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Chapter 4

First calibration run of

MiniGRAIL

Introduction

Because we have modified so many components of the system, as we described in the
previous chapter, and due to the limited budget for liquid helium, we decided to do
a short run aimed at testing a modified setup and verifying a calibration procedure
we have developed. In this chapter we report the results of the calibration run of
MiniGRAIL we performed in autumn 2010. For the first time we started the run with
all 6 transducers mounted on the sphere. Each transducer was coupled to two stage
DC SQUID amplifier. Five 2-stage SQUID modules consisted of commercial Quan-
tum Design DC SQUID and custom design flux transformer SQUID for the second
stage(see chapter 3). One module was a standard 2-stage Quantum Design module
similar to the one used in Auriga experiment [66]. The parameters of transducers and
impedance matching transformers are summarized in table 4.1

We have also mounted 7 mass-loaded PZT resonators(calibrators) for calibration
purposes. Six calibrators are placed at the same polar angles as transducers but
shifted by 60o in azimuthal angles. The seventh calibrator is placed at an arbitrary
position and is used to verify the direction reconstruction algorithms. The picture
of the sphere with transducers and calibrators mounted is shown on figure 1.10 in
chapter 1.

During the run we have cooled the system down to a temperature of ≈ 1K.
Unfortunately, due to a failure of some the switches and transducers only transducers
at position 4 and 6 were operable, so we could not conduct the complete calibration
procedure as planned. However we believe that we were able to extract some useful
information which we will discuss further in this chapter.
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64 Chapter 4. First calibration run of MiniGRAIL

Transducer position 1 2 3 4 5 6

Transducer capacitance*, [nF] 3.9 3.0 4.9 3.4 4.5 4.6
Max Vbias, [V] 240 195 200 200 180 180
Vbias at 77K, [V] 138 155 152 160 164 155

Transformer box Tr1 Tr2 Tr3 Tr4 Tr5 Tr6

Primary Inductance, [H] 0.18 0.12 0.183 0.166 0.205 0.178
Secondary Inductance, [uH] 7 ≈ 2 2.04 1.8 1.67 1.85
Coupling 0.49 0.85 0.85 0.6 0.86 0.84
SQUID gain, [V/Φ0] 0.16 0.16 0.13 0.79 0.18 0.16
Electric mode Q - - - - 6.3× 104 6× 104

Calibration mutual inductance, [nH] 300 128 n.a. 3 n.a. n.a.
Decoupling Capacitor, [nF] 138.8 152.0 133.9 156.2 159.8 149.8

∗ measured at room temperature

Table 4.1: Properties of transducers and superconducting matching transformers

4.1 MiniGRAIL directional sensitivity with non-opti-

mal transducer configuration

The first question we would like to answer is: how much does our experiment suffer
from the reduction of the number of transducers?

In the case of an ideal sphere with degenerate quadrupole modes this would result
a disastrous drop in directional sensitivity leaving the detector almost blind to some
directions. However, on the real sphere the modes are split in frequency, so instead
of being sensitive to the sum of modes amplitudes, defined by the sum of spherical
harmonics at transducer position, the transducer sees each mode individually.

The force Fc applied by a calibrator to the sphere surface at position (φc, θc) will
excite five quadrupolar modes of the sphere with amplitudes

am(t) ∝ Ym(φc, θc)Fc(t). (4.1)

If the modes are degenerate, then for a set of J transducers the radial displacement
qj of a sphere surface at transducer position(φj ,θj)is given by (see section 1.1.2 in
chapter 1)

qj(t) = αBmjam(t) (4.2)

By varying φc and θc we can map the sphere surface in terms of sensitivity of each
transducer. Since all modes have the same frequency, we can expect that for some
directions the amplitudes of the modes at the transducer j position might cancel each
other. The resulting amplitude qj would be very low, meaning that this particular
transducer is not sensitive to that direction. We express the total direction sensitivity
as root mean square of transducers sensitivities:
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Q(φc, θc) =

√

√

√

√

∑

j

q2
j

J
. (4.3)

For six transducers in MiniGRAIL arrangement the direction sensitivity is almost
uniform (figure 4.1(a)). If we only take into account transducers 4 and 6, the averaging
will produce a complicated pattern, with sensitivity dropping by more than an order
of magnitude in some directions(figure 4.1(b))

(a) (b) (c)

Figure 4.1: Directional sensitivity for full six(a) and for transducers #4 and #6 configu-
ration for degenerate(b) and splitted(c) modes

If the modes are not degenerate then each transducer displacement amplitude qj is
split into a vector of five amplitudes qjm, which have different frequency and are seen
by transducer independently. Again by doing an RMS averaging over m and then
over j we can build the sensitivity map. The resulting pattern is much smoother,
with the sensitivity only varying by about 50% (figure 4.1(c)). Another advantage of
the non-degenerate modes is that each transducer has the information about all five
quadrupole modes. In theory this allows direction reconstruction with less than five
transducers. We will discuss it again in section 4.3.

In the analysis above we used a radial displacement of the sphere surface at the
transducer position as the measure of sensitivity which is only valid for a wide band
transducer like a piezo. It also does not take into account the noise which might
significantly reduce the mode SNR. So real directional sensitivity degradation might
be more significant.

