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Chapter 2

The holographic dictionary

2.1 The basic entries

We are now ready to consider the theoretical background of our work
and to work out in some detail the results we will use. This essentially
corresponds to constructing the detailed dictionary entries and formulate
rules for the boundary terms in the action. We start with pure AdS space
(we will need more later, to introduce temperature). We will work on
the Poincaré patch of AdS space rather than global AdS. For most of the
calculations it is much more appropriate to use the dimensionless inverse
of the r coordinate:

z ≡ L

r
(2.1)

While the radial distance goes from r = 0 in the interior to infinity, now
z = 0 corresponds to the boundary while z = ∞ is the deep interior.
We might have a situation where there is a lowest bound on r, e.g. the
position of a black hole horizon rh (and there will be, if the temperature is
finite). Then the deep IR is at zh = L/rh instead of infinity. The AdSD+1

metric in z coordinate is

ds2 =
1

z2

(
−dt2 +

D−1∑
i=1

dx2
i + dz2

)
. (2.2)

Deformations away from AdS space are allowed as long as the small z
asymptotics (AdS boundary) is unchanged. We will only consider equi-
librium physics in this thesis, which corresponds to stationary and ho-
mogenous geometries. We will also only consider isotropic systems, i.e.
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isotropic geometries in the bulk. This makes all components of the metric
depend only on z and allows at most two free functions parametrizing
deformations from AdS. We can therefore write the most general metric
as

ds2 =
1

z2

(
−f(z)h(z)dt2 +

D−1∑
i=1

dx2
i +

dz2

f(z)

)
(2.3)

where we recognize f(z) as the red shift factor (warp function). For AdS
asymptotics we must have f(z) = 1 + O(z) and h(z) = 1 + O(z) for
z → 0. General stability conditions also make both f and h everywhere
non-negative. Finally, f(zh) = 0 indicates the existence of a horizon at
z = zh.

2.1.1 Thermodynamics

Finite temperature

The basis of the dictionary is given by the identification of the partition
functions given in (1.6). The first new dictionary entry we introduce
is temperature, originally proposed by Witten in [115]. It is a direct
consequence of the basic fact that temperature enters kinematics of a field
theory by imposing periodicity of Euclidean time. Consider first an AdS
space in imaginary time. A well-known (but not unique) solution with
periodic Euclidean time τ ≡ it is the Schwarzschild black hole. This
solution corresponds to metric (2.3) with h = 0 and

f(z) = 1− 4πM

DπD/2Γ(D/2 + 1)
zD, (2.4)

where M is the black hole mass. This solution is only defined up to the
horizon at zh, the outermost (smallest z) radial slice where the red shift
function vanishes: f(zh) = 0. It is only smooth if the time is periodic
with the period

1

TBH
≡ β =

zh
2π

(2.5)

where TBH is the Hawking temperature of the black hole. Since the space-
time coordinates (t, x) are directly identified in the dictionary, the com-
pactification of imaginary time retains the same meaning in the boundary
theory: TBH = Tbnd. Notice that the temperature in field theory equals
the temperature of the black hole and not the temperature of the bulk,
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as the latter is always zero. This is of more than academic interest as it
means that the bulk fields live at T = 0 and should be treated by the
usual field theory and not thermal field theory.

Free energy

The next dictionary entry, especially important when dealing with exotic
systems where very few principles are known to hold, is that of free energy
of the field theory, as the laws of thermodynamics are general enough that
they can always be used as the starting point. This directly follows from
the relation of free energy Fbnd to partition function Zbnd as the defining
equality:

e−βFCFT = 〈ZCFT 〉CFT. (2.6)

According to GKPW formula, the right-hand side equals the bulk on-shell
action with appropriate boundary conditions. We thus find:

e−βFCFT = 〈e−
∫
dτLbulk+Sbnd〉AdS (2.7)

where we have included the possibility of boundary interactions on the
gravity side. In classical gravity, i.e. for large N and large gN the bulk
expectation value is obtained simply by plugging in the on-shell solutions
into Sbulk + Sbnd. Taking into account (2.5) we get the factor of β in the
exponent of Zbulk too, so

FCFT = Sbulk(Φon−shell) + Sbnd(Φon−shell). (2.8)

This simple but very important rule was given in [115]. Then we can
follow all the usual thermodynamic identities to find other thermodynamic
potentials, as well as their derivatives. Notice again that we cannot equate
FCFT to any thermodynamic quantity in the bulk, as the latter is at zero
temperature.

