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Chapter 9

Multi-label LeGo – Enhancing
Multi-label Classifiers with Local
Patterns

Contrary to ordinary classification, in multi-label classification (MLC) one
can assign more than one class label to each record [106, 107]. For instance,
when we have the earth’s continents as classes, a news article about the
March 2013 election of Pope Francis, who was born in Argentina, could
be labeled with the Europe and South America classes. Originally, the
main motivation for the multi-label approach came from the fields of med-
ical diagnosis and text categorization, but nowadays multi-label methods
are required by applications as diverse as semantic scene classification [6],
protein function classification [28], and music categorization [103].

Many approaches to MLC take a decompositive approach, i.e. they de-
compose the MLC problem into a series of ordinary classification prob-
lems. The formulation of these problems often ignores interdependencies
between labels, suggesting that the predictive performance may improve if
label dependencies are taken into account. When, for instance, one consid-
ers a dataset where each label details the presence or absence of one kind
of species in a certain region, the food chains between the species cause
a plethora of strong correlations between labels. But interplay between
species is more subtle than just correlations between pairs of species, as
we have for instance seen in the Pisaster example of Chapter 2, where
the dependence between Haliclona and Anisodoris is conditional on the
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116 CHAPTER 9. MULTI-LABEL LEGO

presence of Pisaster. The ability to consider such interplay is an essential
element of good multi-label classifiers.

In this chapter we investigate incorporating locally exceptional interactions
between labels in MLC, as an instance of the LeGo framework [37, 57]. In
this framework, the KDD process is split up into several phases. First, local
models are found, each representing only part of the data. Then, a subset
of these models is selected. Finally, this subset is employed in constructing
a global model. The crux is that straightforward classification methods can
be used for building a global classifier, if the locally exceptional interactions
between labels are represented by attributes constructed from descriptions
found in the local modeling phase.

The descriptions representing these locally exceptional interactions are
found with the EMM instance from Chapter 6: modeling the conditional
dependencies between the labels by a Bayesian network, and striving to
find descriptions for which the learned network has a substantially different
structure than the network learned on the whole dataset. These descrip-
tions can each be represented by a binary attribute of the data. At the end
of this chapter we demonstrate that the integration of these description-
based attributes into the classification process improves classifier perfor-
mance. We also investigate whether the newly generated binary attributes
are expressive enough to replace the original descriptive attributes, while
maintaining classifier performance and increasing efficiency.

9.1 The LeGo Framework

As mentioned, the work in this chapter relies heavily on the LeGo frame-
work [37, 57]. This framework assumes that the induction process is not
executed by running a single learning algorithm, but rather consists of
consecutive phases, as illustrated in Figure 9.1. In the first phase, a Lo-
cal Pattern Mining algorithm is employed in order to obtain a number of
informative descriptions, which can serve as attributes to be used in the
subsequent phases. These descriptions can be considered partial solutions
to local complexities in the data. In the second and third phase, the descrip-
tions are filtered to reduce redundancy, and the selected descriptions are
combined in a final global model, which is the outcome of the process.
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Figure 9.1: The LeGo framework.

The idea of the LeGo framework is that, instead of attacking the induction
task in the original representation, we transform it by an automated process
to a representation that already resolves a number of complexities in the
original task. Then, the new representation can be approached with a
standard Global Modeling technique, such as Support Vector Machines
(SVMs) with linear kernels, since the potentially hard aspects of the original
representation have been accounted for in the new representation by the
descriptions. Generally, for this automated process, any of the existing
Local Pattern Mining algorithms can be employed, thus benefiting from
the wealth of LPM algorithms that has grown over the last decade.

The main reason to invest the additional computational cost of a LeGo
approach over a single-step algorithm, is the expected increase in accuracy
of the final model, caused by the higher level of exploration involved in
the initial Local Pattern Mining phase. Typically, Global Modeling tech-
niques employ some form of greedy search, and in complex tasks, subtle
interactions between attributes may be overlooked as a result of this. By
contrast, in most Local Pattern Mining methods, extensive consideration
of combinations of attributes is quite common. When employing such ex-
ploratory algorithms as a form of preprocessing, one can think of the result
(the descriptions) as partial solutions to local complexities in the data. The
descriptions, which can be interpreted as new virtual attributes, still need
to be combined into a global model, but potentially hard aspects of the
original representation will have been accounted for. As a result, straight-
forward methods such as Support Vector Machines with linear kernels can
be used in the Global Modeling phase.

The LeGo approach has shown its value in a range of settings [37], particu-
larly regular binary classification [59, 100], but we have reasons for choosing
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this approach in the context of multi-label classification (MLC). It is of-
ten mentioned that in MLC, one needs to consider potential interactions
between the labels, and that simultaneous classification of the labels may
benefit from knowledge about such interactions [11, 87, 92, 118].