4.2 Calibration

Here we describe the calibration procedure, we use to estimate the strain sensitivity
of MiniGRAIL. First with the calibration transformer we do the energy calibration
to measure the conversion factor between the energy stored in the mode and the
current density at the SQUID input. Then we estimate the calibrators efficiency - by
applying a known voltage to the calibrators we measure the energy deposited in the



66 Chapter 4. First calibration run of MiniGRAIL

modes. These two calibrations allow us to build the transfer function of the system
and calculate the strain sensitivity of MiniGRAIL.

4.2.1 Energy calibration

Since in this run we have implemented calibration transformers, we do not need to
use an extra calibrator as reported in [25], and are able to calibrate the read-out
sensitivity directly. For better understanding it would be useful to show again a
simplified version of capacitive transducer read out scheme on figure 4.2

Figure 4.2: Capacitive transducer read-out scheme

If a charged transducer is excited from its equilibrium x0, its position changes as
x(t) = x0 + δx(t). The capacitance and the charge also changes as

{

q(t) = q0 + δq(t)
Ctr(t) = C0 + δCtr(t)

(4.4)

From the electrical point of view the transducer is just a parallel plate capacitor so
the force between the electrode and the resonator is

F (t) =
Eq

2
≡ q2

2ε0A
=

1

2ε0A
(q20 + 2q0δq(t) + δq2(t)) ≈ q20

2ε0A
+

q0δq(t)

2ε0A
. (4.5)

From the mechanical point of view the transducer is a harmonic oscillator driven by
a force F . We can write down the equation of motion of transducer

m(δx′′(t) + βδx′(t) + kδx) = F (t), (4.6)

A standard solution in frequency domain is the Lorentzian shape

δx(−ω2 +
iωω0

Q
+ ω2

0) =
F (ω)

m
,

δx =
Eδq(ω)

m(−ω2 + iωω0

Q + ω2
0)

(4.7)

We can also write the expression for voltage across the transducer
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V (t) =
q(t)

C(t)
=

q0 + δq(t)

C0 + δC(t)
≈ q0

C0
− q0δC

C2
0

+
δq

C0
= V0 +

δq

C0
(1− q0δC

C0δq
) (4.8)

given that δC
C0

= − δd
d0

= δx
d0

and q0
d0

= E0, where d is the transducer gap, we get the
final expression for the voltage

V (t) = V0 +
δq

C0
(1− C0E0δx(t)) (4.9)

Considering the harmonic calibration current I(t) = I0exp(iωt) and combining
equations 4.7 and 4.9 we can write the expression for the transducer impedance

Ztr(ω) =
1

iωC0
(1− E2

0C0

m

1

−ω2 + iωω0

Q + ω2
0

) ≡ 1

iωC0

−ω2 + iωω0

Q + ω2
0 −

E2

0
C0

m

−ω2 + iωω0

Q + ω2
0

(4.10)

The expression
E2

0
C0

m has a dimension of [Hz2] and is a resonance frequency shift

due to electric field in a transducer. A new resonance frequency is ω′0
2 = ω2

0 −
E2

0
C0

m .
We define a coupling factor β2 a the relative change in resonant frequency

β2 =
ω2
0 − ω′0

2

ω2
0

≡ E2
0C0

mω2
0

(4.11)

The final expression for transducer impedance including the coupling becomes

Ztr(ω) =
1

iωC0

−ω2 + iωω0

Q + ω2
0(1− β2)

−ω2 + iωω0

Q + ω2
0

(4.12)

It can be shown that the function above has two resonance frequencies(corresponding
to Im(Z(w)) = 0) where impedance is at it’s minimum ωres and maximum ωares with

the ratio of
ω2

ares

ω2
res

= 1 − β2. If we generate a constant flux Φcal(ω) = const with

the calibration coil, the current generated in the primary and secondary loops of a
matching transformer is

{

I2(ω) =
(Φcal+I1(ω)M)

L2

I1(ω) =
iωMI2(ω)

Z1(ω) ,
(4.13)

where L2 = Ls + Li is the total inductance of the secondary loop and Z1(ω) =
Ztr(ω)+iωLp is the impedance of the primary loop. We have neglected the impedance
of the decoupling capacitor as it is much smaller then the impedance of the transducer
and the primary coil. By combining both equations we get an expression for the
current through the input coil of the SQUID
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I2(ω) =
Φcal

(

L2 − iωM2

Z1(ω)

) =
iωΦcal

iωL2 +
ω2M2

Z1(ω)

≡ Vcal

Zm(ω)
, (4.14)

where Zm is the impedance of the measurement circuit as seen from the SQUID input.
It can be shown that the frequency dependence of admittance Ym(ω) = 1/Zm(ω)

can be described by a curve similar to equation (4.12)

Ym(ω) = A
−ω2 + iωω0

Q + ω2
0(1− β′2)

−ω2 + iωω0

Q + ω2
0

, (4.15)

We note that the coupling factor β′2 is different form the one in equation (4.12). From
equations (4.14) and (4.15) we see that for ω � ω0, Ym ≈ 1/iωL2 ≈ A(1−β2). Given
that β2 is typically in the order of 10−6 − 10−5 we get the expression for A

A =
1

iωL2
(4.16)

By sweeping the frequency of the calibration signal and fitting the measured cur-
rent in the input coil of the SQUID with the equation (4.15) we can measure the
equivalent impedance of all modes. As an example, the calibration curves of three
most coupled modes for transducer 6 are shown on figure 4.3.

