an ig . sub . t . co r [i , j] < 0 && e . an ig . sub . t . co r [i , j] < (−1) * c u t o f f

) {
> w r i t e (pas te (row . names (e . an ig . sub) [i] , " NEGco r r e l a t i on " , row . names (e .

an ig . sub) [j] , sep = " ") , f i l e = f i l e . name , append = TRUE)
> }
> }
> }
> }� �

       45

eresulting SIF ĕles can be imported intoCytoscape (Shannon et al., 2003), an open source
platform for network analysis and visualization. Cytoscape provides a graphical user interface
and various plug-ins for network analysis exist, such as MCODE (Bader et al., 2003) for the
identiĕcation of clusters of highly connected genes or BinGO (Maere et al., 2005) for enrich-
ment analysis of Gene Ontology terms.

Notes

1. If R cannot be called from every directory at the command line, the directory containing
its executable has to be added to the PATH environment variable. Details are depending
on the operating system.

2. For R code and command line commands, each new line begins with a “larger-than”
symbol (>). For copy and pasting the code to the corresponding command prompt, the
“larger-than” symbols have to be removed.

3. For Windows systems, the open source program 7-zip (http://www.7-zip.org/) can be
used for decompression.

4. In general, most R and Bioconductor functions/packages are well documented. Typing
a question mark directly in front of any function at the R command line should open
a short documentation (for example ?mean opens the documentation for the function
mean). Furthermore, many packages provide additional documentations (so-called vi-
gnettes) containing executable examples. When putting two question marks directly in
front of any word, a list can be obtained with functionsmatching that word (for example
??mean lists all functions matching the word mean).

5. e function setwd can be used to deĕne the WD. e forward slash (/) is used as path
separator. It is most robust, to deĕne the absolute path. While on Mac OS and Linux,
setwd("/Users/someUser/Documents/someWD/") could for example be used, it could look
something like setwd("C:/Documents and Settings/someWD/") on a Windows system.

6. In R, values can be assigned to variables using <- or ->, which are assigning a value on
their right to a variable on their le, or vice versa.

7. ere is no critical slope indicating RNA degradation since different chip architectures
result in different chip speciĕc slopes. Rather than the actual values of the slopes, it
is important that the slopes are comparable for different samples (Bolstad et al., 2005;
MacDonald, 2008).

http://www.7-zip.org/

46  2

8. Plots can be exported to PDF ĕles by simply preceding the plot command(s) with
pdf("desired_ölename.pdf"). With dev.off(), the PDF ĕle is ĕnalized and saved in the cur-
rent WD. If multiple plots are generated aer initializing the PDF document, they will
be appended to each other resulting in a single PDF ĕle.

9. e function par can be used to set diverse graphical parameters among which mfrow

can be used to deĕne the number of rows and columns.Deĕning par(mfrow=c(i, j)) before
plotting graphs will deĕne i rows and j columns allowing to place i times j plots on one
page or window.

10. Unlikemost other preprocessing procedures, RMA expression values are in log(2) scale.

11. e function grep can be applied on a vector and returns an index of elements thatmatch
a given pattern.

12. To obtain parts of vectors ormatrixes, subscripts can be used inR. Subscripts are given in
squared brackets directly behind the corresponding variable. With v[3], the 3rd element
from the one dimensional vector v can be obtained. For matrixes, the squared brackets
contain two subscripts separated by a comma. e ĕrst subscript refers to the row and
the second to the column. For thematrixm, the value of the 5th row and the 2nd column
can be obtained by m[5,2]. Furthermore, the values of the 5th row and columns 2 to 5
can be obtained by m[5,2:5]. With m[5,c(2,4,5)], the values of the 5th row and columns 2,
4 and 5 can be obtained. By using negative subscripts, elements can be dropped from a
vector or matrix. In addition, subscripts can consist of logical expressions (for example
> or <) and subscripts can also be used for sorting. Many more details can be found in
basic R documentations.

13. If one performs 10,000 independent t-tests on a set of 10,000 genes to identify differen-
tially expressed genes applying a critical p-value of 0.05, the number of false positives
(Type I error α) accounts to 500 (5% of 10,000). Without an adjustment for multiple
testing, the Type I error rate is not controlled at the level indicated by the p-value, es-
pecially because the majority of genes is not expected to be differentially expressed in
microarray studies.

14. e Type II error β accounts for false negatives and the statistical power is deĕned as
1−β.

15. e code can easily be adapted for similar analysis.eonly lines that have to be changed
are line 4 and line 5. Please consult the documentation of the limma package to under-
stand the different commands in more detail.

       47

16. e $ operator can be used in R to obtain a component from an object.

17. For loops can by applied to generalize or automate repeating blocks of code. For loops
consist of two parts. e ĕrst part, which is enclosed by brackets initiates the loop by
setting the loop counter, comparing it to a deĕned limit and incrementing it in each
cycle. e second part of the loop, the body, is enclosed by curly brackets and contains
the code to be executed in each cycle until the loop counter reaches the deĕned limit.
By initializing a loop with (i in 1:ncol(contrasts)), the loop counter i is deĕned to start at
1, being incremented in each cycle by 1 until it is equal to the number of columns of the
contrasts matrix. Alternatively, the function seq can be used to deĕne the range of the
loop counter i as follows (seq(start value, end value, increment)).

18. e function paste can be used to concatenate strings. e argument sep deĕnes how
the strings are separated. Calling paste("one", "two", sep = "-") results in “one-two”.

19. e function cbind is used here to append matrixes or columns from matrixes together.
e number and the order of rows have to be identical, because cbind does not take row
names into consideration. If that his not the case, the function merge can be used.

20. e limma function topTable can be used to list the top-ranked genes from the limma
analysis based on fold change, FDR or other criteria. Besides other information, the
function topTable returns the logarithmic fold changes for the corresponding compar-
isons. In this example, the argument sort.by = "none" represses any sorting, because the
data will be combined with other data based on the original row order using the func-
tion cbind later. e argument coef speciĕes which comparison of the contrasts matrix
is of interest.

21. e function unique can be used to remove redundant elements from a vector.

22. To checkwithin a logical expression if two arguments are equal, a double equal sign (==)
has to be used. If only a single equal sign (=) is used, the argument on the right site gets
assigned to the variable on the le.

23. e function apply can be used to apply a function to rows or columns of a matrix.
While apply(x, 1,mean) computes column-wisemean values for all rows, apply(x, 2,mean)

computes row-wise mean values for all columns of the matrix x.

24. Depending on the available computational resources, onemight consider not to perform
any non-speciĕc ĕltering or to apply a more severe threshold. We recommend applying
a range of ĕlter settings and comparing the resulting co-expression networks.

48  2

25. With the method parameter for the cor function, different correlation coefficients can
easily be calculated. Should R give an error message related to problems with memo-
ry allocation, apply a more stringent threshold for non-speciĕc ĕltering to reduce the
number of pairwise combinations.

Acknowledgments

is work was supported by a grant of SenterNovem IOP Genomics project IGE07008. Part of
this work was carried out within the research programme of the Kluyver Centre for Genomics
of Industrial Fermentation, which is part of the Netherlands Genomics Initiative/Netherlands
Organization for Scientiĕc Research. We thank T.G. Homan for discussions and proof reading
of the manuscript.

