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Introduction

The Microdontinae are a subfamily of Syrphidae 
(Diptera) with a worldwide distribution. The vast 
majority of more than 400 described species occurs 
in the tropics, of which approximately 170 in the 
neotropics. With a little more than 50 species known 
from the Palaearctic and Nearctic regions together, 
the group is relatively poorly represented in tempe-
rate regions. This partly explains why the taxonomy 
of the group has so far received little attention com-
pared to several other groups of Syrphidae.
Morphological variation within Microdontinae is 
large, arguably larger than in many families of Dip-
tera Cyclorrhapha. So far, 59 genus group names (mi-
nus misspelled names) have been proposed for the 
taxa in this subfamily (Cheng & Thompson 2008). 
Nevertheless, still more than 300 out of approxima-
tely 400 valid species names are currently classified 
in the single genus Microdon Meigen, 1803. This ap-
parent taxonomic indecisiveness seems to result not 
so much from a lack of morphological variation, but 
rather from an excess of it. Several authors have com-

mented on this paradoxical combination of a wealth 
of morphological diversity and a scarceness of group-
defining characters (Bezzi 1915, Curran 1940, Shan-
non 1927).
Ever since Rondani (1845) introduced the family 
group name Microdonellae, this group has been re-
cognized as distinct from other Syrphidae, albeit 
under different spellings and taxonomic rankings. 
Only occasionally genera were included which are 
nowadays considered to belong to other subfamilies 
(Lioy 1864, Shatalkin 1975a, b, Williston 1886). The 
placement of the group relative to other Syrphidae, 
however, has been far from stable. For instance, the 
group has variously been treated as a tribe within 
the subfamily Syrphinae (Williston 1886), a sub-
tribe within the tribe Volucellini (Goffe 1952), a fa-
mily (Thompson 1972) and a subfamily (Ståhls et al. 
2003). A more detailed history of the classification of 
Microdontinae is given in Chapter 5.
The most recent advocates of a family status for Micro-
dontinae are Thompson (1972) and Speight (1987, 
2010), based on the ‘basal’ relationship of Microdon-
tinae with other Syrphidae as inferred by Thompson 
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(1969) from a Hennigian argumentation scheme of 
characters considered of critical importance. Speight 
(1987) found additional morphological differen-
ces between Microdontinae and other Syrphidae, 
which he considered to support the family status of 
the group as first proposed by Thompson (1972). Se-
veral recent studies have confirmed this sister-group 
relationship (Skevington & Yeates 2000, Ståhls et al. 
2003, Rotheray & Gilbert 2008), but most recent au-
thors see no necessity to raise the rank of the group 
to family level and consider the group as a subfamily 
of the Syrphidae (Cheng & Thompson 2008, Ståhls 
et al. 2003). Still, however, certain authors prefer to 
rank the group as a family (Speight 2010). 
The classification of the genus Spheginobaccha Meije-
re, 1908 has received special attention of several au-
thors. Its phylogenetic position has shifted between 
different subfamilies of Syrphidae (for review see 
Thompson 1974). The first to include it in the Mi-
crodontinae was Hull (1949), after which Thompson 
(1969) excluded it, and Shatalkin (1975a) included 
it again. Ståhls et al. (2003) placed it into the Mi-
crodontinae, based on a phylogenetic analysis of a 
combination of morphological and molecular data, 
which recovered the genus as the sister-group of all 
other Microdontinae. 

Previous phylogenetic hypotheses relied on only a 
few taxa of Microdontinae, e.g. two in Skevington & 
Yeates (2000), six in Ståhls et al. (2003) and Hippa & 
Ståhls (2005). These numbers do little justice to the 
large morphological diversity of the group, so relati-
onships within the Microdontinae remain comple-
tely unaddressed. In addition, the present authors felt 
the need to confirm the supposed sister-group relati-
onship of Spheginobaccha and the other Microdonti-
nae. An extended taxon set representing as many ge-
nus groups (whether previously recognized or not) as 
possible, could potentially provide evidence for refu-
ting or supporting this sister-group relationship. For 
instance, the genera Aristosyrphus Curran, 1941, Eu-
rypterosyrphus Barretto & Lane, 1947 and Mixogaster 
Macquart, 1841 have certain characters in common 
with Spheginobaccha, such as a hypandrium with api-
cal part consisting of two separate lobes, an unfurcate 
aedeagus and characters of wing venation (see Chap-
ter 3). For a better understanding and for establishing 
the position of Spheginobaccha, it was thus necessary 
to include these taxa in the analyses.

The present paper analyzes a combination of mor-
phological and molecular characters of a large set 
of microdontine taxa. Although the characters of 
the immature stages of a few taxa of Microdontinae 
have previously been used for phylogenetic analyses 
(Rotheray & Gilbert 2008, Ståhls et al. 2003), the 
number of taxa for which characters of the immature 
stages could be obtained is considered too small to be 
used for the present analyses. 
Objects of the present paper are:
•	 to test the sister-group relationship of Sphegino-

baccha with the other Microdontinae;
•	 to elucidate the phylogenetic relationships wit-

hin the Microdontinae;
•	 to discuss the implications of the phylogenetic 

hypothesis for the classification of Microdonti-
nae;

•	 to discuss the question wether Microdontinae 
are to be treated as a separate family or not.

Material & Methods

Note on names: disclaimer

Many of the species names used in this paper are 
combined with genus group names with which they 
have not been used before. Some of the generic and 
specific names have not at all been used previously. 
The justifications for the new combinations, as well as 
descriptions of new genera and species, can be found 
in Chapter 5. None of the names and combinations 
in the present paper are published for purposes of 
zoological nomenclature. This is a disclaimer with 
reference to article 8.2 of the International Code of 
Zoological Nomenclature, 4th edition (ICZN 1999). 