Figure 4.3: Calibration curves of the three most coupled modes

If the modes are only excited by the thermal noise, the current power spectral
density around each resonant mode is [65, 67]
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SI,m = 4kBT
Qa

Q
Re (Ym(ω))+Svv(ω)|Ym(ω)|2+Sii(ω)+2Re (Siv(ω)Y

∗

m(ω)) , (4.17)

where Svv and Sii are the power spectral densities of the back-action and additive
noise of the SQUID amplifier. Siv is the cross-correlation between these terms. Qa

Q
is the ratio between the measured quality factor, affected by cold damping, and the
intrinsic quality factor of the mode.

The contribution of different noise terms to a total noise power spectral den-
sity is shown on figure 4.4. The circuit parameters match the design parameters of
MiniGRAIL read-out. The resonator and the SQUID temperatures are set to 100mK
and 350mK respectively.

Figure 4.4: Current noise power spectral density at the SQUID input. The curves show
the relative contribution of different noise terms from equation (4.17). The circuit parame-
ters match the design parameters of MiniGRAIL read-out. The resonator and the SQUID
temperatures are set to 100mK and 350mK respectively.

As we can see from the graph, close to the mechanical resonance the contributions
of Svv, Sii and Siv terms are small compared to the thermal noise of the transducer.
Also, since we have the electrical mode decoupled from the mechanical ones, the cold
damping effect is small and Qa

Q ≈ 1. As a result, the thermal noise is dominated by

the first term in equation (4.17):
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SI,m = 4kBT Re (Ym(ω)) = 4kBT
β2ω3

0

L2Q

1

(ω0
2 − ω2)

2
+

w2w2

0

Q2

(4.18)

The variance of the I2 due to the thermal noise is given by the integral over the real
part of the admittance, which in high Q approximation yields

〈

I22
〉

= 4kBT

∫

Re(Ym(ω))dω =
kBT

L2
β2, (4.19)

The equivalent temperature of the modes calculated by comparing the measured
energy in the resonant peak SII to the expected thermal energy per Kelvin

Teq,m =
L2

kBβ2

∫

SII(ω)dω. (4.20)

Now we can monitor the energy and thus the equivalent temperature of the modes
during the operation of MiniGRAIL by using a lock-in amplifier, tuned to the res-
onance frequency of the mode. But for thirteen modes of MiniGRAIL this would
require a use of thirteen amplifiers, which is not realistic. Instead we use an offline
software implementation of lock-in amplifier written in Matlab. To exclude the mu-
tual contribution of the neighbouring modes, the data is first filtered with 4-th order
Butterworth bandpass filter around the mode frequency and then fed to the lock-in
amplifier function. The lock-in time constant was set to 1 s, resulting in 1 Hz in-
tegration bandwidth - more than enough for the high Q modes of MiniGRAIL. By
repeating the procedure for each mode, we get a full information about the energy
stored in the quadrupole modes of the sphere.

The effective temperature of the modes, averaged over one night of the acquisition
is shown in the third column of table 4.2

Filtering noisy data

From the average temperature of the modes it is obvious that they are far from thermal
noise level and are excited by some external vibrations. Further in this chapter we
will try to analyze the cause of this excess noise, but for now we will concentrate on
extracting some useful data from our noisy system. If the excitation is stationary
there is little we can do. But if the excitation is a periodic or random delta-like
signal, which we believe is the case, it acts on the sphere much like a calibration pulse
or a gravitational wave. So, we can use standard filtering techniques, developed for
resonant detectors [68, 69].

Because of the high mechanical quality factor of the modes, once they are excited
it will take hundreds of seconds before the sphere comes to rest, even if the excitation
signal is already gone. But because the source of the noise is no more active, the
amplitudes of the modes will freely decay to the thermal noise level and any new
energy deposited to the sphere will excite the modes again and can be detected. So
we need to construct a “peak detection” filter which would emphasize the excitation
peaks, but quickly damp the free decay of the sphere after that, effectively lowering
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Nmode Frequency, [Hz] 〈Teff 〉, [K]a 〈T filtered
eff 〉, [K]b 〈T 100s

eff 〉, [K]c

1 2922.45 18642 3095.6 235.9
2 2930.99 285 66.3 23.8
3 2940.11 334 125.6 103
4 2941.13 290 114.3 88.5
5 2958.57 194893 25035.5 753
6 2968.17 237 111.3 14.6
7 2985.42 16192 5598.2 2828.6
8 3007.75 529 206.8 67.4
9 3016.25 3116 531.2 128.2
10 3024.4 1363 805.3 131.9
11 3030.92 21020 3382.7 576.7
12 3043.33 900 998.2 143.3
13 3057.91 2025 674.1 115.1

a – whole night average

b – whole night average after ZOP filter

c – average of 10 most “quiet” 100 s intervals

Table 4.2: Equivalent temperature of the normal modes measured over one
night of acquisition.

the Q of the modes. The best solution would be to use an optimal matched filter.
Building such a filter would require building a model which describes the spectrum
of the normal modes of the sphere [23], which is in case of a complex spectra of real
MiniGRAIL setup is hard and computationally extensive task. A simpler, though
somewhat suboptimal way is well known for many years [68, 70] and is commonly
referred as zero-order prediction (ZOP) filter.