2.1.2 Sources and expectation values

Scalar field

The observables of a CFT have correlation functions of their operators
O, carrying certain quantum numbers. These correlation functions are
formally generated in the standard way by taking functional derivatives
of

〈OO . . .O〉 =
δn

δnΦ0
〈e

∫
Φ0O〉CFT. (2.9)
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Recalling our duality discussion, we should identify the source Φ0 with a
field in AdS Φ(x) restricted to the boundary where conformal symmetries
are realized, relating limz→0 Φ(z) to Φ0. The boundary conditions should
ensure that the source is the leading (non-normalizable) component of the
solution at the boundary. Let us see how such a procedure works for a
scalar field and for a gauge field. The results to follow are mostly from
[114, 115] with some slight refinements summarized in [2, 25]. In this case
the bulk action and the equations of motion are trivially

Sbulk = −
∫
dDx

(
D†µΦDµΦ +m2Φ2

)
(2.10)(

zD−1∂zz
1−D∂z + k2 − m2

z2

)
Φ = 0 (2.11)

We are looking for a solution which remains finite at the boundary z → 0.
Making a power-law ansatz Φ ∼ zα, we find that exponents of the near-
boundary asymptotic of the field Φ are ∆± = D/2 ∓

√
(D/2)2 +m2.

Here, ∆− corresponds to the leading and ∆+ to the subleading branch.
One can actually find the exact solution in the whole AdS space in terms
of modified Bessel functions, giving general solution of the form

Φ(z) = ΦSz
D/2K∆−D/2(kz) + ΦRz

D/2I∆−D/2(kz) (2.12)

where K and I are modified Bessel functions of first and second kind,
respectively and

∆ = ∆+ = D/2 +

√(
D

2

)2

+m2. (2.13)

The normalizable solution is proportional to ΦR while the non-normalizable
one is the ΦS branch. Therefore, according to the dictionary, ΦR is the re-
sponse (expectation value) and ΦS the source. Consider now the one-point
function 〈O〉. The variation of the bulk action for such a configuration is
found by substituting the solution into Sbulk:

δSbulk =

∫ ∞
0

dz

∫
dDx
√−g2δΦ(D†µD

µ−m2)Φ−2

∫
dDx
√
−hδΦ∂zΦ|z=0

(2.14)
where h is the induced metric on the boundary. The first term vanishes for
the solution of (2.11). For the second term the characteristic AdS/CFT
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steps come. First, we see that the bulk action in general diverges at the
UV boundary z → 0 and needs to be regularized. The last, divergent part
of (2.14) can be removed by the boundary counterterm

Sbnd =

∫
dDx
√
−hΦ2 (2.15)

This is exactly the Dirichlet term familiar from elementary analysis: its
meaning is to fix the boundary data Φ0. So consistency if the bulk theory
requires it to be reconstructible from the boundary.

At second order we find the two-point correlator for the boundary field
O

〈O(x1)O(x2)〉 =
∂2S

∂Φ(x1)∂Φ(x2)
∼ const.

|x1 − x2|2∆
(2.16)

with ∆ defined in (2.13). Therefore, the seemingly arbitrary definition of
∆ in (2.12) is chosen to match the conformal dimension of the boundary
field. We see that the operator O scales in accordance with the predictions
of CFT with conformal dimension ∆. Also if additional terms asuch as
interactions are added in the bulk, it is clear that the UV asympotics will
still be determined by m, or else (if the additional terms are irrelevant at
the boundary) the asymptotic AdS geometry will be unstable. So another
dictionary entry is that conformal dimension in field theory is determined
by the bulk mass of the field.

Gauge fields, field strengths and densities

The procedure above is readily generalized to gauge fields. In this thesis
we will need only the Abelian U(1) field so we focus on that. Let us start
from the well known Maxwell action. By partial integration, bulk action
evaluates to

S = −1

4

∫ ∞
0

dz

∫
dDx
√−gFµνFµν =

1

2
lim
z0→0

∫
dDx
√−gFµνAµnν |z0 +

+

∫ ∞
0

dz

∫
dDx
√−gAν∂µFµν (2.17)

where nν is the unit normal vector to the boundary. To cancel the
boundary contribution we precisely need the von Neumann term Sct =∫
dDx
√
−hFµνAµ that fixes the field strength at the boundary. Now that
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we have the boundary action, we can proceed to find the dictionary en-
tries. The solution to the Maxwell equations near the AdS boundary is a
linear function in z. For the component A0 we can write

A0 = A
(0)
0 +A

(1)
0 z +O(z2), (2.18)

so the leading term, A
(0)
0 , is the source and A

(1)
0 is the response. The

boundary action is Sbnd = −A(0)
0 A

(1)
0 + . . .: the leading and subleading

term are linearly coupled to each other. It becomes clear that A
(1)
0 can

be identified with negative charge density ρ while its source A
(0)
0 has the

meaning of chemical potential µ (i.e. background scalar potential). For a
spatial component of the gauge field, we can write