Ingroup taxa and specimens

The starting point for the selection of taxa to include 
in the ingroup were the genus group names of Micro-
dontinae as listed by Cheng & Thompson (2008). 
At least one species, preferably the type species, of 
all these genus groups was included in the combined 
analysis, whereas in the molecular analysis as many of 
these taxa as possible were included, depending on 
availability for molecular analyses. Exceptions to this 
general rule are objective or otherwise obvious syno-
nyms (e.g. Aphritis Macquart, Colacis Gistel, Holm-
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bergia Lynch Arribalzaga) and taxon names which 
are based only on immature stages (e.g. Ceratoconcha 
Simroth, Nothomicrodon Wheeler) (for more infor-
mation on these names and synonymies see Cheng & 
Thompson 2008). In many cases more than one spe-
cies per genus group was included. In addition, many 
new or little known species were included which had 
not been previously assigned to one of the existing ge-
nus groups, or were merely lumped under the generic 
name Microdon, despite their morphological peculi-
arities. The taxon set contains 35 species new to sci-
ence, partly belonging to new genera. Descriptions of 
most of these taxa can be found in Chapters 5 and 6. 
For the genus Spheginobaccha, six species were inclu-
ded, representing all three species groups recognized 
by Thompson (1974). 
The list of specimens used for DNA extraction, inclu-
ding locality and collection data as well as GenBank 
accession numbers, is given in Appendix 1. This table 
also indicates whether the morphological characters 
were scored from the DNA vouchers or from another 
specimen. In all cases, except one, morphological and 
molecular characters are based on specimens of the 
same species. The only exception is Rhopalosyrphus 
ramulorum Weems & Deyrup, 2003 in the DNA 
dataset: for this species, morphological characters are 
based on a specimen of the closely related R. guntheri 
(Lynch Arribalzaga, 1891). The complete list of spe-
cimens used for constructing the morphological ma-
trix can be found in Chapter 3. 
The specimens used for DNA extraction originate from 
a wide variety of sources and collection methods. Fresh 
material (< 1 year old) collected directly into ethanol 
was scarcely available, so for many taxa older material 
(up to about 10 years), sometimes preserved dry, was 
used. Because of this, DNA extraction and PCR results 
differed strongly among the taxa and among the gene-
tic markers that were sequenced (see Results).

Outgroup

The parsimony analyses are rooted on Chalarus cf. 
spurius (Fallén, 1816) (Diptera: Pipunculidae). Pi-
punculidae have been recovered as the sister-group 
of Syrphidae in a number of recent studies (Rotheray 
& Gilbert 2008, Skevington & Yeates 2000, Yeates et 
al. 2007). The genus Chalarus Walker, 1834 is a pre-
sumed basal taxon in pipunculid phylogeny (Rafael 
& De Meyer 1992, Skevington & Yeates 2000). The 

outgroup includes another pipunculid, Nephrocerus 
lapponicus Zetterstedt, 1838, as well as a selection of 
taxa from the syrphid subfamilies Syrphinae and Eris-
talinae, which together form the putative sister of Mi-
crodontinae (Ståhls et al. 2003). Taxa were selected 
from a broad range of tribes: Chrysogasterini (Neo-
ascia tenur), Eristalini (Eristalis tenax), Merodon-
tini (Merodon equestris), Pipizini (Pipiza noctiluca), 
Syrphini (Melanostoma scalare, Syrphus vitripennis), 
Xylotini (Xylota segnis). Locality and collection data 
are given in Appendix 1.

Morphological data

The morphological data used in this paper are based 
on Chapter 3, in which 174 character statements are 
described. A phylogenetic analysis of the morpholog-
ical dataset is also given in Chapter 3.

Choice of molecular markers

For the molecular dataset, five sequence fragments of 
three molecular markers were used: the mitochondri-
al COI-gene and the nuclear ribosomal RNA genes 
18S and 28S. Primer information and combinations 
are given below and in table 1.
The molecular markers were chosen based on results 
of previous studies on Syrphidae. A combination of 
mitochondrial COI and nuclear 28S sequences with 
morphological characters yielded good results in the 
study on intrafamilial relationships of Syrphidae of 
Ståhls et al. (2003). The 18S gene was used by Men-
gual et al. (2008) and proved to be informative for 
reconstructing deeper branches in the study of rela-
tionships within the subfamily Syrphinae. 

DNA extraction

For most specimens, two or three legs were used for 
DNA extraction. In a few cases the entire thorax or 
the abdomen was used. Prior to extractions, ethanol 
preserved samples were rinsed in distilled water. 
DNA extractions were done using the NucleoSpin® 
Tissue extraction kit, following the manufacturer’s 
protocol, eluting the DNA into 50 μl of elution buf-
fer. For some very small specimens NucleoSpin® Tis-
sue XS was used, which involves the same extraction 
procedures, except for some differences in the quanti-
ties of buffers and washing liquids. 
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PCR 

For all gene fragments, PCR amplifications were 
done using 4-8 µl of DNA-extract, suspended in a to-
tal volume of 25 µl reaction mix also containing 2.5 
µl of 10X Buffer II, 2 µl mM MgCl2, 4 µl 200 mM 
dNTP, 0.25 µl of Taq DNA polymerase, ultrapure 
water (volume dependent on volume of DNA-ex-
tract) and 1 µl each of two primers (at 10 pmol/ µl). 
The primers used for the amplified gene fragments are 
listed in Table 1. The following combinations were 
used: COIa: LCO+HCO or the smaller fragment 
Beet+HCO; COIb: Jerry-Pat or the smaller fragment 
Jerry+Inger; 18S: the full fragment 1F+b3.9 or the 
two overlapping fragments 1F+b7.0 and 2F+b2.9; 
28S: F2+3DR. For many samples, attempts to am-
plify larger gene fragments (e.g. LCO+HCO and 
Jerry+Pat for COI, or 1F+b3.9 for 18S) failed. For 
this reason, only the smaller fragments were amplified 
(e.g. Beet+HCO for COI, or 1F+b7.0 for 18S). 
For all amplifications, the following thermocycler 
profile was used: (step 1) 2 min. at 95 °C, (step 2) 1 
min. at 94 °C, (step 3) 30 sec. at 49 °C, (step 4) 2 min. 
at 72 °C, (step 5) repeat steps 2-4 for 30 times, (step 
6) 7 min. at 72 °C, (step 7) cool down for some min-

utes at 4 °C. 
The PCR products were visualized by running 4 µl 
PCR product on a 1.5% agarose gel. PCR products 
were treated with ExoSapIt prior to sequencing re-
actions. Sequencing electrophoresis was done in the 
sequencing laboratory of the Institute for Molecular 
Medicine, University of Helsinki, Finland, with an 
ABI3730xl DNA Analyzer. 
Sequences of forward- and reverse primers were as-
sembled and edited in Sequence Navigator (version 
1.01, Applied Biosystems). For the outgroup taxon 
Chalarus spuriae (MZH_Y800), the COIb sequence 
was not available, fow which reason the sequences of 
this taxon were combined with the COIb sequence of 
Chalarus spec. (MZH_Y0038).