Unlike the wideband matched filter, the ZOP filter is applied individually to each
mode of the sphere. The ZOP algorithm consists of extracting both quadrature
components x(t) and y(t) of the signal at the resonant frequency of the modes (in
fact we already did it to estimate the temperature of the modes) and building a
difference vector defined as

∆Rj =
√

(xj − xj−1)2 + (yj − yj−1)2, (4.21)

where xj and yj are the jth sample of x(t) and y(t) respectively.

The idea of the filter is that for a short lock-in integration time τs, much shorter
than the decay time of the mode τ0 = Q

πf0
, the variations of the output signal due to

the noise are relatively small, while the burst signal will produce a sudden change in
the data. The integration time, however has to be high enough not to overdamp the
system. The optimal signal-to-noise ratio is achieved when the lock-in time constant
is equal to [70]
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τopts = τ0

√

(e− 1)
Swb

Vnb
τ0, (4.22)

where τs is the sampling time, τ0 is a decay time of the mode and Swb

Vnb
is the ratio

between wideband noise spectral density and narrowband noise.

If the condition τs � τ0 is satisfied, the relation between the effective temperature
of the mode after filtering and a variance of ∆R is given by the equation [68]

〈

(∆R)2
〉

=
β2

L2
kBT

τs
τ0

(4.23)

As an example, the result of applying the described filter to the 2931Hz mode
data is shown on figure 4.5. After the mode is excited to almost 104 K, it stays excited
for more than 200 s. On a filtered data, the energy goes down in a few seconds, and
the mode is again at the stationary noise level.

Figure 4.5: The “damping” effect of the zero-order prediction filter.

To look for a “quiet” periods of data we can use for sensitivity calculation, we
have applied a running average with the window size of 100 s to the filtered data.
The window size is a compromise between the high resolution FFT spectra we need
for the modes with a Q ∼ 105, and the number of “quiet” spectra we can average.
We have selected 10 regions of data with the average temperature below 30K (see
figure 4.6)

The averaged spectra for two working transducers together with the temperature
of the modes is shown on figure 4.7.
Note, that the temperature of even the coldest modes is higher than the ones in
table 4.2 because the spectra are made from non filtered data.
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Figure 4.6: Equivalent temperature of the “coldest” mode after filtering. Green circles
indicate the regions where the average temperature of the mode is below 30K for at least
100 s.

4.2.2 Calibrator’s efficiency estimation

Absolute calibrators efficiency

To measure the transfer function of the system we would like to know how much force
F cal does the piezo calibrator generate for a given applied voltage V cal - the absolute
sensitivity of the calibrators.

If we apply an impulsive force F cal
j = F0δ(t) to the calibrator j then the force

acting on m quadrupole modes is

fm = αYm(φj , θj)F
cal
j (4.24)

The modes amplitude response is Lorentzian:

am(ω) =
1

M(−ω2 + iωω0

Q + ω2
0)
fm, (4.25)

where M is the mass of the sphere. The displacement of the sphere surface at the
calibrator position due to all five modes is

qj = αY′mam ≡ α2Ym(φj , θj)Y
′

m(φj , θj)
1

M(−ω2 + iωω0

Q + ω2
0)
F cal
j , (4.26)

which corresponds to the equation of motion for a harmonic oscillator with an effective
mass

Meff =
M

α2Ym(φj , θj)Y′m(φj , θj)
(4.27)



74 Chapter 4. First calibration run of MiniGRAIL

(a) Transducer 4

(b) Transducer 6

Mode Frequency, [Hz] Temperature, [K]
1 2922.45 5783.0594
2 2930.99 93.4974
3 2940.11 169.977
4 2941.13 235.9964
5 2958.57 15845.3661
6 2968.17 81.3254
7 2985.42 6607.2316
8 3007.75 146.6755
9 3016.25 981.8123
10 3024.4 646.4108
11 3030.92 8545.8511
12 3043.33 342.4096
13 3057.91 1129.668

(c) Effective temperature of the modes

Figure 4.7: The averaged spectra for Transducer 4 (a) and Transducer 6 (b). The averaging
is done over 10 most “quiet” regions of data. (c) – the corresponding effective temperature
of the modes.
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For miniGRAIL α = 2.9 and Ym(φj , θj)Y
′

m(φj , θj) = 5/4π ≈ 0.398 resulting an
effective mass, associated with the normal modes of the sphere to be Meff ≈ 0.3M

The energy transferred from the calibrator J to the quadrupole modes of the
sphere is

E =
(F cal

j )2

2Meff
(4.28)

Now we can excite each calibrator with a known voltage and, since we have also
done the energy calibration in the previous section, measure the total energy stored in
the normal modes of the sphere. From equation (4.28) we can calculate the generated
force F cal

j and estimate the efficiency of each calibrator.
The calculated efficiency is almost equal for all calibrators and lies in the order of

1× 10−2 N/V . A rough estimate of a room temperature calibrator efficiency using a
simple model of a mass-loaded spring gives ∼ 10−1 N/V . Given that typically piezo
crystal performance degrades at low temperatures by a factor of 4− 5, we found the
calculated results to be reasonable.

Relative calibrators efficiency

The calibration procedure described above relies on the accuracy of the energy cal-
ibration of the modes, which depends on the transducer-mode coupling. We have
performed another approach that allows to estimate the relative efficiency of the cal-
ibrators.

