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Chapter 10

Conclusions

We have introduced Exceptional Model Mining (EMM), a general frame-
work to find subgroups of the data where something exceptional, something
interesting is going on. These subgroups are not just any subset of the data:
they must be coherent records in the dataset, covered by a succinct descrip-
tion in terms of conditions on attributes within the dataset. The attributes
that can be used for such a description are strictly separated from the tar-
get attributes, which are used to evaluate the subgroups on. Hence, EMM
can be seen as an extension of Subgroup Discovery (SD), incorporating a
more complex target concept.

In traditional Subgroup Discovery the distribution of a single attribute
is the target concept. In Exceptional Model Mining the target concept
is a model over multiple attributes. We have discussed several model
classes: correlation (Chapter 4), classification (Chapter 5), Bayesian net-
work (Chapter 6), and linear regression models (Chapter 7). For each such
model class we have developed quality measures: functions that extract
relevant model characteristics, and from those characteristics compute a
number quantifying how exceptional a description is. A description is con-
sidered exceptional when the model learned from the data covered by the
description differs substantially, either from the model learned from the
data belonging to its complement, or from the model learned from the
overall dataset (for more on this choice, see Section 3.2.2). An Exceptional
Model Mining run results in a succinct description of a subgroup, where for
instance two targets are unusually correlated, or where a classifier performs
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140 CHAPTER 10. CONCLUSIONS

exceptionally good or bad, or where the conditional dependence relations
between several targets deviate from the norm.

We have discussed experimental results for each of the introduced model
classes. Among the most striking results are the coherent regions within
Europe found on the Mammals data (see Section 6.2.2) with the Bayesian
Network model, where animals depend on each other in a substantially
different way, and the strong real-life evidence for the Giffen effect (see
Section 7.2.2) found with the General Linear Regression model, where poor
households in the Chinese provice Hunan display a positive price elasticity
of demand for rice.

Since Exceptional Model Mining strives to find interesting subsets of the
dataset, the search space is potentially exponentially large in the number
of records in the dataset at hand. This leaves us exposed to the multiple
comparisons problem: we are considering a large number of candidates for
what essentially amounts to a statistical hypothesis, hence it is likely that
by pure random effects, we will unjustly designate some of these candidates
as passing the test. Such candidates are called false discoveries. We have
demonstrated in Chapter 8 how we can turn the problematic existence of
false discoveries into a valuable tool that allows us to solve multiple prac-
tical problems in Subgroup Discovery and Exceptional Model Mining. We
employ a swap randomization technique to create a search space that is
identical to the original search space, but with all connections with and
between the targets severed. Running the original SD/EMM algorithm on
this search space results in descriptions that can be seen as false discover-
ies. We build a global model, the Distribution of False Discoveries (DFD),
over the qualities of these false discoveries. This enables us to compute
a p-value, corresponding to the null hypothesis that a found description
is generated by the DFD. Refuting this null hypothesis for a description
we found through SD/EMM, implies that this description is unlikely to be
a false discovery. Beyond assessing the significance of descriptions, DFD
modeling can deliver a quantitative assessment which quality measures are
better than others in distinguishing real from false discoveries, and allows
us to compute a minimum threshold for each quality measure, that a de-
scription must exceed to be considered reliably exceptional.
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Having introduced all these instances with their model classes and quality
measures, a natural question arising is why Exceptional Model Mining is
desirable. We have three answers to that question. For starters, the trivial
reason to perform EMM is that we learn things about our data. Extracting
pieces of information from a raw dataset is the core business of data mining,
and it should not be thought of lightly if a method does merely that. As
we have seen in the experimental sections of Chapters 4—7, each description
one can find with EMM is such a coherent nugget of information. Those
real-life nuggets are far more actionable for a domain expert than the raw
data could ever be. Given that EMM is able to capture a richer concept of
“interestingness” than conventional Subgroup Discovery, EMM can retrieve
descriptions containing more information out of the data than was possible
beforehand, as long as the domain expert and the data miner together can
formulate a model for the particular concept of interestingness that they
strive to find.