Alignment

The mitochondrial DNA sequences of the (protein 
coding) COIa and COIb gene fragments were alig-
ned manually by their codon positions. Sequences of 
the 18S and 28S ribosomal RNA genes were aligned 
separately using MAFFT version 6 (Katoh & Toh 
2008, Katoh et al. 2002, 2009). This program offers a 
number of different algorithms, several of which have 

Table 1. List of primers.

Gene
Primer name 
(nickname)

Sequence 5’ – 3’ Source

Cytochrome c 
oxidase subunit I 
(COI)

LCO-1490 GGTCAACAAATCATAAAGATATTG- Folmer et al. 1994

HCO-2198 TAAACTTCAGGGTGACCAAAAAATCA Folmer et al. 1994

C1-S-1718  (Beet) GGAGGATTTGGAATTGATTAGTTCC Simon et al. 1994

C1-J-2183  ( Jerry) CAACATTTATTTTGATTTTTTGG Simon et al. 1994

TL2-N-3014 (Pat) TCCAATGCACTAATCTGCCATATTA Simon et al. 1994

C1-N-2735 (Inger) AAAATGTTGAGGGAAAAAATGTTA Lunt et al. 1996

18S 1F TACCTGGTTGATCCTGCCAGTAG Whiting Lab
b7.0 ATTTRCGYGCCTGCTGCCTTCCT Whiting Lab
2F AGGGTTCGATTCCGGAGAGGGAGC Whiting Lab
b3.9 TGCTTTRAGCACTCTAA Whiting Lab
b2.9 TATCTGATCGCCTTCGAACCTCT Whiting Lab

28S 2F AGAGAGAGTTCAAGAGTACGTG Belshaw et al. 2001
3DR TAGTTCACCATCTTTCGGGTC Belshaw et al. 2001
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been demonstrated to perform very well compared to 
those of other programs (e.g. ClustalW, DIALIGN-
T, T-COFFEE) for multiple sequence alignment 
(Golubchik et al. 2007, Rosenberg 2009). The algori-
thm used in the present study was E-INS-i. Based on 
the information in Katoh & Toh (2008) and Katoh et 
al. (2009), this algorithm was considered to be most 
suitable for the ribosomal DNA sequences under 
study, as it was developed for dealing with sequences 
with considerable length variation.

Analyses

Analyses of molecular datasets and of the combined 
datasets were performed using the parsimony pro-
gram TNT (Tree Analysis using New Technologies) 
version 1.1, October 2010 (Goloboff et al. 2008) 
with gaps treated as missing data and morphological 
characters treated as non-additive. All matrices were 
analyzed using a combination of all four ‘new tech-
nology’ heuristic search methods of TNT, under 
their default parameters: sectorial search, parsimony 
ratchet, tree-drifting and tree-fusing (see e.g. Giribet 
2005 and Goloboff et al. 2008 for explanations on 
commands).

Molecular data
All molecular markers were first analyzed separately. 
Sequences of taxa with remarkable placements (e.g. 
ingroup taxa in the outgroup) were scrutinized for 
possible errors in the sequences, e.g. because of copy-
paste errors in the datafiles or contamination during 
DNA extraction or amplification. A small number 
of suspect or erroneous sequences have subsequently 
been omitted from further analyses.
One matrix integrating the data of all three different 
markers (in five fragments) was constructed, which 
contained 96 taxa and 2808 columns of nucleotide 
data. The TNT search for this matrix was stopped 
after the shortest length was found 50 times, after 
which the trees found were subjected to TBR branch 
swapping under default parameters.  The same analy-
sis was also done with exclusion of COIb fragment of 
COI, in order to evaluate topological difference re-
sulting from exclusion on the COIb dataset, in which 
data is missing for 46 of the 96 taxa.

Combined data
Molecular and morphological datasets were merged 

using the dmerge command in TNT. 
Two combined matrices were constructed: one con-
taining only the 96 taxa for which both molecular and 
morphological data are available (‘subset’), the other 
containing 189 taxa, including 93 taxa for which only 
morphological data are available (‘total set’). Both 
matrices include 2808 molecular and 174 morpholo-
gical characters. The TNT searches for these matrices 
were stopped after the shortest length was found 100 
times (subset) or 10 times (total set), after which the 
trees found were subjected to TBR branch-swapping.

Measures of support and stability
Bremer support values were calculated by TBR branch 
swapping based on the strict consensus trees. This was 
done in TNT using the ‘Bremer supports’ option un-
der the ‘Trees’ menu, examining trees up to 100 steps 
longer than the most parsimonious trees. Jackknife 
values and GC frequency differences (Goloboff et al. 
2003) were calculated in TNT, using 1000 replicates 
and a removal probability of 36%. GC values indi-
cate the difference between the frequency in which 
nodes are retrieved in the jackknife replicates and the 
frequency of the most frequent contradictory group. 
So, in contrast with normal jackknife-values, the GC 
values are informative for the amount of contradic-
tory information in the dataset. In case these values 
are equal, there are no contradictory groups which are 
supported by the data.

Results

PCR amplification and obtained sequences

Appendix 1 indicates which fragments could be am-
plified for each sample. Total success rates for the 
different fragments were as follows: COIa - (84%); 
COIb (52%); 18a (94%); 18Sb (66%); 28S (66%).