We assume that the linear combination of calibration excitations that does not
produce any quadrupole excitation because is highly symmetric and thus should only
excite the monopole mode of the sphere. If we have a set of J equivalent calibrators,
then the combination of calibrators forces that excite only the monopole mode are
given by

Fj = B−1
mjF0m, (4.29)

where F0m = [1, 0, 0, 0, 0, 0] is the modes force vector, where the first unity amplitude
represents the monopole mode and 5 zeros are the amplitude of quadrupole modes
forces. Here and in the rest of this chapter we use 6× 6 B matrix, which includes the
monopole mode (see section 1.2.4 in chapter 1). Also we omitted the radial eigenfunc-
tion coefficient α, as it does not influence the result. Now if we apply the calculated
Fj vector to the real calibrators transfer functions and multiply it by a pattern ma-
trix Bmj the result will be non-zero forces, acting on quadrupole modes. Our task
is then to find such a vector F′j = Fjej for which the resulting modes excitation is
F0m. Vector ej is the inverse of relative calibrators efficiency εj . The result of such
calculation for both working transducers is shown on figure 4.8. Calibrator 7 transfer
function is given for comparison. The amplitudes of the quadrupole modes are clearly
reduced by at least one order of magnitude.

We found that fitted efficiency comes in reasonable agreement between two trans-
ducers and is also consistent with rough room temperature estimation in section 4.2.3
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(a) Transducer 4 (b) Transducer 6

Figure 4.8: Monopole mode excitation compared to the Calibrator 7 transfer function

Cal1 Cal2 Cal3 Cal4 Cal5 Cal6
Energy calibration 0.7861 0.8537 1.0 0.8226 0.9016 0.8921
Room temp Calibrator7 fit 0.63 0.60 1.0 0.60 0.80 0.61
Monopole mode fit Tr4 0.6043 0.5630 0.9660 0.6952 0.5657 0.5273
Monopole mode fit Tr6 0.5955 0.5692 1.1319 0.6304 0.5269 0.5017
Ratio Tr4/Tr6 0.9855 1.0110 1.1717 0.9068 0.9313 0.9514

Table 4.3: Calibrators efficiency ε calculated from fitting transfer functions of six calibrators
to monopole excitation

(table 4.3). We have also noticed that the calibrators efficiency obtained from the
energy calibration is more uniform than the one from the monopole mode fitting.
We believe this is because the fitting procedure “automatically” compensates the
non-ideality of the MiniGRAIL sphere which becomes more obvious further in this
chapter.

4.2.3 Direction reconstruction

In this section we show the results of the direction reconstruction algorithms, de-
scribed in chapter 1, applied to the real data of MiniGRAIL. We use the Calibrators
1-6 to measure the full transfer function of the system and a signal from Calibrator 7
simulating the candidate GW signal, coming from unknown direction. The direction
reconstruction procedure is similar to calibrators efficiency estimation algorithm. If
Fq7(ω) is the force that Calibrator 7 applies to the sphere, the forces acting on the
normal modes are

Fam(w) = ε7Ym(φ7, θ7)Fq7(ω), (4.30)
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where (φ7, θ7) is the position of Calibrator 7 which is not known and ε7 is the efficiency
of the Calibrator 7, which is just a scaling factor. The forces Fq1..6(ω) that Calibrators
1-6 have to apply to produce the same modes forces are given by

Fqj(ω) = ejB
−1
mjFa7(ω) = ε7ejB

−1
mjYm(φ7, θ7)Fq7(ω) ≡ λYm(φ7, θ7)Fq7(ω),

(4.31)
where λ = ε7ejB

−1
mj is a constant vector because Bmj depends only on Calibrators

1-6 positions, which is known and fixed, ε7 and ej we have calculated by fitting the
monopole mode in section 4.2.2.
Now we can vary φ7 and θ7 until the error between measured Fqmeas

7 (w) and calcu-
lated Fqcalc7 (w) force amplitudes is minimized. We calculate the fitting error as

ξ =
∑

ω

| log(q
meas
7 (ω)

qcalc7 (ω)
)|. (4.32)

Here, we use a base 10 logarithm of the amplitudes relation to equalize the weight of
the fitting error between the resonances and antiresonances.

Room temperature results

We have performed the first tests on the sphere with transducers at room temperature
in normal atmospheric pressure. Because the transducers are damped by air, the
quality factor of the modes was very low. However we could verify that all calibrators
are working properly before closing the cryostat. The measurements were done with
a transducer mounted on transducer position 4. Transducer was enclosed in a small
vacuum cap and charged to 142V . The transfer functions were acquired by frequency
sweeping the excitation signal and measuring the response with a lock-in amplifier.

Because of the low quality factor of the modes we did not actually fit the Calibrator
7 transfer function. Instead we measured φ7, θ7 and used the calculated Ym(φ7, θ7)
to check the calibrators. In fact, we have found that 2 calibrators had an inverted
polarity and fixed them before closing the Dewar. We have also roughly estimated
the relative efficiency of the calibrators. These are the room temperature values listed
in table 4.3.

Low temperature results

Cryogenic calibration was done at a temperature of 1K. To save time we used an
impulse calibration instead of frequency sweeping the calibration signal.

We have tried two fitting approaches which we will further refer as “Fit1” and
“Fit2”.