Ai = A
(0)
i +A

(1)
i z +O(z2) (2.19)

and equate the subleading term A
(1)
i to the current Ji while A

(0)
x is its

source. Therefore, we arrive at the conclusion that the subleading and
leading term of the bulk gauge field encode the current density and its
source, i.e. background U(1) field. We can rephrase this conclusion in
terms of electric and magnetic field strengths in the bulk if we assume
spacetime homogeneity. In this case transverse electric field is simply
Ei = −iωAi and the radial magnetic field is Bi = iεijkkjAk. We can
now say that the bulk radial electric field stands for the charge density
while the radial magnetic field in the bulk is the magnetic field at the
boundary. For the transverse fields, we get that transverse bulk electric
field encodes for the electric field at the boundary, while transverse bulk
magnetic field stands for spatial current on field theory side.1 Notice that
the fields at the boundary obey global rather than gauge currents. This
is an important property of the dictionary: gauge symmetry in the bulk
becomes a local symmetry at the boundary. Another manifestation of
this principle is the SO(D − 1) rotational invariance in field theory. In
AdS, SO(D − 1) is a gauge symmetry, a consequence of diffeomorphism

1This fails for the component Az. Obviously, since the radial coordinate does not
exist on field theory side, Az cannot be dual to any component of the current. In fact,
it has no physical sense at all and one should put Az = 0 in holographic setups. To see
this, remember that nonzero radial gauge field implies a nonzero radial flux through the
boundary. This would violate the RG flow interpretation of the radial direction – we
do not know how to interpret radial flow of matter along z. For that reason we always
put Az = 0.
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invariance, in the sense that an SO(D−1) rotation transforms AdS space
into itself but in different coordinates.

There is a way to use AdS/CFT in the canonical ensemble using the
method of alternative quantization for the gauge field. From (2.19), we
see that the leading term has the same asymptotics as the derivative of
the subleading term. By a Legendre transform we can thus swap the roles
of Fµν and Aµ in the boundary term and regard Jµ as fixed instead of the
source Eµ. For example, suppose the gauge field has the form A = A0dt.
Then the boundary action is Sct = µρ+. . .: the two coefficients are linearly
coupled to each other, and we can identify a0 7→ µ, b0 7→ ρ: leading and
subleading term in the gauge field component A0 correspond to chemical
potential and charge density in field theory.

2.2 Holographic superconductors: a tutorial

In this subsection we will present a worked-out example where the gen-
eral formalism of holography is applied on perhaps the simplest possible
nontrivial system: a charged scalar boson coupled to the U(1) Maxwell
field and gravity. This is the famous holographic superconductor model,
proposed in 2008 by Hartnoll, Horowitz and Herzog [47, 46], and Gubser
[40]. It is immediately clear that the term superconductor is not quite sat-
isfying: not only are there no fermionic degrees of freedom but the U(1)
symmetry is global and not gauged, thus more akin to the situation in a
superfluid. Nevertheless, it is the most famous application of AdS/CFT
on complex systems, encapsulating all important elements.

Let us first recall the effective Landau-Ginzburg theory of supercon-
ductivity. There, one replaces the microscopic treatment of Cooper pairs
by an effective theory for the charged bosonic order parameter Φ. One then
constructs the free energy in the vicinity of the transition point in accor-
dance with general symmetry requirements. The result is a phenomeno-
logical action which can describe the dependence of the pair density on
temperature near the critical point, as well as the Higgsing phenomenon,
i.e. breaking of the gauge U(1) symmetry by the condensate. Since the
holographic description will take U(1) to be a global rather a local sym-
metry, This last ingredient is missing in the holographic version. The
holographic superconductivity an important breakthrough. Not only does
it give an example on how to treat in principle the condensation of any or-
der parameter holographically, but it does so in a novel way: directly from
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a critical system and this is reflected in non-standard transport properties
which reproduce the experimental results for superconducting materials.

Following the original papers, we specify to the case of D = 3 in this
section. The bulk action is easy to write from the symmetry requirements:

Sbulk =

∫
dz

∫
d3x

[
R+ 6− 1

4
FµνF

µν −D†µΦDµΦ−m2Φ2 − Vint(|Φ|)
]

(2.20)
where the covariant derivative is

Dµ = ∂µ − iqAµ (2.21)

and the potential Vint can be an arbitrary function in the bottom-up
setup. We will opt for the simplest case and set it to zero. At finite
temperature nothing changes dramatically upon introducing a finite po-
tential. The ansatz (2.3) can be used for the metric. For simplicity, let us
assume spherical symmetry, isotropy and an electric-only configuration of
the Maxwell field for now, writing

A = A0(z)dt (2.22)

The 00 and zz components of the Einstein equations read:

3f − z∂zf − 3 =
1

2

(
(∂zΦ)2 − V + (∂zA0)2 + q2Φ2A2

0

)
(2.23)