Analysis of molecular data

The ‘new technology’ search of the dataset inclu-
ding all DNA fragments resulted in an initial num-
ber of 109 most parsimonious trees of length 8109. 
TBR branch swapping based on these trees resulted 
in 1722 equally parsimonious trees of length 8109. 
The strict consensus of these trees is given in figure 1. 
Parsimony analysis of the dataset without the COIb 
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Fig. 1. Molecular analysis (all five DNA fragments): strict consensus of 1722 most parsimonious trees of length 8109.
Continued on next page.

(part 2)
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(part 1)

Fig. 1 part 2. Continued from previous page.
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Fig. 2. Molecular analysis (all DNA fragments except Jerry + Pat): strict consensus of 88 most parsimonious trees of 
length 5133. Continued on next page.

(part 1)
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Fig. 2 part 2. Continued from previous page.
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Fig. 3. Combined analysis (DNA and morphology), subset of 96 taxa: strict consensus of eight trees of length 9442. 
Branch values indicate Bremer support (above branch), Jackknife values (left) and GC frequency differences (right). 
Vertical lines marked ‘M’ indicate taxa included in the genus Microdon by previous authors. Continued on next page.

Menidon falcatus
Menidon falcatus

Paramixogaster spec. Austr.

Peradon chrysopygus

Rhoga_CR2'
Rhoga_CR1'

Paragodon paragoides

Afromicrodon madecassa

Paramicrodon spec. Bolivia

Archimicrodon simplex

Spheginobaccha melancholica
Spheginobaccha aethusa

Peradon trivittatum

Hypselosyrphus maurus

Mixogaster spec. nov.

Paramicrodon aff. nigripennis

Paramixogaster variegatus

Pipiza noctiluca

Laetodon geijskesi

Piruwa phaecada

Paramicrodon cf. flukei

Carreramyia tigrina
Masarygus palmipalpus

Hypselosyrphus amazonicus
Paramicrodon aff. nigripennis

Archimicrodon clatratus

Neoascia tenur

Paramixogaster vespiformis

Schizoceratomyia flavipes
Schizoceratomyia flavipes

Merodon equestris
Eristalis tenax

Melanostoma scalare

Peradon luridescens
 Peradon bidens

Surimyia rolanderi

Afromicrodon madecassa

Archimicrodon (Hovamicrodon) spec.

Mitidon cf. mus

Nephrocerus lapponicus

Xylota segnis

Mitidon CR99_10

Spheginobaccha macropoda

Syrphus vitripennis

Spheginobaccha vandoesburgi

Chalarus spuriae

14
100/99

10
100/99

9
92/85

1
28/25 11

86/84

36
100/100

5
59/56

5
38/38

8
94/93

7
42/39

3
76/75 6

98/97

2
36/15

46
100/100 12

99/99 5
84/82

10
11/10 3

25/23

5
5/-5 7

83/83

4
4/-2

22
100/100

6
22/7

3
0/0

19
95/96 12

94/95 30
100/100

7
0/0 11

82/85

2
0/-2 10

16/12 13
75/74

5
0/0

7
0/0

100+
100/100

37
100/100

20
100/98

27
100/100

4
17/5

7
7/5

2
1/-8

3
0/-9

5
0/-8

20
100/100 M

M

M

(part 2)



83

CHAPTER 4 – PHYLOGENETIC RELATIONSHIPS OF MICRODONTINAE

Fig. 3 part 2.  Continued from previous page.
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( Jerry + Pat) sequence resulted in 88 trees of length 
5133. The strict consensus is given in figure 2.

Analysis of combined data

The ‘new technology’ search of the subset of taxa re-
sulted in eight trees of length 9442. The subsequent 
TBR based on these trees found no additional trees. 
The strict consensus is given in figure 3.
The ‘new technology’ search of the total set of taxa 
resulted in 26 trees of length 10.542. These trees 
were found in 10 hits of the shortest length, after a 
search of 70 hours. The strict consensus of the first 
four hits, which resulted in 11 trees, was compared 
with the strict consensus of all 26 trees; they were 
identical, indicating that the last six hits had no ef-
fect anymore on the strict consensus. The subsequent 
TBR branch swapping based on the 26 trees resulted 
in 10.000 most parsimonious trees of length 10541. 
The strict consensus of these was again subjected to 
sectorial searches and tree fusing, which resulted in 
20 trees of length 10.541. The strict consensus of 
those trees is only slightly different from the previous 
strict consensus: only three SPR-moves were required 
to transform the first tree into the other. As a final re-
sult, the strict consensus of these two strict consensus 
trees, which can be regarded as the strict consensus 
of 10.020 trees of length 10.541, is given in figure 4.

Discussion

Evaluation of trees

The two strict consensus trees based on the analyses 
of molecular data only (both with and without the 
COIb) are poorly resolved. The majority of taxa are 
resolved within a large polytomy of Microdontinae, 
within which only a few small clades are recovered. 
Apart from this large polytomy, a few genera are 
placed in separate clades at relatively basal positions: 
Spheginobaccha, Schizoceratomyia, Afromicrodon, 
Mixogaster and a species of Paramicrodon. Overall, 
there does not seem to be much difference between 
the molecular tree with the COIb fragment included 
and the one in which this fragment is excluded. The 
basal part of the tree is more or less the same, while 
several small differences can be seen in the large po-
lytomous part. Remarkably, the ingroup taxon Rho-