In the remainder of this chapter, we will identify the targets in EMM with
the labels in MLC, hence the terms the labels and the targets refer to
the exact same thing. Similarly, to adhere to the usual terminology in
classification, we will let the attributes refer to any attribute of the dataset
which can be used by the classifier to define its decision boundary on.
Hence, an attribute can both be a descriptive attribute from the original
dataset, or a constructed attribute built from a description found in the
Local Pattern Mining phase. Finally, since we employ commonly known
feature selection methods in the Pattern Subset Discovery phase, we will
occasionally refer to attributes as features. Neither the term “attribute”
nor the term “feature” can ever refer to a target/label.

9.2 Multi-label Classification

The task of Multi-Label Classification (MLC) is, given a training set E ⊆
Ω, to learn a function f : (a1, . . . , ak) → (`1, . . . , `m) which predicts the
labels for a given record. Many multi-label learning techniques reduce
this problem to ordinary classification, where for a given record exactly
one class is predicted, rather than multiple labels. We will use each of
these techniques for decomposing a multi-label problem into an ordinary
classification problem in the third LeGo phase (cf. Section 9.3.3).

The widely used binary relevance (BR) [106, 107] approach tackles a multi-
label problem by learning a separate classifier fi : (a1, . . . , ak)→ `i for each
label `i, as illustrated in Figure 9.2b. At query time, each binary classifier
predicts whether its class is relevant for the query record or not, producing
a set of relevant labels. Obviously, BR ignores interdependencies between
classes since it learns the relevance of each class independently.

One could address this problem with classifier chains (CC) [92], which
can model label dependencies since they stack the model outputs: the
prediction of the model for label `i depends on the predictions for labels
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(a) Input training set.
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(b) Binary Relevance (BR) decomposition.
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a11, . . . , a

1
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1
k y1
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... . . . ...

...
(c) Multiclass (MC) decomposi-
tion (only for feature selection).

Attributes Class ∈ 2L
a11, . . . , a1k Y1
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(d) Label Powerset (LP) decom-
position.

Figure 9.2: Decomposition of multi-label training sets into binary (BR) or
multiclass problems (MC, LP). Here, Y i = {yi1, . . . , y

i
|Yi|

| yij ∈ L} denotes
the assigned labels {`j| `

i
j = 1} to record ri. MC replicates each record |Y i|

times, once with each assigned label. In LP, the predicted label set is from
the set {Y i| i = 1, . . . ,m} ⊆ 2L of label sets seen in the training data.

`1, . . . , `i−1. Hence, CC captures dependencies of labels on multiple other
labels, but the dependencies are one-directional: if label `i depends on the
prediction for label `j, then `j does not depend on the prediction for `i.

An alternative approach is calibrated label ranking (CLR) [36], where the
key idea is to learn one classifier for each binary comparison of labels. CLR
learns binary classifiers fij : (a1, . . . , ak)→ (`i � `j), which predict for each
label pair (`i, `j) whether `i is more likely to be relevant than `j. Thus,
CLR (implicitly) takes correlations between pairs of labels into account.
The decomposition into pairs of classes has the advantage of simpler sub-
problems and hence commonly more accurately performing models [74].
CLR ignores dependencies shared between larger sets of labels.
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Finally, a simple way to take label dependencies into account is the label
powerset (LP) approach [107], treating each combination of labels occur-
ring in the training data as a separate value of a multi-class single-label
classification problem (Figure 9.2d). Hence, LP caters for dependencies
between larger sets of labels as they appear in the dataset. However, LP
disregards the inclusion lattice that exists between label sets in MLC. If
record r1 has label set {`1, `2}, and record r2 has label set {`1, `2, `3}, then the
label set for r1 is a subset of the label set for r2. However, LP will represent
these label sets as unrelated values of a single class. So while LP captures
subtle label dependencies, this inclusion information is not preserved.

9.3 LeGo Components

As Figure 9.1 illustrates, there are three main components in the LeGo
framework. In the following three subsections we will outline what we do
in each of these steps.

9.3.1 Local Pattern Mining Phase

In the first phase of the LeGo framework, Local Pattern Mining, we use
the Exceptional Model Mining instance defined in Chapter 6. With quality
measure ϕweed, we find a set P of descriptions for which a Bayesian net-
work, modeling the conditional dependence relations between our labels
`1, . . . , `m, has an unusual structure.

9.3.2 Pattern Subset Discovery Phase

Having positioned Local Pattern Mining in a multi-label context, we now
proceed to the second phase of the LeGo framework: Pattern Subset Dis-
covery. A common approach for feature subset selection for classification
problems is to measure some type of correlation between an attribute and
the label. A subset of the attributes S from the whole set P is then de-
termined either by selecting a number of best attributes or by selecting all
attributes whose value exceeds a threshold.
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Each description from the set P we found in the previous LeGo phase,
is by definition a function (cf. Section 2.1), mapping the descriptive at-
tributes of a record in the original dataset to either zero or one. Hence,
a description can be trivially transformed into a binary attribute of the
dataset, detailing for each record whether it is covered by the description
or not. This representation as a binary attribute enables determining the
correlation between an element from P and a single class label. However,
in MLC, multiple class labels are available, leading to multiple correlation
assessments for an element from P. Depending on the effect one strives
to achieve, these assessments can be combined in a selection criterion in
multiple ways. We experimented with the following approaches.