With a “Fit1” we used the equation (4.31) and fitted values of φ7 and θ7 . A result
of the fitting is shown on figure 4.10 in red. We found that the agreement between the
fitted curve and the measured data was reasonably good. The calculated Calibrator
7 position was consistent between two acquisition channels, but was more than 20%
off the measured values.
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Figure 4.9: Room temperature fit of Calibrator 7 transfer function.

In another approach(“Fit2”) we have tried to find such a linear combination aj of
Calibrators 1-6 transfer functions that produces the best fit of the Calibrator 7 transfer
function. The major difference of this approach is that Faj does not necessarily
correspond to a real excitation applied to the sphere surface and in principle should
not necessarily produce a physically meaningful result. On the other hand if the
shape of the spherical harmonics of MiniGRAIL deviates from the theoretical shape
for the ideal sphere we can still fit the data. The result of the second fit is shown on
figure 4.10 in green. The fit is clearly better than the first one. We can still try to
calculate Calibrator 7 position by converting the vector aj to a mode channels gm and
calculating a detector response matrix. The eigenvectors of the response matrix show
the orientation of the deformation ellipsoid, as described in section 1.2.1. Surprisingly,
the values of φ7 and θ7 obtained from “Fit2” were much closer to the measured
ones. The shape of the deformation ellipsoid, however was very distorted. For an
ideal sphere the maximum radial deformation is at the location of the calibration
impulse, and two radial deformations in the orthogonal directions have an opposite
sign and half amplitude. The calculated deformation ellipsoid is very asymmetric
- the deformations in orthogonal directions are not equal. However, their sum is
equal to the main axis deformation, so the volume is preserved. We believe that the
reason of such deviation is either in a structural imperfection of the sphere, like a
non uniform density distribution, or in a non uniform stress induced by the sphere
suspension. We also noticed that the frequency distribution of the normal modes of
the uncoupled sphere is different from the theoretical ones calculated in [19]. As a
simple solution we have tried to introduce an amplitude and angular distortion to the
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Measured Fit1 Fit2
Ch4 Ch6 Ch4 Ch6

φ, [deg] 33 40.8 41.6 36.8 35.8
θ, [deg] 51 61.6 61.1 48.3 48.5

Table 4.4: Calculated Calibrator 7 position compared to the measured one. Fit1 is made
by using an elastic model of an ideal sphere. Fit2 is done by fitting Calibrator 7 with a linear
combination of Calibrators 1-6 transfer functions.

spherical harmonics in equation (1.4), but the results were not consistent anymore
between the acquisition channels. The results of both fits are summarized in table 4.4

Effect of calibration signal jitter

To increase the signal to noise ratio, the transfer function of each calibrator was
measured for 20 times and then averaged. During the averaging we noticed that the
relative amplitudes of the peaks are changing. We have discovered that the problem
was in the time stability of the calibration pulse. Originally we used a software
triggered calibration - a LabView program starts the acquisition and after a time
delay sends a command to the function generator to generate a calibration pulse.
Let’s consider a frequency domain representation of a calibration signal. If we apply
a discrete Fourier transform defined as

Xk =

N−1
∑

n=0

xne
−

2πi
N

kn k = 0, . . . , N − 1 (4.33)

to the delta-like calibration signal with amplitude A and at sample index j, the
corresponding frequency domain signal will be

Xk = Ae−
2πi
N

kj k = 0, . . . , N − 1, (4.34)

The amplitude and phase of the calibration signal in frequency domain are

Rk = |Xk| = A

ϕk = arctan(
Im(Xk)

Re(Xk)
) = arctan(

sin( 2πkjN )

cos( 2πkjN )
) =

2πkj

N

(4.35)

The amplitude Rk is constant in frequency, just as we want for a calibration signal,
but the phase is changing by 2π radians every kj = N . If the time and thus the index
j of calibration pulse is not stable, the slope of the phase will vary from acquisition
to acquisition.

To overcome this effect we have set up a hardware double triggered calibration -
first trigger starts the ADC card acquisition and the second one triggers the function
generator to send a calibration pulse. The time delay between two trigger signals is
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(a) Transducer 4

(b) Transducer 6

Figure 4.10: Calibrator 7 transfer function fit
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(a) (b)

Figure 4.11: Two quadrature components of a 2922.45Hz mode transfer function acquired
multiple times with software(a) and hardware(b) triggering. Software triggering introduces
a phase jitter making averaging impossible.

also done with hardware timer. To further improve the stability we are also acquir-
ing the calibration signal and subtracting its phase from the phase of the measured
transfer function. The real and imaginary parts of the 2922.45Hz mode transfer
function, measured with software and hardware triggering is shown on figure 4.11.
On figure 4.11(a) the phase is clearly bistable, corresponding to values of j varying
by 1.

4.3 Strain sensitivity

From chapter 1 we recall that the force induced by an incident gravitational wave to
the sphere can be decomposed in five quadrupole components Fm:

Fm(t) =
1

2
RχMḧm(t), (4.36)

or in frequency domain[28]:

Fm(ω) =
1

2
ω2MχR hm(ω) =

1

2
ω2MχRTV

[

h+(ω)
h×(ω)

]

, (4.37)

where R, M are the sphere radius and mass, χ = 0.327 is an effective length and hm

are gravitational wave spherical amplitudes, related to two polarizations states of a
gravitational wave by means of conversion matrix TV .