palosyrphus spec. nov. (Y1089) is placed among the 
outgroup taxa in both trees. For this taxon, only 
the COIa sequence was obtained. When the COIa 
fragment was analyzed separately, the taxon was not 
placed in the outgroup, but as sister to another Rho-
palosyrphus species. This suggests that the sequence 
is correct, but apparently the lack of additional data 
causes it to get an unexpected position when all frag-
ments are analyzed simultaneously. 
The addition of morphological characters to the data-
set clearly adds a lot of resolution to the trees. Espe-
cially the combined analysis of the subset of 96 taxa 
results in a strict consensus with many resolved clades 
(fig. 3). Part of this resolution is lost again when the 
93 taxa with morphological characters only are inclu-
ded in the analysis (fig. 4). 
Following the reasoning of Kluge (1989) concerning 
the philosophy of total evidence in phylogenetic ana-
lyses, the results obtained from a combination of 
morphological and molecular data are to be prefer-
red over those obtained from either morphological or 
molecular data only. The present paper presents the 
results of two of such combined analyses: one inclu-
ding only the 96 taxa for which both types of data 
are available (subset), and one in which 93 additional 
taxa are included for which only morphological cha-
racters are available (total set). As the results of both 
analyses are incongruent at many points, this raises 
the issue of which results are to be regarded as most 
reliable. This issue is linked directly to the problem 
of missing data, because the combined matrix of the 
total set of taxa contains many empty cells (Table 2). 
Opposing forces need to be considered concerning 
the effect of missing data. Although adding taxa with 
many missing characters can potentially improve the 
quality of the phylogenetic analyses, e.g. by reducing 
the effect of long branch attraction (Wiens 2006), it 
can also decrease the performance of the analyses in 
terms of accuracy, error and branch supports (Prevos-
ti & Chemisquy 2010). This effect can be mitigated 
by including more characters to the dataset, whereas 
adding more taxa with missing characters is not be-
neficial or even detrimental. The positive effect of 
adding more characters appears not to be negatively 
affected by the presence of missing entries. Prevosti & 
Chemisquy (2010) argue that this implies that there 
is no reason to exclude characters just because many 
of their cells are empty. As long as the overall num-
ber of characters in a taxon is high enough, the infer-
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red phylogeny will be accurate. This is corroborated 
by the results of other authors (Wiens 2006, Wiens 
& Moen 2008, Wolsan & Sato 2010). The question 
as to how many characters are enough is not easy to 
answer, as this relates to the amount on contradictory 
information (homoplasy) in the dataset, as well as to 
issues like branch lengths, taxon sampling and the dis-
tribution pattern of missing entries in the datamatrix. 
Even with the results of several simulations and em-
pirical studies available, there is no recipe for deter-
mining the effect of missing data for a single dataset. 
In the simulations of Wiens (2006), datasets of 200 
characters reached an accuracy of well over 90% for 
missing data proportion up to 50%, while for datasets 
of 2000 characters this level of accuracy was reached 
even with more than 80% of missing data. Prevosti 
& Chemisquy (2010) analyzed a large number of real 
(not simulated) morphological datasets, in which the 
total percentage of missing data (empty cells) varied 
between 0 and 54%. For datasets with around 15% 
of missing data, they found median accuracy va-
lues between 0.28 and 0.50 and median error rates 
around 0.50. In contrast, Wolsan & Sato (2010) re-
ported very good cladistic performance of a dataset 
with 62.7% missing entries, and showed that even 
taxa with around 95% missing entries were accura-
tely placed. However, their dataset contained almost 
28.000 characters; a tenfold of the number in the pre-
sent dataset. 
In the present total set of 189 taxa, 93 taxa are inclu-
ded for which only the 174 morphological characters 
are present, while all 2808 molecular characters are 
missing. Considering the results of the studies men-
tioned above, it seems that the results for the total 
set of taxa cannot be considered reliable. Therefore, 
in the following discussion of implications for the 
classification of Microdontinae, the tree based on the 
combined analysis of the subset of 96 taxa (fig. 3) is 
our preferred tree. The results of the combined analy-
sis of the total set of 189 taxa (fig. 4) will only be con-
sidered as far as they do not contradict the results of 

the subset. The results of the morphological analysis 
(Chapter 3) will also be taken into account.

Implications for the classification of Microdonti-
nae

Family groups
At present, only two tribes are recognized within 
the Microdontinae: Spheginobacchini Thompson, 
1972, which includes only the genus Spheginobac-
cha, and Microdontini Rondani, 1845, including all 
remaining taxa (Cheng & Thompson 2008). The only 
other proposed family group names are Masarygidae 
of Brèthes (1908) and Ceratophyini of Hull (1949), 
which have not been used by other authors since 
their introduction. Hull (1949) wrote: “Perhaps two 
tribes should be recognized. The first would be the 
Microdonini distinguished by (...), and secondly the 
Ceratophyani (...).” Sabrosky (1999) argued that this 
name is unavailable, as it was only casually mentioned 
within in a short diagnosis of a group, not as a formal 
proposal of a new group name. However, this can be 
regarded as a “conditional proposal” of a new name. 
As this conditionally proposed name was published 
before 1961, there seems to be no formal reason for 
considering this name unavailable (ICZN 1999: art. 
15.1).
Recognition of additional tribes could be useful for 
making the subfamily more ‘manageable’ in taxono-
mic, biogeographic and evolutionary studies and dis-
cussions. However, for introducing new family group 
names (or changing the status of available ones), we 
feel that the clades under consideration should be suf-
ficiently “reliable”. In the present study, the Bremer 
support and jackknife values in fig. 3 could be used 
as an aid in assessing the reliability of clades. For most 
of the larger clades, these values are low. The smaller 
clades for which these values are higher, are here – 
subjectively – considered to be of generic level, rather 
than of family-group level. Because of this, and also 

Table 2. Percentages of missing data for different partitions of the data analyzed in the present paper.

Subset of 96 taxa Total set of 189 taxa
Morphological characters only (n = 174) 4% 4%
Molecular characters only (n = 2808) 26% n.a.
Morphological and molecular characters 
combined (n = 2982)

25% 59%
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because of the considerations on missing data as dis-
cussed in the previous paragraph, the introduction of 
new tribal names or reinstating available family group 
names based on the present phylogenetic hypotheses 
is deemed unjustified. 
An exception could be the genus Mixogaster, which 
was recovered as sister to all Microdontinae excluding 
Spheginobaccha with high Bremer support (27) and 
jackknife value (100). Based on morphology, this ge-
nus is also considered to be aberrant enough from the 
other ingroup taxa to warrant tribal rank. However, 
as noted in Chapter 3 (see also introduction), this 
genus has certain possibly important characters in 
common with the genera Aristosyrphus and Eurypte-
rosyrphus, which are not represented in the molecular 
dataset. Before assigning tribal rank to any of these 
groups, their phylogenetic affinities should be reliably 
resolved.
Having said this, several of the smaller clades in the 
presented phylogenies have relatively high support 
and stability values. Some of these indicate affinities 
between species and genus groups which have not be-
fore been suggested previously. These groupings will 
be discussed in a separate paper (Chapter 5), which 
gives descriptions and diagnoses for all genus group 
names, whether or not previously recognized. 