A simple way is to convert the multi-label problem into a multiclass (MC)
classification problem, where each original record is converted into several
new records, one for each label `i assigned to the record, using `i as the
class value (see Figure 9.2c). However, this transformation does explicitly
model label co-occurrence for a record, not taking the underlying label
decomposition into account.

An alternative approach is to measure the correlations on the decomposed
subproblems produced by the binary relevance (BR) decomposition (see
Figure 9.2b). The m different correlation values for each attribute are then
aggregated. In our experiments, we aggregated with the max operator,
i.e., the overall relevancy of an attribute was determined by its maximum
relevance in one of the training sets of the binary relevance classifiers. The
main drawback of this approach is that it treats all labels independently
and ignores that an attribute might only be relevant for a combination of
class labels, but not for the individual labels.

The last approach employs the label powerset (LP) transformation (see
Figure 9.2d) in order to also measure the correlation of an attribute to
the simultaneous absence or occurrence of label sets. Hence, with the
dataset transformed into a multiclass problem, common features selection
techniques can be applied. The different decomposition approaches are
depicted in Figure 9.2.

After the transformations, we can use common attribute correlation mea-
sures for evaluating the importance of an attribute in each of the three
approaches. In particular, we used the information gain and the χ2 statis-
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tic of an attribute with respect to the class variable resulting from the
decomposition, as shown in Figures 9.2b, 9.2c and 9.2d. Then we let each
of the six feature selection methods select the best descriptions from P to
form the subset S. The size |S| of the subset is fixed in our experiments
(see Section 9.3.3).

The approach, adapted from multiclass classification, to measure the corre-
lation between each attribute and the class variable has known weaknesses
such as being susceptible to redundancies within the attributes. Hence, in
order to evaluate the feature selection methods, we will compare them with
the baseline method that simply draws S as a random sample from P.

9.3.3 Global Modeling Phase

For the learning of the global multi-label classification models in the Global
Modeling phase, we experiment with several standard approaches including
binary relevance (BR) and label powerset (LP) decompositions [106, 107],
as well as a selection of effective recent state-of-the-art learners such as
calibrated label ranking (CLR) [36, 105], and classifier chains (CC) [92].
The chosen algorithms cover a wide range of approaches and techniques
used for learning multi-label problems (see Section 9.2), and are all included
in Mulan, a library for multi-label classification algorithms [107, 108].

We combine the multi-label decomposition methods mentioned in Sec-
tion 9.3.3 with several base learners: J48 with default settings [113], stan-
dard LibSVM [10], and LibSVM with a grid search on the parameters. In
this last approach, multiple values for the SVM kernel parameters are tried,
and the one with the best 3-fold cross-validation accuracy is selected for
learning on the training set (as suggested by [10]). Both SVM methods
are run once with the Gaussian Radial Basis Function as kernel, and once
with a linear kernel using the efficient LibLinear implementation [29]. We
will refer to LibSVM with the parameter grid search as MetaLibSVM, and
denote the used kernel by a superscript rbf or lin.

For each classifier configuration, we learn three classifiers based on different
attribute sets. The first classifier uses only the k attributes that make
up the original dataset, and is denoted CO (cf. Figure 9.3a). The second
classifier, denoted CS, uses only attributes constructed from our description
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(b) Transformation into description space CS.
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(c) Combined attributes in the LeGo classifier CL.

Figure 9.3: A multi-label classification problem (a), its representation in
description space (b) given the set of descriptions D1, . . . , D|S|, and the
LeGo combination (c).

set S (cf. Figure 9.3b). The third classifier employs both the k original and
|S| constructed attributes, in the spirit of LeGo, and is hence denoted CL
(cf. Figure 9.3c). Its attribute space consists of the k original attributes,
and |S| attributes constructed from the description set S for a grand total
of k+ |S| attributes.

9.4 Experimental Setup

To experimentally validate the outlined LeGo method, we will compare the
performance of the three classifiers based on different attribute sets CO,
CS, and CL. We will also investigate the relative performance of the feature
selection methods, and of the classification approaches. All experiments
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are performed on the Emotions, Scene, and Yeast datasets introduced in
Chapter 6; see Table 6.1 for statistics regarding the datasets.

All statistics on the classification processes are estimated via 10-fold cross-
validation. To enable a fair comparison of the LeGo classifier with the other
classifiers, we let the entire learning process consider only the training set
for each fold. This means that we have to run the Local Pattern Mining
and Pattern Subset Discovery phase separately for each fold.

For every fold on every dataset, we determine the best 10, 000 descriptions,
(if no 10, 000 descriptions can be found, we report them all), measuring the
exceptionality with ϕweed as described in Chapter 6. We configure the beam
search algorithm for EMM with a width of w = 10 and a depth of d = 2.
The modest search depth is selected deliberately, to prevent producing an
abundance of highly similar descriptions. We further bound the search by
setting the minimal coverage of a description at 10% of the dataset.

For each dataset for each fold, we train classifiers from the three training
sets CO, CS, and CL for each combination of a decomposition approach and
base learner. We select |S| = k descriptions (cf. Section 9.3.3) from the
generated set P, i.e. exactly as many description-based attributes for CS
and CL as there are original descriptive attributes in CO.