82 Chapter 4. First calibration run of MiniGRAIL

What we measure at the output of the detector is not the force, but the current
density at the input coil of the SQUID amplifier. The five components of the force
Fm(ω) are converted to six current outputs Ij by a rectangular 6× 5 transfer matrix
Tf jm. So to go back from measured currents to forces we need to inverse the Tf

matrix. In case of at least 5 (or even 4 with some limitations[32]) transducers the
system is fully determined so we can invert the transfer matrix and construct statis-
tically independent mode channels to perform a coherent data analysis as described
in chapter 1.

In our case, we only have 2 working transducers. Of course it is not possible to
reconstruct 5 quadrupole amplitudes by measuring only at 2 positions of the sphere,
so the system is underdetermined. In principle, since the modes are non-degenerate,
we can see all the quadrupole modes individually in each transducer output spectrum
(see figure 4.7). Since we have measured the transducer-mode coupling for each mode,
we can calculate the amplitudes of the modes at the transducer position and thus do
the direction estimation. In practice, however, we were not able to clearly identify
the modes in the MiniGRAIL spectra.

What we can still do is to combine the transfer functions we have measured from
6 calibrators, to simulate the gravitational wave excitation of the sphere from any
direction, defined by two polar angles β and γ:

Tf(β, γ) =

(

Tv(α, β, γ)

[

h+(ω)
h×(ω)

])

′

B(βc, γc)Tf c(ω), (4.38)

where α is the polarization angle of gravitational wave which is not known beforehand.
So for simplicity we set α ≡ 0 and build the sky sensitivity map for every transducer
by varying β and γ

Shhj
(ω, β, γ) =

SIj (ω)

Tf(ω, β, γ)
, (4.39)

where SIj is the noise current power spectral density at the SQUID input. Close to
the resonance the output noise is limited by the detector noise, and the outputs of
the transducers are correlated. For that reason we can not sum the signal-to-noise
ratios of the transducers. Instead we took the minimum of two transducers sensitivity,
which is correct at the resonance, but a factor

√
Ntr suboptimal at the regions where

the transducers noise is not correlated.
The strain sensitivity curves from an optimal direction for “plus” and “cross”

polarized gravitational wave are shown on figure 4.12. As expected from the high
equivalent temperature of the modes, it is quite far from 4.2K thermally limited
sensitivity(dashed line). The 4K sensitivity plot is made with exactly the same
system properties, but with the energy of the modes set to thermal. The 20mK plot
is done by setting the equivalent temperature of the modes to 20mK and increasing
the coupling of the modes by a factor of 3 to match the design value of transducers
bias field. Around the resonant peaks the best sensitivity of two transducers is taken,
same as for measured curve. In the uncorrelated parts of the spectra, dominated by
the SQUID additive noise, we took the sum of SNR of two transducers, resulting an
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(a) h+, (β = 50o γ = 180o)

(b) h×, (β = 55o γ = 120o)

Figure 4.12: Best strain sensitivity from two transducers combined for “plus” (a) and
“cross” (b) polarized gravitational wave. The sensitivity is calculated for best SNR direction
for each polarization. The 4K and 20mK thermal strain sensitivities are made by generating
a thermally limited noise spectra and 3 times increased coupling for 20mK data. Simulated
data is taken from [32]
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improved wideband sensitivity. The simulated curve is made by building a numeric
model of the sphere with transducers and read-out circuit[32]1.

For both polarization states, the measured sensitivity curves were very similar
with a best peak strain sensitivity of 3 × 10−20 Hz−1/2 and a strain sensitivity of
1×10−19 Hz−1/2 over a bandwidth of 42Hz. That is about factor 2 worse than the 5 K
nearly thermally limited sensitivity reported in [25]. For the 4.2K thermally limited
noise spectra and current system parameters we would reach a peak strain sensitivity
of 2.6×10−21 Hz−1/2 even with only 2 working transducers. The peak sensitivity level
for current configuration and thermodynamic temperature of the sphere of 20mK is
about 2× 10−22 Hz−1/2

In order to compare the sensitivity to other detectors we calculate the integral
sensitivity parameter - the minimal detectable Fourier amplitude of gravitational wave
burst which is defined as

H0(ω, β, γ) =
1√

SNR
=

1
(

∫

1
Shh(ω,β,γ)

dω
2π

)1/2
(4.40)

The measured sensitivity curve on figure 4.12 corresponds to a gravitational wave
burst with a Fourier amplitude H0 = 8 × 10−21 or an energy of TN = 2.3 K. A
calculated 20 mK sensitivity would yield H0 = 1 × 10−22 and the pulse detection
noise temperature2 TN = 4.5× 10−4 K, which is about 1.5 times better than the one
of Auriga [72], which is the most sensitive resonant detector at the moment.

A directional dependence of the integral sensitivity for both GW polarizations is
shown on figure 4.13(a,b). The third plot on figure 4.13(c) shows the strain sensitivity
to the calibration pulse. While having obviously no meaning in terms of gravitational
waves sensitivity, it is given to compare the calculated sky sensitivity with a simple
model described in section 4.1. The H0 plot on figure 4.13 is somewhat different from
the one on figure 4.1(c) because of influence of the modes coupling to the transducer,
but it is clearly more uniform than the sensitivity plot with the degenerate modes on
figure 4.1(b). It is also a good illustration that for a spherical detector a mechanical
excitation of the sphere is not fully identical to gravitational waves excitation. We
have discussed that in section 1.2.4 of chapter 1.