3f − z∂zf − 3zf
∂zh

h
− 3 =

1

2

(
(∂zΦ)2 + V + (∂zA0)2 + q2Φ2A2

0

)
(2.24)

while the Maxwell equation for F0z reads

∂z

(
1√
h
∂zA0

)
= 2q2 Φ2

z3
√
fh
. (2.25)

The ii component of Einstein equations can be shown to be a linear com-
bination of the remaining two and can be left out. The equations for
this simple system are clearly quite involved. This is typical for the bulk
physics of holographic systems: the full solution has to be obtained nu-
merically, while analytical estimates can be made in the near-horizon and
near-boundary limit. The former is of importance for the phase diagram
and analysis of the condensate formation. We will discuss it after we solve
a more basic question: how to impose the boundary conditions and calcu-
late the quantities on the field theory side? To that end, we can use the
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results obtained earlier for the near-boundary asymptotics of the scalar
field – it turns out that coupling to the gauge field is always a subleading
term for z → 0 and does not change the asymptotics. Schematically, the
near-boundary solution is therefore

Φ(z → 0) = Φ(1)z3−∆ + Φ(2)z∆. (2.26)

The boundary action is important for the calculation of free energy at
the boundary. The scaling dimension is set by the bulk mass; as before,
we have ∆ = D/2 +

√
D2/4 +m2. According to the dictionary, Φ(2)

sources the boundary field while Φ(1) is its VEV. For a solution that
holographically encodes spontaneous symmetry breaking, we must seek
for a spontaneously generated VEV without a source for the scalar and
gauge field:2

S
(1)
bnd−Φ =

∮
d3x
√
−hΦ2|z→0 (2.27)

For completeness we give also the boundary action for the metric and
the gauge field. This is the Hawking-Gibbons term for the metric and
imposing the chemical potential µ = A0(z0) through a Dirichlet boundary
condition for A0. This gives altogether:

Sbnd =

∮
d3x
√
−h
(
−2K + 4 +A0∂zA0 + Φ2

)
. (2.28)

2.2.1 Scalar condensate and phase transitions

In the presence of a nonzero electrostatic potential the scalar has an ef-
fective negative mass: −m2

effΦ2 ∼ −q2fhA2
0Φ2/z2. For a large enough

charge q, it is reasonable to expect the scalar order parameter to condense.
This is precisely what happens. Note that this means that the sponta-
neous breaking of the global U(1) invariance in field theory is described by
the spontaneous breaking of a local symmetry in the bulk, i.e. Higgsing in
the bulk. Upon solving the equations of motion (2.23-2.25) with appropri-
ate boundary conditions, one is able to find a solution with non-vanishing
scalar field. On the field theory side, the operator dual to Φ will condense,

2We can also employ the alternative quantization, where the subleading term be-
comes the source. Fixing the subleading term however is not enough to cancel the
divergence, and we need to add an explicit counterterm so the boundary action be-
comes S

(2)
bnd−Φ =

∮
d3x
√
−h(Φ2 + 2Φnz∂

zΦ).
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breaking now the global U(1) symmetry.3 Solving the system (2.23-2.25)
numerically, one obtains the dependence of the condensate value 〈Φ〉 on
temperature. The result is a textbook order-disorder transition with the
mean field scaling of the condensate with temperature:

〈Φ1,2〉 ∝
(

1− T

Tc

)β1,2

. (2.29)

One can then proceed to calculate the free energy which indeed reveals
the existence of a second order phase transition, and with mean field ex-
ponents, thus reproducing the predictions of the Landau-Ginzburg theory.
This finding encapsulates the essential features of holographic supercon-
ductivity – a scalar with arbitrary mass Higsses in the bulk leading to a
global order-disorder transition on the field theory side.

Hartnoll et al have proceeded to compute conductivities [47] and found
excellent qualitative agreement with experiment. In the standard quan-
tization, Φ1 condenses and backreacts on the gauge field. We can then
compute the conductivity of the system as the ration of the current and
the external field – the corresponding bulk quantities are the subleading
and the leading term of a spatial component of the gauge field. The result-
ing curve looks like that of conventional BCS superconductors. Doing the
same in alternative quantization, for Φ2 (see the footnote on this page),
one finds that conductivity mimics the one seen in unconventional super-
conductors. This was the first triumph of AdS/CMT in approaching the
experiment [45].