Spheginobaccha
The position of Spheginobaccha as a sister to all other 
Microdontinae was recovered in all analyses: based 
on morphology only (Chapter 3), based on DNA 
only and based on the combined data, both for the 
subset and the total set of taxa. Support values are 
high (fig. 3). These results thus corroborate  the re-
sults of Ståhls et al. (2003). While their ingroup only 
included Oriental species of this genus, the present 
analyses also include representatives of the two Af-
rican species groups. The African taxa are placed as 
sisters to the Oriental taxa.

Microdon
Over the years, the genus Microdon has served as 
a ‘dustbin’ for taxa of which taxonomical affinities 
were not clear enough to place them into any of the 
other available genus group names. Even though se-
veral taxa were placed into other genera, subsequent 
authors have often considered those genera as subge-
nera of Microdon. The present analyses contain many 
species of Microdon s.l. As can be seen in fig. 3 (taxa 

previously classified in Microdon, or representatives 
of these taxa, are indicated with an ‘M’) this group is 
polyphyletic and its representatives are scattered over 
different parts of the tree. Although the exact posi-
tions of these groups may change in future analyses 
when more taxa and more molecular data are inclu-
ded, these results provide sufficient basis for subdi-
viding Microdon into different monophyletic units. 
This will be done in Chapter 5, in which discussions 
and morphological diagnoses will be included and 
new generic names will be introduced. The names 
proposed in that paper are already used in the present 
paper, but not for nomenclatorial purposes (see dis-
claimer in Material and Methods). 

Remaining genera
Genus group names are available for most of the cla-
des recovered by the analyses, although for many of 
the included species these names have not previously 
been used in the present combinations. Besides, some 
species are placed in new genera. Discussions about 
the applications of existing genus group names, the 
introduction of new genus group names, and the 
classification of species into the genus groups, are the 
subjects of a separate paper, published more or less in 
parallel (Chapter 5). 

Family affairs

The present results support the sister-group relati-
onship of Microdontinae and other Syrphidae, as 
originally proposed by Thompson (1969) and sub-
sequently by other authors (Hippa & Ståhls 2005, 
Skevington & Yeates 2000, Ståhls et al. 2003, Rothe-
ray & Gilbert 2008). Our results are based on a wide 
representation of taxa: representatives of all valid ge-
nus groups are included, as well as taxa from all major 
biogeographic regions. In addition, both character 
sets (molecular and morphological) are larger than 
in previous analyses. Therefore, the results can be re-
garded as additional support for this sister-group re-
lationship. The results can not, however, be regarded 
as compelling evidence. The setup of the analysis was 
not designed to test this relationship explicitly. For 
that test, a much larger set of Syrphidae taxa would be 
necessary. Preferably, also more taxa of related groups 
of ‘lower’ Cyclorrhapha should be included, such as 
Phoridae and Platypezidae. 
According to Speight (2010), the presumed sister-
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Fig. 4. Combined analysis (DNA and morphology), total set of 189 taxa: strict consensus of 10.020 trees of length 
10.541. Continued on next page.
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Fig. 4 part 2. Continued from previous page.
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Fig. 4 part 3. Continued from previous page.
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group relationship between Microdontinae and 
other Syrphidae “more-or-less reduces the issue of the 
correct placement of Microdon and allied genera to 
a matter of personal preference”. We advocate, howe-
ver, that in this case, in which available evidence does 
not demand the classification to be changed, it is pre-
ferable to adopt a conservative attitude.
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Appendix 1: DNA voucher specimens

Morphology: 1 = same specimen used for morphological matrix (Chapter 3); 2 = different specimen of same 
species used for morphological matrix; 3 = specimen of closely related species used for morphological matrix.
MZH_code: voucher code Finnish Museum of Natural History, Helsinki.
COL: The following acronyms are used to indicate entomological collections: CNC = Canadian National Col-
lection, Ottawa; INBIO = Instituto Nacional de Biodiversidad, Santo Domingo, Costa Rica; MZH = Finnish 
Museum of Natural History, Helsinki; RMNH = Netherlands Centre for Biodiversity Naturalis, Leiden.
The last five columns indicate which sequences were included in the molecular data matrix.

M
orphology

M
Z

H
_code

Taxon Country

SEX LEG COL

C
O

I_B
eetH

C
O

C
O

I_JP_edited2

18S_1Fb7

18S_2Fb29

28S_F23D
R

2 Y1106 Afromicrodon madecassa (Keiser, 
1971) Madagascar ♂ Mengual, X. MZH Y Y

2 Y0379 Afromicrodon madecassa (Keiser, 
1971) Madagascar ♂ Mengual, X. MZH Y Y

1 Y0778 Archimicrodon clatratus (Keiser, 
1971) Madagascar ♀ Mengual, X. MZH Y Y

1 Y1092 Archimicrodon simplex (Shiraki, 
1930) China ♂ Blank, Liston, 

Taeger RMNH Y Y Y Y

1 Y0378 Archimicrodon (Hovamicrodon) 
spec. Madagascar ♀ Mengual, X. MZH Y Y Y

1 Y0803 Carreramyia tigrina Reemer Peru ♀ Smit, J.T. RMNH Y Y Y
1 Y1008 Ceratophya argentinensis Reemer Argentina ♀ Ekrem, T. RMNH Y Y Y Y

2 Y0800 Chalarus spurius (Fallén, 1816) Finland Ståhls,, G. MZH Y Y Y Y Y

2 Y0688 Eristalis tenax (Linnaeus, 1758) Canada Steenis, W. van MZH Y Y Y Y Y
1 Y0907 Heliodon chapini (Hull, 1941) Thailand ♀ Patikhom Tumtip MZH Y Y Y Y
1 Y1074 Heliodon doris Reemer Thailand ♂ Bunlu Sapsiri RMNH Y Y Y
1 Y1062 Heliodon elisabethanna Reemer Thailand ♀ Y Y Y Y