9.4.1 Evaluation Measures

We evaluate the effectiveness of the three classifiers for each combination
on the respective test sets for each fold with five measures: Micro-Averaged
Precision and Recall, Subset Accuracy, Ranking Loss, and Average Preci-
sion (for details cf. [36] and [107]). We define Y i =

{
`j | `

i
j = 1

}
as the set

of assigned labels and Ŷ i as the set of predicted labels for a test record
ri. We consider these a well-balanced selection from the vast set of multi-
label measures, evaluating different aspects of multi-label predictions such
as good ranking performance and correct bipartition.

From a confusion matrix aggregated over all labels and records, Precision
(Prec) computes the percentage of predicted labels that are relevant, and
Recall (Rec) computes the percentage of relevant labels that are predicted.
Recall and Precision allow a commensurate evaluation of an algorithm, in



9.4. EXPERIMENTAL SETUP 125

contrast to Hamming loss, which is often used but unfortunately generally
favors algorithms with high precision and low recall. We have

Prec =

∑
i

∣∣∣Ŷ i ∩ Y i
∣∣∣

∑
i

∣∣∣Ŷ i
∣∣∣

Rec =

∑
i

∣∣∣Ŷ i ∩ Y i
∣∣∣

∑
i |Y i|

Subset Accuracy (Acc) denotes the percentage of perfectly predicted label
sets, forming a multi-label version of traditional accuracy, i.e.

Acc =

∑
i I
[
Ŷ i = Y i

]

∑
i 1

where I[x] =

{
1 if x is true

0 otherwise

Since the classifiers we consider are able to return rankings on the labels,
we also compute the following rank-based loss measures, in which rank(`)
returns the position of label `. Ranking Loss (Rank) returns the number
of pairs of labels which are not correctly ordered, normalized by the total
number of pairs, i.e.

Rank =
|{(` ∈ Y, ` ′ /∈ Y) | rank(`) < rank(` ′)}|

|Y | · (m− |Y |)

Average Precision (AvgP) computes the precision at each relevant label
in the ranking, and averages these over all relevant labels, i.e.

AvgP =
1

|Y |
∑

`∈Y

|{` ′ ∈ Y | rank(` ′) ≤ rank(`)}|
rank(`)

These two ranking measures are computed for each record and then aver-
aged over all records.

All values for all settings are averaged over the folds of the cross-validation.
Thus we obtain 300 test cases (5 evaluation measures × 5 base learners ×
4 decomposition approaches × 3 datasets).

9.4.2 Statistical Testing

To draw conclusions from the long list of raw results we obtained, we use
again the methodology for the comparison of multiple algorithms described
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by Demšar [19], as introduced in Section 8.2.3. Instead of comparing g qual-
ity measures, here we compare the three classifiers CO, CS, and CL. Again,
if the difference between the average ranks of two classifiers surpasses the
computed critical difference, the better-ranked classifier performs signifi-
cantly better.

9.5 Experimental Evaluation

The following subsections are dedicated to different aspects such as the
evaluation of the different Pattern Subset Discovery approaches, the em-
ployment of the different attribute sets, the impact of the decomposition
approaches, and efficiency.

9.5.1 Feature Selection Methods

Before comparing the three classifiers, we take a look at the relative per-
formance of the different feature selection methods. When comparing the
performance of the classifier CL with different feature selection methods
over all T = 300 test cases, we find the average ranks in Table 9.1. We
compared the Binary Relevance, Label Powerset and MultiClass approach,
each with evaluation measures χ2 and information gain, and the random
baseline approach.

The results show that no classifier employing a sophisticated feature selec-
tion method significantly1 outperforms the classifier with random feature
selection. Conversely, the classifier with random feature selection does
significantly outperform several classifiers employing sophisticated feature
selection. For the binary relevance and multiclass approaches this is reason-
able, since the descriptions are explicitly designed to consider interdepen-
dencies between labels, while the BR and MC approaches select attributes

1Since we are comparing g = 7 different methods here, the critical value with signif-
icance level α = 5% for the chi-squared distribution with g − 1 = 6 degrees of freedom
equals 12.592. The Friedman statistic for these ranks equals χ2F = 61.678, hence the Fried-
man test is passed. For the Nemenyi test, when comparing 7 methods, the critical value is
q0.05 = 2.948. Hence the critical difference between average ranks becomes CD = 0.520.
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Table 9.1: Average ranks of the feature selection methods (cf. Section 9.3.2),
with critical difference. The results for random feature selection are not
split out over the two attribute correlation measures, since none is used.

BR LP MC Random CD

χ2 gain χ2 gain χ2 gain
Rank 4.445 3.932 3.507 4.263 3.707 4.490 3.657 0.520

based on their correlation with single labels only and hence ignore interde-
pendencies. The Label Powerset approach should do better in this respect.
In fact, the best average rank featured in Table 9.1 belongs to LP with the
χ2 evaluation measure. Since its improvement over the naive method is not
significant, we did not further explore its performance, but that does not
mean it is without merit.

