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Chapter 8

Exploiting False Discoveries –
Validating Found Descriptions

In Exceptional Model Mining, just like in Subgroup Discovery, we explore
a large search space to find subsets of the data that have a relatively high
value for a designed or selected quality measure. As we addressed in Chap-
ter 3, the magnitude of the candidate space is potentially exponential in
the number of records. Therefore, the process suffers from the multiple
comparisons problem [52], which roughly states that, when considering a
large number of candidates for a statistical hypothesis, some candidates
will inevitably be incorrectly labeled as passing the test. Hence one of the
many practical problems in SD/EMM is that it is nontrivial to determine
whether discovered descriptions are actual discoveries, or false discoveries
caused by random artifacts.

In this chapter, we draw upon statistical theory to build a model for false
discoveries. Using this model, a number of practical problems can be solved.
When applying SD/EMM to a dataset, one is often faced with the nontriv-
ial task of choosing the right parameters for the discovery algorithm, in
order to obtain a reasonable collection of results. The problems we in-
tend to address are related to these parameter-setting issues. First of all,
with the gradually extending range of quality measures available, for ‘clas-
sical’ Subgroup Discovery [35, 68] but also for non-standard variants such
as regression [46, 89] and Exceptional Model Mining [25, 71], the issue of
selecting the right measure for the task at hand is often hard. Users of
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92 CHAPTER 8. VALIDATING FOUND DESCRIPTIONS

discovery tools often choose the measure based on their personal familiar-
ity, or simply proceed with the default choice. We aim to provide more
objective guidelines for selecting the measure that is most likely to pro-
duce interesting and exceptional results, and present empirical results that
indicate a partial order amongst quality measures.

A second algorithm-tuning question we intend to address is that of setting
a minimum threshold for the selected quality measure. Different measures
have different domains, and end-users find it hard to set a reasonable value.
Ideally, one would like to choose a minimum quality, such that all descrip-
tions exceeding this value are reliably exceptional, and do not include “ran-
dom” results that stem from the potentially large search space and the
multiple comparisons problem inherent to all discovery methods. In other
words, given some desired significance level α (typically 5% to 1%), we
would like to obtain the corresponding minimum quality for the measure
and dataset in question. As a converse, but very related task, one would
like to compute a p-value for each reported description, that indicates to
what extent the result is statistically significant.

As mentioned, SD and EMM potentially suffer from the multiple compar-
ison problem. The main contribution of this chapter is the introduction
of a method that employs a randomization technique to build a statistical
model for the false discoveries caused by the multiple comparisons prob-
lem. Using this statistical model, we can refute many insignificant results
returned by the discovery algorithm, and thus identify a set of on average
more interesting descriptions. Furthermore, we employ the statistical vali-
dation to provide an experimental comparison of measures, and propose a
suitable choice of measure.

8.1 Problem Statement

As mentioned in the introduction, the main contribution of this chapter is
a method that builds a statistical model for false discoveries. This model
can be used to solve a plethora of practical problems, of which we will
empirically illustrate the following two
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1. given a dataset Ω, a quality measure ϕ and a set S of descriptions
found with this measure through SD/EMM, determine the statistical
significance of each description D ∈ S;

2. given datasets Ω1, . . . ,Ωt, determine which of the given quality mea-
sures ϕ1, . . . , ϕg are better in distinguishing the top-q descriptions
found with that measure from a random baseline, for a given q.

8.2 Validation Method

Philosophically speaking, we deal with the multiple comparisons problem
(MCP) by a strategy akin to the informal saying “if you can’t beat ’em, join
’em”. The MCP is caused by random artifacts generating false discoveries.
Our plan is to manage this process, generating some false discoveries of our
own. Then, we can put these artificial false discoveries to work, to dis-
tinguish the true from the false discoveries in real SD/EMM results.

Informally speaking, to solve problem 1 from the previous section, we per-
form the following actions. First, we generate a number of false discov-
eries, by running SD/EMM on datasets obtained using a randomization
technique. Then, we build a global model over the qualities of these false
discoveries. Finally, we compare the qualities of the descriptions found on
the original dataset with this global model. Descriptions that perform sub-
stantially better than the model for artificial false discoveries, are deemed
likely to be true discoveries.