Remarkably, a neutral scalar can also condense. The above mechanism
clearly cannot be the cause of the formation of neutral hair. What is
the mechanism here? The explanation lies in the generalization of the
tachyonic instability to AdS known as the Breitenlohner-Freedman (BF)
bound [25, 47, 46] and the geometry of the charged black hole. The BF
bound is the value for which the square root in ∆ becomes imaginary. In
D + 1 dimension it reads:

m2 < m2
BF = − D

2

4L2
(2.30)

3For low masses, the scalar field has two quantizations with the non-standard al-
ternative quantization similar to the Legendre transform to the canonical ensemble as
described earlier. The two possible choices for the boundary conditions – fixing the VEV
versus fixing the source – lead to two different field theories, with different properties.
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where L is the radius of the space. In AdS4 the BF value is thus −9/4L2.
In the presence of non-zero chemical potential, this system has a different
geometry in deep interior dual to the IR of a CFT. The near-horizon region
of the charged black hole has the geometry AdS2⊗R2: it is a direct product
of the x−y plane and a two-dimensional AdS space, distinct from the AdS4

where the system as a whole lives. AdS2 has the BF bound m2 < m2
BF .

Dimension is reduced from D + 1 = 4 to D + 1 = 2 but the radius of the
AdS2 is smaller than the radius of AdS4: L2 = L/

√
6. Therefore, the BF

bound in the interior is m2 < −6/4L2. This means that there is a window
of the values of m where m2

AdS4 < m2 < m2
AdS2, so a scalar which is stable

in AdS4 will still condense in AdS2 [47]. The field theory meaning of this
effect is the breaking of the discrete (Ising) Z2 gauge symmetry. This is a
truly novel result of the holographic theory. The fact that the physics on
field theory side can be explained by analyzing near-horizon geometry is
an important lesson we will take from this review section.

2.3 Holographic dictionary for fermions

We now proceed to the object of this thesis: fermions. The essential prob-
lem for fermions is the well-known fact the Dirac fermion is a constrained
system: the equations of motion are of first order, only half of the compo-
nents of Dirac field are independent degrees of freedom while the rest are
uniquely determined by them. The sign problem does not plague holog-
raphy at least at the leading (tree) level. This is because the quasiparticle
picture is preserved in the bulk, in the sense that we will consider weakly
interacting fermions coupled to external fields only. Besides, we know that
two-point correlation functions and expectation values (densities) are dual
to tree-level objects in the bulk, thus one does not need to face the loop
effects where the fermionicity strikes harder.4

4Occasionally, it is laconically claimed that the fermion sign problem is eliminated by
holography as in the limit of classical gravity/large N strongly coupled field theory the
bulk physics is classical. This is not entirely true: while gravity is treated classically in
this limit as the gravitational constant κD+1 → 0, this does not tell us anything about
the matter fields. Indeed, these in general require the same QFT treatment no matter
if we take classical gravity limit, SUGRA limit or neither.
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2.3.1 Equations of motion

While already the original AdS/CFT works include fermions as the field
theory side is supersymmetric, it was not a priori clear how to construct
dictionary entries for a fermionic observable in field theory. This problem
was addressed in [84, 7, 56]. A more systematic rephrasing of the solution,
which takes the viewpoint of holographic regularization, was given in [16].
We will mainly follow the reasoning of the latter reference as it is the
most logically coherent exposition of the problem. Whereas the boundary
action Sbnd needed to be picked by hand in earlier formulations, [16] shows
that it follows logically from the requirement that the theory should be
regular in the UV.

Kinematics and holography

Let us first discuss the kinematics of Dirac fermion; we have already an-
nounced that this will be the main source of trouble. The Dirac algebra
in full AdS space (D + 1-dimensional) is represented by gamma matrices
Γµ, µ = 0, . . . D, and ΓD ≡ Γz. The restriction of this representation to D
dimensions, i.e. on the boundary, we will denote by γµ (µ = 0, . . . D− 1).
Recalling the table of the representations of Dirac algebra in various di-
mensions, we find that in odd number of dimensions D + 1, i.e. for D
even, there is a single spinor representation, whereas for D odd there are
two irreducible representations of the Dirac algebra. We will mainly deal
with this case in the thesis. In this case, Ψ is a bispinor and we can de-
compose it into two spinors Ψ±. The choice of projection operator Π± is
non-unique. In holography there is a natural choice which preserves all
symmetries in the boundary theory: projection on the radial direction.
Thus the projectors are Π± = (1± Γz)/2.