Another reason for the bad performance of the feature selection methods is
that they evaluate each attribute individually. One extreme use case will
illustrate the problem: if we replicate each attribute x times and we select
the x best attributes according to the presented methods, we will get x
times the same attribute. In the Local Pattern Mining phase, we produce a
high number of candidate attributes, hence we can expect to obtain groups
of similar candidates. The random feature selection does not suffer from
this problem. Hence, for the subsequent experiments, we decided not to
use any sophisticated feature selection in the remaining experiments, and
focus on the results for random feature selection.

9.5.2 Evaluation of the LeGo Approach

The first row in Table 9.2 compares the three different representations CO,
CS, and CL over the grand total of 300 test cases in terms of average ranks.
We see that both CO and CL perform significantly (α = 5%)2 better than

2Since we are comparing three classifiers, the Friedman statistic equals χ2F = 52.687.
With significance level α = 5%, the critical value for the chi-squared distribution with
2 degrees of freedom equals 5.991, hence the null hypothesis of the Friedman test is
comfortably rejected. For the post-hoc Nemenyi test, when comparing three classifiers
the critical value is q0.05 = 2.344. Hence, the critical difference between average ranks
becomes CD = 0.191, with significance level α = 5%.
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Table 9.2: Comparison of different attribute sets. Average ranks of the
three classifiers CO, CS, CL, with critical difference, over all 300 test cases,
over all 240 test cases barring J48, over all 60 test cases with a particular
base learner, and over all 75 test cases with a particular decomposition
method. Bold numbers indicates the top rank in the row, > or < indicate
a significant difference to the direct neighbor classifier.

CO CL CS CD

Overall 1.863 = 1.797 > 2.340 0.191

Without J48 1.971 < 1.733 > 2.296 0.214

MetaLibSVMrbf 1.483 = 1.683 > 2.833 0.428

MetaLibSVMlin 1.900 = 1.800 > 2.300 ”
LibSVMrbf 2.633 < 1.683 = 1.683 ”
LibSVMlin 1.867 = 1.767 > 2.367 ”
J48 1.433 > 2.050 > 2.517 ”
Acc 1.850 = 1.800 > 2.350 0.428

Prec 1.700 = 1.883 > 2.417 ”
Rec 1.983 = 1.700 > 2.317 ”
AvgP 1.850 = 1.833 > 2.317 ”
Rank 1.933 = 1.767 > 2.300 ”
CLR 1.813 = 1.760 > 2.427 0.383

LP 1.773 = 1.827 > 2.400 ”
CC 1.947 = 1.720 > 2.333 ”
BR 1.920 = 1.880 = 2.200 ”
Emotions 2.510 < 1.860 = 1.630 0.331

Scene 1.480 = 1.640 > 2.880 ”
Yeast 1.600 = 1.890 > 2.510 ”

CS, i.e. the description-only classifier cannot compete with the original at-
tributes or the combined classifier. The difference in performance between
CO and CL is not significant. Although the average rank for the LeGo-based
classifier is somewhat higher, we cannot claim that adding local patterns
leads to a significant improvement. The remainder of Table 9.2 is concerned
with stratified results.

When stratifying the results by base learner (the second block in Table 9.2),
we notice a striking difference in average ranks between J48 and the rest.
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Table 9.3: Average ranks of the base learners, with critical difference CD.

Approach Rank
MetaLibSVMrbf 1.489

MetaLibSVMlin 2.972

LibSVMlin 3.228

LibSVMrbf 3.417

J48 3.894

CD 0.455

Restricted to the J48 results, we find that rO = 1.433, rS = 2.517, and
rL = 2.050, with CD = 0.428. Here, the classifier built from original
attributes significantly (α = 5%) outperforms the LeGo classifier.

One reason for the performance gap between J48 and the SVM approach
lies in the way these approaches construct their decision boundary. The
SVM approaches draw one hyperplane through the attribute space, whereas
J48 constructs a decision tree, which corresponds to a decision boundary
consisting of axis-parallel fragments. The descriptions the EMM algorithm
finds in the Local Pattern Mining phase are constructed by several condi-
tions on single attributes. Hence the domain of each description has a shape
similar to a J48 decision boundary, unlike a (non-degenerate) SVM deci-
sion boundary. Hence, the expected performance gain when adding such
descriptions to the attribute space is much higher for the SVM approaches
than for the J48 approach.

Using only the original attributes seems to be enough for the highly op-
timized non-linear MetaLibSVMrbf method, though the difference with
the combined attributes is not statistically significant. The remaining
base learners benefit from the added descriptions. Notably, when using
LibSVMrbf, it is possible to rely only on the description-based attributes in
order to outperform the classifiers trained on the original attributes.

Because the J48 approach results in such deviating ranks, we investigate the
relative performance of the base learners. We compare their performance on
the three classifiers CO, CS, and CL, with decomposition methods BR, CC,
CLR, and LP, on the three datasets Emotions, Scene, and Yeast, evaluated
with the measures introduced in Section 9.4. The average ranks of the base
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learners over these 180 test cases can be found in Table 9.3; again, the
Friedman test is easily passed. The Nemenyi test shows that J48 performs
significantly worse than all SVM methods and that MetaLibSVMrbf clearly
dominates the performance of the SVMs. This last point is not surprising,
since the three datasets are known to be difficult and hence not linearly
separable [36], which means that an advantage of the RBF-kernel over the
linear kernel can be expected. Moreover, the non-extensively optimized
LibSVMrbf can be considered to be subsumed by the meta variant since the
grid search includes the default settings.