4.4 Conclusions

For the first time we have cooled MiniGRAIL down in a full 6-transducer configura-
tion, capable of omnidirectional detection. During the run we have faced two serious

1A simulated 20 mK sensitivity plot on figure 4.12 is much smoother than the one estimated by
us for two reasons. First, non working transducers do not contribute in sensitivity, instead they are
extracting the energy from the system at their resonant frequency. They appear as antiresonances
on the transfer function and as sharp dips on the sensitivity plot. Second, the value of the wideband
SQUID noise in [32] is calculated by using a Clarke-Teshe model[26] and appears to be much lower
than the noise achievable with a practical SQUID amplifier we use.

2The pulse detection noise temperature, TN , is defined by E = kBTN , where E is the energy
deposited to the sphere by a gravitational wave resulting in SNR = 1 [71]
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(a) h+ polarized GW. H0 = 8.4× 1021 (b) h× polarized GW. H0 = 7.9× 1021

(c) Calibration excitation

Figure 4.13: The minimal detectable Fourier burst amplitude versus the direction for two
polarizations of gravitational wave and calibration excitation

problems: Transducers failure and excess vibrational noise. We could measure the ca-
pacitance and charge transducers through a bias line up to the temperature of about
40K, but failed to bias the transducers at 4.2K. We have discovered that the reason
was that the reed switches we have used contained exchange gas, which was not clearly
indicated in a datasheet. Exchange gas would condense and freeze on the electrodes
at low temperatures and block them. We could heat up the switches by sending a
short high current pulse to the coil of the switch and restore the operation, but that
would disturb and warm up MiniGRAIL as well. Another problem we have discovered
is that the long and very soft shielded wires we used to connect the transducers to
the charging lines (see figure 1.10) were attracted by the electrode’s electric field and
were touching the electrodes with the shield, shorting them to ground. These issues
can be easily fixed before the next cool down. After finishing the current run and
opening the cryostat we have discovered that all the transducers were still working.
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Concerning the second problem, since we have already reached a thermal noise
level in previous runs, there is obviously no fundamental problem with the suspension
of the sphere. Before this run we have changed the old copper “jelly-fish” thermal links
with new thicker ones to improve their thermal conductance at the cost of damping.
Also since it is the first time we have cooled down MiniGRAIL with all 6 transducers
and 7 calibrators, the amount of wires going to the sphere and the last mass have
increased a lot. For the next cool down we are planning to add an extra vibration
insulation stage for the cables, suspended from mixing chamber or 50mK plate.

The two problems, described above resulted that only two out of six transduc-
ers were operational and far from thermal noise. The data analysis pipeline of
MiniGRAIL is based on the fact that a spherical detector is a multichannel detector.
But since the transducers outputs are correlated around the resonance, we need to
convert them to uncorrelated mode channels, which correspond to five spherical am-
plitudes of a gravitational wave. This means that to build a fully determined system
we would need to have at least 5 working transducers. For the 2 transducers con-
figuration we had in this run, the system is underdetermined and the data analysis
capability is limited. However, all the calibration and direction reconstruction rou-
tines we have developed during this run are made as general as possible and do not
depend on the number of transducers. This should allow us to make a calibration and
estimate the strain sensitivity of MiniGRAIL within a few days in any future run. As
for the current run, we were able to determine the “unknown” position of Calibrator
7 with the accuracy of about 10− 20%, depending on the fitting algorithm. A more
precise fitting, constrained to the elastic properties of the sphere gives a higher fitting
error, clearly indicating that the behaviour of MiniGRAIL sphere is different from the
model of an ideal sphere. the deformation ellipsoid shape, calculated from the best
fit is asymmetric. While the fitted results are still reasonably good, we do not have
a clear understanding of the reasons of inconsistency and need to perform more tests
with more calibration impulse directions, to verify the consistency of the algorithms.
Fortunately these tests can also be done at room temperature.

While the sensitivity was heavily affected by the vibrational noise, we have mea-
sured a best peak strain sensitivity of 3 × 10−20 Hz−1/2 and a strain sensitivity of
1 × 10−19 Hz−1/2 over a bandwidth of 42Hz, which is factor 2 worse then the 5K
nearly thermally limited sensitivity reported in [25]. This corresponds to a gravita-
tional wave burst with a Fourier amplitudeH0 = 8×10−21 or an energy of TN = 2.3 K.

The calculations show, that for the 4.2K thermally limited noise spectra and cur-
rent system parameters we would reach a peak strain sensitivity of 2.6×10−21 Hz−1/2

even with only 2 working transducers.

The ultimate sensitivity level for current configuration and thermodynamic tem-
perature of the sphere of 20mK is about 2× 10−22 Hz−1/2, yielding H0 = 1× 10−22

and TN = 4.5 × 10−4 K. This is about 1.5 times better than H0 of Auriga [72]- the
most sensitive resonant detector at the moment.

Unlike the mechanical part of MiniGRAIL, the electrical read-out part gave no
problems. With improved magnetic shielding, redesigned 2-stage SQUIDs and a “cold
damping” network, adapted for differential SQUID electronics, the acquisition system
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was stable and robust.
Currently, we are planning to fix the issues mentioned above and perform a new

run with hopefully all 6 transducers working before the end of 2011. After that the
future of MiniGRAIL project is still unclear.
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