Dynamics

We are now ready to write the Dirac equation. We can always write it as
a pair of coupled equations for Ψ±. As we know, the Dirac equation reads

(/D −m)Ψ = 0. (2.31)

The covariant derivative includes the coupling to any gauge fields present
and to the metric through the spin connection:

/D = eµa

(
∂µ +

1

8
ωbcµ [Γb,Γc]− iqeµaAa

)
. (2.32)
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From now on, we will denote the local tangential coordinates by Latin
indices and the metric coordinates by Greek indices. The inverse vielbein
is eµa . From now on we will study a fermion in the homogenous back-
ground coupled to isotropic A0 gauge field, describing a field theory at
finite density. Taking into account homogeneity and isotropy of the sys-
tem in transverse direction, we can partially Fourier-transform so that
the derivative becomes ∂µ 7→ (−iω, ik, ∂z). The spin connection, given in
general by ωbcµ = ebν∂µe

νc + ebνe
σcΓνσµ, has only two nonzero components,

ω0z
0 and ωizi :

ω0z
0 = e0

0e
zzΓ0

z0 =
1

2
e0

0e
zzg00∂zg00 = ezz∂ze

0
0

ωizi = eiie
zzΓizi =

1

2
eiie

zzgii∂zgii = ezz∂ze
i
i, (2.33)

Note that they can be formally written as total derivatives and as a con-
sequence they can be absorbed in the redefinition of the fermion field in
the following way. The equation of the form

Γzezz
[
∂z + ∂z

(
e0

0 + (D − 1) eii
)]

Ψ + (. . .)Ψ = 0, (2.34)

where (. . .) denotes all terms containing no radial derivatives, can be
rewritten as Γzezz∂zψ + (. . .)ψ = 0 upon rescaling the Dirac field as

Ψ 7→ ψ ≡ Ψ

√
g00 (gii)

D−1 = Ψ
√−ggzz. (2.35)

This rescaling works generally for single parameter metrics. From now on
throughout this chapter we will use the rescaling (2.35) and work with ψ
and ψ± instead of Ψ and Ψ±.

With the rescaling for the Dirac field, we can write the Dirac equation
for ψ [

ezz∂z − Γz(iqeµ0A
0 +m)

]
ψ = 0. (2.36)

Next we decompose the equation into the equations for ψ±. The result
can be written as:

(∂z + ezzm)ψ± ± /T ψ∓ = 0 (2.37)

where /T is the transverse covariant derivative rescaled by the vielbein ezz:

−i /T = ezze
00γ0(−ω + qA0) + ezze

iiγiki. (2.38)
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Starting from the Dirac equation (2.38), we can eliminate either ψ+ or ψ−
and readily derive a second order equation of motion for ψ±. Using that
/T /T = −T0T

0 + TiT
i ≡ T 2, we can invert /T to rewrite

/T
T 2

(∂z + ezzm)ψ+ = −ψ− (2.39)

and use the ψ− equation to obtain

(∂z −mezz)
/T
T 2

(∂z +mezz)ψ+ = − /T ψ+. (2.40)

This finally brings us to the second-order form of the Dirac equation, for
the spinor ψ+. Denoting it as

(∂zz + P∂z +Q+)ψ+ = 0 (2.41)

we have for the coefficients

P(z) = −[∂z, /T ]
/T
T 2

Q+(q,m, ω, k; z) = −2mezz + (∂zme
z
z)− [∂z, /T ]

/T
T 2
mezz + T 2.(2.42)

For the second component ψ− we get the same equation but with Q− =
Q+(−q,−m,−ω,−k).

Of course, the second order equation implies the Dirac equation but
is not equivalent to it. The necessary and sufficient condition for ψ+, the
solution of (2.41), to be also the solution to (2.37), reads

ψ− =
1

/T (∂z +mezz)ψ+. (2.43)

It is instructive to solve the simplest case: that of pure AdS with no
gauge fields. The field is rescaled as ψ = Ψ/z(D+3)/2, and the second
order equation for ψ+ becomes(

∂zz −
2m

z
− m

z2

)
Ψ+ = 0 (2.44)

which we readily recognize as the Bessel equation. It yields the following
general solution:

ψ+(z) =
1

z

(
ψ

(1)
0 Km+1/2 (kz) + ψ

(2)
0 Km−1/2 (kz)

)
, (2.45)
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where Km±1/2 are modified Bessel functions of the second kind. The
near boundary asymptotics of the non-rescaled field Ψ+ behaves as Ψ+ =

Ψ
(1)
+ zD/2−m+Ψ

(2)
+ zD/2+m. Clearly, Ψ

(1)
+ is always the leading, source term.

But what is the response? Naively, it can be Ψ
(2)
+ as the subleading term.

In the boundary action (2.48) we have however Ψ− coupled linearly to the

source Ψ+ (which, with appropriate boundary conditions, becomes Ψ
(1)
+ ).

Therefore, the response is Ψ− with appropriate boundary asymptotics.

Dirac equation tells that Ψ
(1)
− ∝ Ψ

(2)
+ so we conclude that the response is

Ψ
(1)
− .