Having just established that J48 is the worst-performing base learner and,
additionally, that the similarity in form of the descriptions and the J48 deci-
sion boundary particularly damages the performance of the LeGo classifier,
we repeat our overall comparison considering only the SVM variants. More-
over, SVMs are conceptually different from decision tree learners, which ad-
ditionally justifies the separate comparison. The average ranks of the three
classifiers CO, CS, and CL on the remaining 240 test cases can be found in
the second row of Table 9.2. This time, the Nemenyi test yields that on the
SVM methods the LeGo classifier is generally significantly better than the
classifier built from original attributes, even though for MetaLibSVMrbf by
itself this is not the case.

When stratifying the results by quality measure (the third block in Ta-
ble 9.2) we find that the results are consistent over the chosen measures.
For all measures we find that CL significantly outperforms CS, and CO al-
ways outperforms CS though not always significantly. Additionally, for all
measures except precision, CL outranks CO, albeit non-significantly. This
consistency provides evidence for robustness of the LeGo method.

The fourth block in Table 9.2 concerns the results stratified by transforma-
tion technique. With the exception of the Label Powerset approach, which
by itself respects relatively complex label dependencies, all approaches ben-
efit from the combination with the constructed LeGo attributes, though the
differences are not statistically significant. Of peculiar interest is the benefit
for the binary relevance approach, which in its original form considers each
label independently. Though the Friedman test is not passed, the trend is
confirmed by the results of CC, which additionally include attributes from
the preceding base classifiers’ predictions.
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As stated in Section 9.2, to predict label `i the CC decomposition approach
allows using the predictions made for labels `1, . . . , `i−1. Hence we can view
CC as an attribute enriching approach, adding an attribute set C. The
result comparing the performance of the different attribute sets peak at
O∪S∪C (rank 2.84) followed by O∪S (3.34), O∪C (3.53), O (3.6), S (3.89)
and S∪C (3.97) (significant difference only between the first and each of the
last combinations). Hence, adding C has an effect on performance similar
to the effect of adding S, and BR particularly benefits if both are added,
demonstrating that the locally exceptional descriptions provide additional
information on the label dependencies, not covered by C.

In the last block of Table 9.2 we see that results vary wildly when stratified
by dataset. We see no immediate reason why this should be the case; per-
haps a study involving more datasets could be fruitful in this respect.

9.5.3 Evaluation of the Decompositive Approaches

We can learn more from Table 9.2 when more blocks are additionally strat-
ified by evaluation measure. Indeed, the decision of the attribute base
does not seem to have an impact on the metrics (for the SVM learners,
not shown in the table). The only exception appears to be micro-averaged
precision, for which CO yields a small advantage over CL. But as Table 9.4
demonstrates, the situation varies with respect to the decompositive ap-
proach used. As we can see in the upper block, there are clear tendencies
regarding the preference for a particular metric.

For instance, LP has a clear advantage in terms of subset accuracy, which
only CC is able to approximate. This stands to reason, since both ap-
proaches are dedicated to the prediction of a correct labelset. In fact, LP
only predicts label sets previously seen in the training data. CC behaves
similarly: if we consider only the additional attributes from the previous
predictions (i.e. attribute set C), then we find that CC behaves similar
to a sequence tagger. That is to say, for a particular sequence of labels
`1, . . . , `i−1 the i-th classifier in the chain will tend to predict `i = 1 (or `i = 0
respectively) only if `1, . . . , `i existed in the training data. The advantage of
LP and CC is confirmed in the bottom block, which restricts the compari-
son to the usage of the most accurate base learner MetaLibSVMrbf.
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Table 9.4: Comparison of the decomposition approaches. The first block
compares the approaches for all base learner combinations, the second one
restricts on the usage of MetaLibSVMrbf. The first row in each block indi-
cates the average ranks with respect to all evaluation metrics, whereas the
following rows distinguish between the individual measures.

Measure CLR LP CC BR CD

all & all BC 1.909 > 2.462 = 2.700 = 2.929 0.313

Acc 3.400 < 1.489 = 1.722 > 3.389 0.700

Prec 1.989 > 3.467 = 3.111 < 1.433 0.700

Rec 2.156 = 1.956 = 2.422 > 3.467 0.700

AvgP 1.000 > 2.778 = 3.111 = 3.111 0.700

Rank 1.000 > 2.622 = 3.133 = 3.244 0.700

all & MetaLibSVMrbf 2.111 = 1.911 > 2.911 = 3.067 0.700

Acc 3.667 < 1.000 = 2.000 = 3.333 1.563

Prec 2.111 = 3.444 = 3.444 < 1.000 1.563

Rec 2.778 < 1.000 = 2.333 = 3.889 1.563

AvgP 1.000 = 2.111 = 3.444 = 3.444 1.563

Rank 1.000 = 2.000 = 3.333 = 3.667 1.563

Precision is dominated by BR, followed by CLR. This result is obtained
by being very cautious at prediction, as the values for recall show. Espe-
cially the highly optimized SVM is apparently fitted towards predicting a
label only if it is very confident that the estimation is correct. It is not
clear whether this is due to the high imbalance of the binary subproblems,
e.g. compared to pairwise decomposition. CLR shows to be more robust,
though a bias towards underestimating the size of the label sets is visible.
Especially in this case the bias may originate from the conservative BR clas-
sifiers, which are included in the calibrated ensemble, since the difference
between precision and recall is clearly higher for MetaLibSVMrbf.