2 Y0906 Heliodon gloriosus (Hull, 1941) Thailand ♀ Patikhom Tumtip MZH Y Y Y Y

1 Y1072 Heliodon tiber Reemer Vietnam ♀
C. van 
Achterberg & R. 
de Vries

RMNH Y Y Y Y

1 Y0801 Hypselosyrphus amazonicus 
Reemer Peru ♂ Smit, J.T. RMNH Y Y Y Y Y

1 Y1078 Hypselosyrphus maurus Reemer Peru ♀ Smit, J.T. RMNH Y Y Y

1 Y0825 Indascia cf. brachystoma 
(Wiedemann, 1824) Thailand ♂ Janteab, L. RMNH Y Y

1 Y0909 Indascia gigantica Reemer Thailand ♂ Y. Areeluck RMNH Y Y Y

1 Y1100 Indascia spathulata Reemer Vietnam ♂ Achterberg, C. 
van & R. de Vries RMNH Y Y Y

1 Y0806 Laetodon geijskesi (van 
Doesburg, 1966) Peru ♀ Mengual, X. MZH Y Y Y Y Y
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1 Y0802 Masarygus palmipalpus Reemer, 
spec. nov. Peru ♂ Smit, J.T. RMNH Y Y

2 Y0594 Melanostoma scalare (Fabricius, 
1794) Italy Kehlmaier, C. MZH Y Y Y Y Y

2 Y1324 Menidon falcatus (Williston, 
1887) Costa Rica ♂ Reemer, M. RMNH Y Y Y Y Y

2 Y1325 Menidon falcatus (Williston, 
1887) Peru ♀ Smit, J.T. RMNH Y Y Y Y

2 Y0690 Merodon equestris Meigen, 1822 Finland Meikäläinen, M.. MZH Y Y Y Y Y

1 Y1086 Metadon achterbergi Reemer Vietnam ♀ Achterberg, C. 
van & R. de Vries RMNH Y Y Y Y

2 Y0780 Metadon auroscutatus (Curran, 
1928) Thailand MZH Y Y

2 Y0905 Metadon auroscutatus (Curran, 
1928) Thailand ♂ Budsawong MZH Y Y Y Y

1 Y1082 Metadon auroscutatus (Curran, 
1928) Thailand ♀ Patikom Tumtip RMNH Y Y Y Y

1 Y1083 Metadon auroscutatus var. 
variventris (Curran, 1928) Thailand ♂

Tawit Jaruphan 
& Orawan 
Budsawong

RMNH Y Y

1 Y1084 Metadon auroscutatus var. 
variventris (Curran, 1928) Thailand ♀

Tawit Jaruphan 
& Orawan 
Budsawong

RMNH Y Y Y Y

1 Y1094 Metadon bifasciatus Matsumura, 
1916 China ♂ Blank, Liston, 

Taeger RMNH Y Y

1 Y1085 Metadon robinsoni (Curran, 
1928) Vietnam ♀ Achterberg, C. 

van & R. de Vries RMNH Y Y Y

1 Y1077 Microdon aff. virgo Curran, 1940 Peru ♀ Smit, J.T. RMNH Y

1 Y0910 Microdon cf. sumatranus van der 
Wulp, 1892 Thailand ♂

Somchai 
Chachumnan & 
Saink Singtong

RMNH Y Y Y Y

1 Y1010 Microdon devius (Linnaeus, 
1761) Netherlands ♂ Smit, J.T. MZH Y Y Y Y Y

1 Y1096 Microdon hauseri Reemer China ♂ 28-12-2009 RMNH Y Y Y Y

1 Y1070 Microdon japonicus Yano, 1915 Japan ♂ Kawashima, 
Itsuro RMNH Y Y

1 Y1071 Microdon macrocerus Hironaga 
& Maruyama, 2004 Japan ♂ Komatsu Takashi RMNH Y Y Y

1 Y1323 Microdon major Andries, 1912 Netherlands ♂ Reemer, M. RMNH Y Y Y Y Y

1 Y1093 Microdon mandarinus Reemer China ♂ Blank, Liston, 
Taeger RMNH Y Y Y Y

1 Y1069 Microdon murayamai Hironaga 
& Maruyama, 2004 Japan ♂ Komatsu Takashi RMNH Y Y

2 Y0150 Microdon mutabilis Linnaeus, 
1758

United 
Kingdom Hewitt, S.M. MZH Y Y Y

1 S0298 Microdon NA03-02 Thompson, 
in prep. USA ♀ Hauser, M. MZH Y Y Y Y Y

2 Y1058 Microdon ocellaris Curran, 1924 USA ♂ Cumming, J.M. 
& J. Skevington CNC Y Y

1 Y1320 Microdon pictipennis Macquart, 
1850 Australia ♀ Winterton, S.L. RMNH Y Y Y Y Y

1 Y1321 Microdon rieki Paramonov, 1957 Australia ♀ Winterton, S.L. RMNH Y Y Y Y Y
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2 Y0577 Microdon rufiventris (Rondani, 
1848) Surinam ♂ Reemer, M. MZH Y Y Y Y Y