2.3.2 Boundary action

Let us start again from the minimal bulk action for Dirac fermions coupled
to gravity and possibly gauge fields:

Sbulk = Sgrav +

∫
dD+1x

√−gΨ̄(/D −m)Ψ + . . . , (2.46)

where (. . .) stand for any additional fields in the system. It is assumed that
these will not change the UV behavior of fermions nor the AdS asymp-
totics of the background; they might change the background and thus
also the fermionic behavior in IR but we will simply assume a given fixed
IR whatever might be the fields which produce it. The issue is how to
implement the dictionary. The Dirac action is famously proportional to
Dirac equation and thus vanishes on shell. We have seen this also in the
scalar sector however. The resolution is the existence of a boundary ac-
tion, which in fact encodes the full holographic partition function. The
objective is to construct it here for fermions. To do so, let us find the
variation of the bulk part (disregarding again the parts we know: gravity
and bosons). Since we work in a spacetime with a boundary, there will
generically be a boundary contribution. Employing partial integration in
(2.46) and varying with respect to ψ, we get:

δSbulk = δ

∫
dD+1x

√−gψ̄(/D −m)ψ =

=

∫
dDx
√
−hψ̄δψ|zhz0 −

∫
dD+1x

√−g(−/D −m)ψ̄δψ. (2.47)

The second, bulk term vanishes on shell as it is proportional to the equa-
tion of motion. The first, boundary term does not vanish however. It is
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to be evaluated on the boundary of AdS in UV and at zh in IR.5 In terms
of the radial projections, it reads

δS =
1

2

∫
dDx
√
−h
(
ψ̄+δψ− + ψ̄−δψ+

)
. (2.48)

We know from general rules of AdS/CFT that one of the components
of ψ will be the source and the other the response, and in the previous
subsection we have seen that the leading component of ψ+ is larger (i.e.
decays slower) at the boundary than the leading component of ψ−. We
can therefore pick ψ+ to be the source. This means that ψ+ is fixed at
the boundary and its variation is zero: δψ+ = 0. The variation of the
action now reduces to the first term in (2.48). To cancel ad we can add a
counterterm reading

Sct =
1

2

∫
dDx
√
−h(ψ̄+ψ− + ψ̄−ψ+) (2.49)

and the whole action is given by S = Sbulk + Sct, so Sbnd ≡ Sct: the
whole boundary contribution can be understood as the counterterm which
regularizes the action, eliminating UV divergences and making the on-shell
solution satisfy the Dirac equation in the bulk.

For the steps to follow it is convenient to introduce the bulk-to-boundary
propagator G±(z) and to express the solution in terms of G±. The bulk-
to-boundary propagator satisfies the equation of motion [114]:

(/D −m)G(z) = δ(z) (2.50)

i.e. it is a response to a Dirac delta function source at the boundary. We
can now express the solution to Dirac equation in terms of G± and χ±.
The expression for ψ± reads

ψ+ = G−1
+ (z0)G+(z)χ+, ψ− = G−1

+ (z0)G−(z)Sχ− (2.51)

where S = limz→0 T / /T . Namely, at the boundary the energy-momentum
dependence can be shown to drop from the factor T / /T , leaving only a
constant matrix (which of course depends on the representation of gamma
matrices, hence we do not specify it here). The convenience of the above
representation of ψ is that all z dependence of ψ is encoded in the bulk-to-
boundary propagators. Substituting (2.51) into the boundary action, we

5The latter is a single point if zh → ∞ or a slice in the transverse direction if zh is
finite.
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obtain an expression for the full on-shell action in terms of the solutions
G±(z):

Son−shell =

∫
z=z0

dωd2k

(2π)3

√
−hχ̄+G−(z0)G−1

+ (z0)χ+. (2.52)

The two-point correlator in field theory is therefore

G(ω, k) = G−(z0)G−1
+ (z0). (2.53)

What this illustrates is that the subleading component of Ψ− is the re-
sponse to the leading component of Ψ+. This will be the starting point of
the work done in most of Chapter 3 and 4.

2.4 The remainder of the thesis

Having discussed the larger context in the first chapter and the theoretical
foundations and previous work on the topic of our research in this, second
chapter, we have finished introducing the formal framework of our work.
We now outline the work done in this thesis on specific problems with
fermion systems. We will use the power of holography to describe strongly
coupled systems from a new fundamental perspective, to circumvent the
sign problem. We stay exclusively with bottom-up setups. The first reason
is their obvious simplicity as compared to top-down constructions which
become particularly complicated if fermions are included. A deeper reason
is that the conceptual aspects we consider such as the dictionary entry for
a Fermi surface, or for a Fermi liquid state, or pathways through which
Fermi liquids are destroyed – are not expected to depend much on the
exact string action.