Contrasting behavior to BR is shown by LP, which dominates recall, espe-
cially for MetaLibSVMrbf, but completely neglects precision. This indicates
a preference for predicting the more rare large label sets. The best balance
between precision and recall is shown by CLR, even for MetaLibSVMrbf, for
which the underestimation leads to low recall, but for which the competing
classifier chains obtain the worst precision values together with LP.
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The good balancing properties of CLR are confirmed by the results for
ranking loss, which are clearly dominated by CLR’s ability to produce a
high density of relevant labels at the top of the the rankings. The high recall
of LP corresponds to good ranking losses, but the low ranks of BR show that
its high precision is not due to a good ranking ability. This behavior was
already observed, e.g. in [36] and [74], where BR often correctly pushed
a relevant class to the top, but obtained poor ranking losses. Similarly,
CC’s base classifiers are trained independently without a common basis for
confidence scores and hence achieve a low ranking quality.

If we give equal weight to the five selected measures, we observe that CLR
significantly outperforms the second-placed LP if all base learners are con-
sidered, and slightly loses against LP if MetaLibSVMrbf is used (top row in
both blocks in Table 9.4).

9.5.4 Efficiency

Apart from the unsatisfactory performance of J48 compared to SVM ap-
proaches, Table 9.3 also indicates that compared to the standard Lib-
SVM approach, the extra computation time invested in the MetaLibSVM
parameter grid search is rewarded with a significant increase in classi-
fier performance. For both the linear and the RBF kernel, we see that
the MetaLibSVM approach outperforms the LibSVM approach, although
this difference is only significant for the RBF kernel. A more exhaus-
tive parameter-optimizing search will probably be beneficial, since the grid
search considers arbitrary parameter values. Whether the performance in-
crease is worth the invested time is a question of preference. In the case
where time and computing power are not limited resources, the increased
performance is clearly worthwhile.

From a practical point of view, it is also interesting to analyze the efficiency
of using the original attributes in comparison to using the constructed at-
tributes. We expected an improvement in complexity just from the fact
that the description-based attributes are binary in contrast to the more
complex nature of the original attributes in the used datasets. In addi-
tion, it is well known that the possibly resulting sparseness of the binary
attributes may also boost algorithms like SVMs.
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For the comparison between training of CO and CS we focus on the Binary
Relevance decomposition setting in order to allow a balanced comparison
over the three datasets, since the complexity of BR scales linearly with
respect to the number of classes. For J48 as base learner, we observed a
reduction of training costs from 28% (Emotions) over 31% (Scene) to 47%
for Yeast. For LibSVMrbf, the difference was more pronounced, with a re-
duction of 60%, 52% and 50%, respectively. We obtained a similar picture
for LibSVMlin on two datasets, with a reduction of even 82% (Emotions)
and 65% (Scene). On the Yeast dataset, however, training CS surpris-
ingly takes almost 7 times longer than training CO. This case is very
likely an exception since comparing LibSVMlin and hence using different
parameters shows again a clear reduction. The numbers for MetaLibSVMlin

and MetaLibSVMrbf are omitted since they show a similar picture but are
more difficult to compare directly since they always also include testing
time.

Note that training CL of course takes more computation time since we
employ both attribute sets, but the overhead of using the constructed at-
tributes from the descriptions is relatively small. Also, note that the over-
head needs to be invested only once for training the classifier, possibly
off-line, and that the resulting trained classifier can then be used again
and again for classifying data; if one wants to classify more than once, the
added complexity diminishes.

9.6 Discussion and Related Work

As we discussed in Section 3.3, exhaustive Local Pattern Mining methods
exist. In this chapter, we have selected the Exceptional Model Mining
instance with the structure of a Bayesian network model as target concept,
to fulfill the Local Pattern Mining phase in the LeGo framework. For this
method, no exhaustive approach exists. We expect little disadvantage from
using heuristic rather than exhaustive search in the Local Pattern Mining
phase. The found descriptions are afterwards put through the Pattern
Subset Discovery phase, where they are subjected to feature selection which
is heuristic by definition, hence there is really no point in enforcing an
exhaustive search in the Local Pattern Mining phase.