2 Y1059 Microdon tristis Loew, 1864 Canada ♀ Skevington, J. CNC Y Y

2 S0292 Microdon violaceus Macquart, 
1842 Chile Irwin, M.E. & 

E.I. Schlinger MZH Y Y Y Y Y

1 Y1095 Microdon yunnanensis Reemer China ♂ Blank, Liston, 
Taeger RMNH Y Y

2 Y1079 Microdon (Chymophila) aff. 
aurifex Wiedemann, 1830

Fench 
Guyana ♀ Cerda, J.A. RMNH Y Y Y

1 Y1064 Microdon (Chymophila) 
stilboides Walker, 1849 Thailand ♀ Pongpitak & 

Sathit RMNH Y Y Y Y

1 Y0369 Mitidon cf. mus (Curran, 1936) Colombia ♂ Mengual, X. MZH Y Y Y

1 S0264 Mitidon CR_99 Thompson in 
prep. Costa Rica ♂ Marshall, S.A. INBIO Y Y Y Y Y

2 Y1065 Mixogaster spec. nov.   USA ♂ Godwin, W. CNC Y Y Y

2 Y0578 Neoascia tenur (Harris, 1780) Finland Haarto, A. MZH Y Y Y Y Y

2 Y0065 Nephrocerus lapponicus 
Zetterstedt, 1838 Finland Jakovlev, J. MZH Y Y Y Y Y

1 S0356 Omegasyrphus pallipennis 
(Curran, 1925) USA ♀ Hauser, M. MZH Y Y Y

2 Y1314 Paragodon paragoides 
Thompson, 1969 Costa Rica ♀ Porras, W. & A. 

Rojas RMNH Y Y Y Y

1 Y0781 Paramicrodon aff. nigripennis 
(Sack, 1922) Thailand ♂ Katae Sanog & 

Buakaw Adnafai MZH Y Y

2 Y1063 Paramicrodon aff. nigripennis 
(Sack, 1922) Thailand ♀ Katae Sanog & 

Buakaw Adnafai RMNH Y Y

2 Y0804 Paramicrodon cf. flukei Curran, 
1936 Peru ♀ Smit, J.T. RMNH Y Y Y

1 Y1102 Paramicrodon spec. Bolivia Bolivia ♂ Cline, A.R. RMNH Y

2 Y1057 Paramixogaster cf. variegatus 
(Walker, 1852) Australia ♂ Skevington, J. & 

M. Mathieson CNC Y Y Y Y Y

1 Y1322 Paramixogaster spec. Austr. Australia ♀ Monteith & 
Turco RMNH Y Y Y Y

1 Y0721 Paramixogaster vespiformis (de 
Meijere, 1908) Vietnam ♂

C. van 
Achterberg & R. 
de Vries

RMNH Y Y Y Y

1 Y1104 Parocyptamus spec. Thailand ♂ Stuke, J.-H. RMNH Y Y

2 Y0578 Peradon bidens (Fabricius, 1805) Surinam ♂ Reemer, M. MZH Y Y Y Y Y

1 Y1317 Peradon chrysopygus (Giglio-Tos, 
1892) Costa Rica ♂ Reemer, M. RMNH Y Y Y Y Y

2 Y0579 Peradon luridescens (Walker, 
1857) Surinam ♂ Reemer, M. MZH Y Y Y Y Y

2 Y1080 Peradon trivittatum Curran, 
1925

French 
Guyana ♀ Cerda, J.A. RMNH Y Y

2 Y1045 Pipiza noctiluca (Linnaeus, 
1758) Sweden Johansson, N. MZH Y Y Y Y Y

1 Y0805 Piruwa phaecada Reemer Peru ♀ Smit, J.T. RMNH Y Y Y Y Y
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1 Y1319 Pseudomicrodon polistoides 
Reemer Peru ♀ Smit, J.T. RMNH Y Y Y Y Y

1 Y1318 Pseudomicrodon smiti Reemer Peru ♂ Smit, J.T. RMNH Y Y Y Y

1 Y1315 Rhoga CR1 Costa Rica ♀ Reemer, M. INBIO Y Y Y Y
1 Y1316 Rhoga CR2 Costa Rica ♀ Reemer, M. INBIO Y Y Y Y

1 Y1089 Rhopalosyrphus ecuadoriensis 
Reemer Ecuador ♂ Tishechkin, A. RMNH Y

2 Y1060 Rhopalosyrphus ramulorum 
Weems & Deyrup, 2003 USA ♂ Skevington, J. CNC Y Y Y Y

1 Y1066 Rhopalosyrphus robustus Reemer French 
Guyana ♀ Morvan, O. CNC Y Y Y

2 Y0718 Schizoceratomyia flavipes 
Carrera, Lopes & Lane, 1947 Surinam ♂ Gangadin, A. & 

K.-D.B. Dijkstra MZH Y Y Y Y Y

2 Y0719 Schizoceratomyia flavipes 
Carrera, Lopes & Lane, 1947 Surinam ♂ Gangadin, A. & 

K.-D.B. Dijkstra MZH Y Y Y Y

1 Y1087 Spheginobaccha aethusa (Walker, 
1849) Vietnam ♀ Achterberg, C. 

van & R. de Vries RMNH Y Y Y Y

2 S0155 Spheginobaccha macropoda 
(Bigot, 1883) Malaysia Quicke, D. & N. 

Laurenne MZH Y Y Y Y

1 Y1091 Spheginobaccha melancholica 
Hull, 1937 Vietnam ♂ Achterberg, C. 

van & R. de Vries RMNH Y Y Y Y

2 G0423 Spheginobaccha vandoesburgi 
Thompson, 1974 Malaysia Quicke, D. & N. 

Laurenne MZH Y Y Y Y

2 Y0581 Stipomorpha guianica (Curran, 
1925) Surinam ♂ Reemer, M. MZH Y Y Y Y

1 Y1088 Stipomorpha inarmata (Curran, 
1925)

French 
Guyana ♂ Keijo Sarv RMNH Y

2 Y1090 Stipomorpha lacteipennis 
Shannon, 1927 Bolivia ♂ Cline, A.R. RMNH Y Y Y Y

2 Y1009 Stipomorpha lanei (Curran, 
1936) Peru ♀ Faasen, T. RMNH Y Y Y

2 Y0580 Stipomorpha mackiei (Curran, 
1940) Surinam ♀ Reemer, M. MZH Y Y Y

2 Y1061 Stipomorpha tenuicauda 
(Curran, 1925)

French 
Guyana ♂ Morvan, O. CNC Y Y Y

2 Y0381 Surimyia rolanderi Reemer, 
2008 Surinam ♂ Reemer, M. MZH Y Y Y Y

2 S0053 Syrphus vitripennis Meigen, 
1822 Greece Rojo, S. & C. 

Perez MZH Y Y Y Y Y

2 Y0030 Xylota segnis (Linnaeus, 1758) Spain Ståhls. G. MZH Y Y Y Y Y
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