Another compromise with consistency that we have to decide about is
the choice between self-consistent calculations, with backreaction, versus
probe limit calculations. We start from the probe limit and afterwards
include backreaction, first on gauge field and then also on geometry. Of
course, probe limit suffices at small fermion density, when the backreaction
is anyway small, but becomes less and less satisfactory as the density
increases. The field theory interpretation is that backreaction probes the
stability of the system – unstable quantum critical matter is described
by the probe limit calculations, but to arrive at stable phases we need
to backreact. In particular, the Fermi-liquid-like phase (which we know
empirically to be very stable) requires backreaction.
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In Chapter 3 we address the critical theory governing the zero tem-
perature quantum phase transition between strongly renormalized Fermi-
liquids as found in heavy fermion intermetallics and possibly high Tc super-
conductors. From the solutions of Dirac equation in the probe limit in the
AdS-RN background, we obtain the spectral functions of fermions in the
field theory. By increasing the fermion density away from the relativistic
quantum critical point, we observe multiple Fermi surfaces, some of them
of distinctly non-Fermi liquid nature while others have some features of
the Fermi liquid. Tuning the scaling dimensions of the critical fermion
fields we find that the quasiparticle disappears at a quantum phase tran-
sition of a purely statistical nature, not involving any symmetry change.
The resulting phase has no Fermi surfaces at all.

In Chapter 4 we extend our work by backreacting on gauge field. We
provide evidence that the bulk dual to a strongly coupled charged Fermi-
liquid-like system has a non-zero fermion density in the bulk. We then
calculate density explicitly in the small density approximation, a model
we call black hole with Dirac hair. Then we show that the pole strength
of the stable quasiparticle characterizing the Fermi surface is encoded in
the spatially averaged AdS probability density of a single normalizable
fermion wave function in AdS. Recalling Migdal’s theorem which relates
the pole strength to the Fermi-Dirac characteristic discontinuity in the
number density at Fermi energy, we conclude that the AdS dual of a Fermi
liquid is described by occupied on-shell fermionic modes in AdS. Encoding
the occupied levels in the total spatially averaged probability density of
the fermion field directly, we show that an AdS Reissner-Nordström black
hole in a theory with charged fermions has a critical temperature, at which
the system undergoes a first-order transition to a black hole with a non-
vanishing profile for the bulk fermion field. Thermodynamics and spectral
analysis support that the solution with non-zero AdS fermion-profile is the
preferred ground state at low temperatures.

In Chapter 5 we continue our study of self-consistent (backreacted)
models and move toward constructing the full phase diagram of the Dirac-
Maxwell-Einstein system and its field theory dual. We compare our Dirac
hair model with the electron star model of Hartnoll et all [51], and argue
that the electron star and the AdS Dirac hair solution are two limits
of the free charged Fermi gas in AdS. Spectral functions of holographic
duals to probe fermions in the background of electron stars have a free
parameter that quantifies the number of constituent fermions that make
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up the charge and energy density characterizing the electron star solution.
The strict electron star limit takes this number to be infinite. The Dirac
hair solution is the limit where this number is unity. This is evident in the
behavior of the distribution of holographically dual Fermi surfaces. As we
decrease the number of constituents in a fixed electron star background
the number of Fermi surfaces also decreases. An improved holographic
Fermi ground state should be a configuration that shares the qualitative
properties of both limits.

We construct such configuration in Chapter 6. We employ a model
which combines the (semiclassical) WKB approximation and its Airy cor-
rection with the quantum corrections based on Dirac equation. At high
temperatures, the system exhibits a first order thermal phase transition
to a charged AdS-RN black hole in the bulk and the emergence of local
quantum criticality on the CFT side. This restores the intuition that the
transition between the critical AdS-RN liquid and the finite density Fermi
system is of van der Waals liquid-gas type. At zero temperature, we find
a Berezhinsky-Kosterlitz-Thouless transition from Fermi-liquid-like finite
density phase with a sharp Fermi surface to zero density AdS-Reissner-
Nordström but in the regime without Fermi surfaces. This suggests that
it is indeed the Fermi surface which drives the instability of the AdS-RN
quantum critical phase. Based on these findings, we construct the three-
dimensional phase diagram, with temperature, conformal dimension and
fermion charge.

Even though we have not answered some of the questions we started
from, in particular the question of what is the holographic dual to a text-
book Landau Fermi liquid and how it is destroyed by strong interactions,
we have obtained a qualitative model of how stable Fermi-liquid-like quasi-
particles become unstable at a quantum critical point and give rise to
novel phenomena. These phenomena could not be obtained in a pertur-
bative approach and they illustrate the power of AdS/CFT and its ability
to make specific predictions on strongly correlated fermions. These pre-
dictions have not been tested experimentally so far. Because of many
simplifying assumptions and the lack of ability to construct a microscopic
Hamiltonian on the boundary, our results are unlikely to be a good quan-
titative description of any realistic system. Nevertheless, they make some
remarkable qualitative predictions which can be expected to hold also in
real-world materials, due to the universality associated to quantum crit-
ical behavior. The coming years will surely determine whether the novel
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physics on display in AdS/CMT is a part of the real world.