9.6. DISCUSSION AND RELATED WORK 135

The applied Local Pattern Mining algorithm was created to find descrip-
tions that are interesting by themselves. The output of the algorithm is
therefore not specifically tailored to be useful in a classification setting; this
is not a guiding principle in the Exceptional Model Mining process. To the
best of our knowledge, this work is a first attempt at testing the utility
for classification of the result of such a stand-alone multi-label description
discovery process. Some recent sophisticated classifiers, for instance the
multi-label lazy associative classifiers [110], are also based on local pat-
terns. However, these patterns serve only the classifier: interpretation is
not considered. Hence the different phases, as present in the LeGo frame-
work, are not as separated as they are in our work. Similarly, Cheng and
Hüllermeier [11] incorporate additional attributes that encode the label dis-
tribution in the direct neighborhood by, in effect, stacking the output of
a k-Nearest Neighbor classifier. However, this has to be done at (training
and testing) runtime and cannot be done separately and beforehand.

Other known stacking approaches include the outcome of global classifiers.
Godbole and Sarawagi [44] use the outputs of a BR-SVM classifier as ad-
ditional input attributes for second-level SVMs. Similarly, Tsoumakas et
al. [104] replace all original attributes by the predicted scores of a BR. The
scores are additionally filtered according to their correlation to each other.
The employed classifier chains [92] rely on stacking the outcomes of the
predetermined sequence of previous binary relevance classifiers, which per-
mits modeling conditional dependencies, but it does not rely on locality.
Zhang and Zhang [118] also try to model label dependencies and start from
the premise of eliminating the conditional dependency between the input
attributes a1, . . . , ak and the individual labels by computing the errors ei
as difference between true label `i and the prediction. The isolated de-
pendencies between labels are then approximated by the result of building
a Bayesian network on these errors. A new BR classifier is then learned
for each class with the set of parents as additional attributes. The very
recent LIFT algorithm selects particularly representative centroids in the
positive and negative records of a class by k-means clustering and then
replaces the original attributes of a record by the distances to these rep-
resentatives [117]. One may also interpret this approach as a different,
pragmatic way of computing new suitable principal components and hence
dimensionality reduction, which apparently works quite well.
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9.7 Conclusions

We have proposed enhancing multi-label classification methods with lo-
cal patterns in a LeGo setting. These descriptions are found through an
instance of Exceptional Model Mining, a generalization of Subgroup Dis-
covery striving to find subsets of the data with aberrant conditional depen-
dence relations between targets. Hence each delivered description repre-
sents a local anomaly in conditional dependence relations between targets.
Each description corresponds to a binary attribute which we add to the
dataset, to tentatively improve classifier performance.

Experiments on three datasets show that for multi-label SVM classifiers the
performance of the LeGo approach is significantly better than the tradi-
tional classification performance: investing extra time in running the EMM
algorithm pays off when the resulting descriptions are used as constructed
attributes. The J48 classifier does not benefit from the local pattern addi-
tion, which can be attributed to the similarity of the local decision bound-
aries produced by the EMM algorithm to those produced by the decision
tree learner. Hence the expected performance gain when adding local pat-
terns is lower for J48 than for approaches that learn different types of
decision boundaries, such as SVM approaches.

The Friedman-Nemenyi analysis also shows that the constructed attributes
generally cannot replace the original attributes without significant loss in
classification performance. We find this reasonable, since these attributes
are constructed from descriptions found by a search process that is not at
all concerned with the potential of the descriptions for classification, but
is focused on exceptionality. In fact, the description set may be highly
redundant. Additionally, it is likely that the less exceptional part of the
data, which by definition is the majority of the dataset, is underrepresented
by the constructed attributes.

To the best of our knowledge, this is a first attempt at discovering multi-
label descriptions and testing their utility for classification in a LeGo set-
ting. Therefore this work can be extended in various ways. It might be
interesting to develop more efficient techniques without losing performance.
One could also explore other quality measures, such as the plain edit dis-
tance measure ϕed from Section 6.3, or other search strategies. In partic-
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ular, optimizing the beam search in order to properly balance its levels of
exploration and exploitation, could fruitfully produce a more diverse set of
attributes [70] in the Local Pattern Mining phase. Alternatively, descrip-
tion diversity could be addressed in the Pattern Subset Discovery phase,
ensuring diversity within the subset S rather than enforcing diversity over
the whole description set P.

As future work, we would like to expand our evaluation of these methods.
Recently, it has been suggested that for multi-label classification, it is better
to use stratified sampling than random sampling when cross-validating [97].
Also, experimentation on more datasets seems prudent. In this chapter, we
have experimented on merely three datasets, selected for having a relatively
low number of labels. As stated in Chapter 6, we have to fit a Bayesian
network on the labels for each subgroup under consideration, which is a
computationally expensive operation. The availability of more datasets
with not too many labels (say, m < 50) would allow for more thorough
empirical evaluation, especially since it would allow us to draw potentially
significant conclusions from Friedman and Nemenyi tests per evaluation
measure per base classifier per decomposition scheme. With three datasets
this would be impossible, so we decided to aggregate all these test cases in
one big test. The observed consistent results over all evaluation measures
provide evidence that this aggregation is not completely wrong, but the-
oretically this violates the assumption of the tests that all test cases are
independent. Therefore, the empirically drawn conclusions in this chapter
should not be taken as irrefutable proof, but more as evidence contributing
to our beliefs.
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