Beyond the trivial reason, EMM is a great tool for metalearning. For ex-
ample, in Chapter 5 we introduced an EMM instance with a classification
model as target concept. Hence this instance finds descriptions for which
the classification is performed in a substantially different manner than over-
all, which could be interesting to the researcher. Additionally, one could
mine explicitly on a metadataset crafted from the results of a classification
run. Suppose one is interested in predicting a numeric variable, for in-
stance the number of days a court case will take to resolve. Having trained
and tested a classifier, we end up with a metadataset of court cases, each
with the real number of days and the predicted number of days. We can
now use these real and predicted numbers as the two targets in an EMM
run, for instance using the correlation model from Chapter 4. This EMM
run will result in coherent subsets of the data for which the predictions of
our classifier are particularly good or bad, which is potentially very use-
ful information for further development or finetuning of the classification
algorithm.

Lastly, the descriptions found though EMM may be directly applicable in a
setting that is less exploratory and more oriented towards a concrete goal.
The EMM instance with a Bayesian network model as target concept, which
we discussed in Chapter 6, is a good example. While the original goal of
the EMM instance is simply to find descriptions for which the conditional
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dependence relations between the targets are unusual, the descriptions have
demonstrated their capability to improve multi-label SVM classifiers in
Chapter 9, though it does not work as well for decision trees. The main idea
is that every description can be seen as a binary attribute of the dataset,
indicating whether the record is covered by the description. These binary
attributes highlight regions in the dataset where the labels interact in an
unusual manner, so employing them in the learning phase may improve
a multi-label classifier. Even though predictiveness was not considered at
all when the descriptions were found, the classifier performance of SVM
methods improved when these additional attributes were available.

As was shortly indicated in Section 3.2.2, efficiency can be an issue when
running Exceptional Model Mining. Even with relatively modest param-
eter settings of the beam search and a reasonably-sized dataset, it is not
uncommon to consider a number of descriptions that runs in the hundreds
of thousands. For each of these descriptions, a model most be learned
from data, and the dissimilarity of two models must be assessed to assign
a quality to the subgroup. If either learning the model or assessing the dis-
similarity is computationally too expensive, we end up with an intractable
algorithm.

When the chosen model class is not too complex (e.g. correlation, the alter-
native simple linear regression model from Section 7.4, classification), the
problem is scarcely more serious than for traditional Subgroup Discovery.
For the general linear regression model efficient fitting algorithms exist, and
based on upper bounds on eigenvalues and error terms, there is a scheme
to prune descriptions on which it is relatively difficult to learn the model
[23]. For the Bayesian network model however, the outlook is much bleaker.
Without assumptions or heuristics, learning a Bayesian network from data
is exponential in the number of vertices in the network [47]. Even with
strong restrictions on the network structure, the problem remains super-
linear [34]. Hence, for each of the hundreds of thousands of descriptions we
learn a model at a high computational cost. We think that the Bayesian
network model complexity is on the borderline of what can reasonably be
incorporated into the Exceptional Model Mining framework.
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To alleviate the efficiency issue, there are a few straightforward steps a
researcher can take. When a parallel single-pass algorithm with sublinear
memory requirements exists to learn the model from data, we can use the
GP-Growth algorithm [72] to prune the search space. Also, choosing to
compare the model for a description to the model for the whole dataset,
rather than the model for the complement of the description, divides the
number of models to be learned by two, as discussed in Section 3.2.2. If all
else fails, since we usually resort to heuristic search in EMM, we can set the
parameters bounding the search (such as the beam width w discussed in
Section 3.1) tighter to reduce the number of descriptions to be evaluated,
at the cost of an increased chance that exceptional descriptions remain
undiscovered.

Exceptional Model Mining is in many respects a white box system. When
employing an EMM instance on a particular domain, it is fairly simple
to convey to a domain expert what kind of exceptionality is being sought
after (by means of agreeing on the model class). The resulting descriptions
are conjunctions of a few conditions on single attributes, which should be
simple to interpret for the expert. Depending on the model class, a domain
expert may also be able to properly investigate the discrepancies in fitted
models. For instance, in the case of a correlation or regression model,
this may enrich the expert’s understanding of the result, but in the case
of a Bayesian network fitted on a hundred animals it probably will not.
We expect that deploying existing EMM instances in, or developing new
EMM instances for, other fields, could lead to many fruitful collaborations
between data miners and experts in those fields.