To solve problem 2 from the previous section, we perform these preceding
actions for each quality measure. Then we compare the significance assess-
ments of the top-q descriptions between the quality measures ϕi, distilling
a preferential ranking of the quality measures for a dataset Ωj. We do this
for all datasets Ω1, . . . ,Ωt, which allows us to draw conclusions on whether
quality measures are consistently preferential over one another.

The solutions to the two problems can be incorporated into one encom-
passing validation method, consisting of three consecutive steps. Specific
choices for each of these steps will be thoroughly examined in the subse-
quent three sections. For now, we express the validation method in the
following, somewhat formal manner
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Validation Method. Suppose a dataset Ω, quality measures ϕ1, . . . , ϕg, and
sets of descriptions S1, . . . ,Sg where ∀gi=1 : Si is found through SD/EMM
using quality measure ϕi. The method consists of the following steps

I. ∀gi=1 : use a randomization technique to generate baseline descrip-
tions Bi1, . . . , B

i
x ⊆ Ω for arbitrarily large x;

II. ∀gi=1 : build a statistical model for false discoveries based on the
qualities ϕi

(
Bi1
)
, . . . , ϕi

(
Bix
)
of the baseline descriptions. Then

determine for each D ∈ Si how much ϕi (D) deviates from the
model;

III. choose any positive integer q, and determine preference between
the quality measures by comparing the deviations corresponding
to the top-q descriptions in Si.

In order to solve problem 1, we need steps I and II of the method, for g = 1

(since there is only one quality measure). Solving problem 2 requires taking
all three steps, and repeating them for each dataset Ω1, . . . ,Ωt.

Since we determine the statistical soundness of quality measures in terms of
their ability to deviate from a random baseline, we could interpret this as a
test to what extent a quality measure is also a measure for exceptionality.
Notice that our method does not consider the coherence of a set S of
descriptions: we do not solve the problem of redundancy within such a set,
we do not solve the problem of selecting a small subset of jointly interesting
descriptions in S, we merely consider for every single description in S the
likelihood that it is deemed interesting because of the multiple comparisons
problem.

8.2.1 Randomization Techniques

There are several randomization techniques we can use to generate the
baseline descriptions Bi1, . . . , B

i
x (i.e. perform step I of the method). We will

employ the randomization technique that is currently the most popular in
data mining: swap randomization. Gionis et al. have published a paper
detailing its use in data mining [43]. In its most radical form for zero-
one matrices, swap randomization shuffles the elements of the dataset in
such a way that all row and column sums are kept intact, which is what
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the authors of [43] have done for tests involving itemset mining. Swap
randomization is also frequently used for validating classifiers in a more
moderate form: only the column containing the class labels is replaced by
a random permutation of itself. For SD/EMM, it seems reasonable to use
this moderate form of swap randomization: each target column is shuffled,
independently (cf. Section 8.6) from the other target columns.

We generate the baseline descriptions in the following way. For each Bij to
be generated, we create a swap-randomized version of the data, by keeping
all descriptors intact but applying a random permutation to each target
column. Then we run our SD/EMM algorithm on the resulting dataset
using quality measure ϕi, and let Bij be the best description found.

The rationale behind this process is that by swap-randomizing each tar-
get column, we keep its distribution intact. However, we randomize all
dependencies between the target columns and the descriptors, and we ran-
domize all internal dependencies between the target columns. Hence the
best description found on the swap-randomized data represents the best-
quality discovery made while there is no connection between target column
and other attributes, and no connection between multiple target columns,
apart from connections caused by random artifacts. In other words, this
best description represents a false discovery, and its quality is among the
highest qualities a false discovery can have.

Another reason why a description found on the swap-randomized data is
a good representation of a false discovery is the fact that its discovery has
resulted from the same search process as employed while discovering actual
descriptions on the original dataset. Alternatively one could easily choose
a method to directly generate some random baseline description for use in
step I of our method. However, a description found on swap-randomized
data goes through the same motions of the SD/EMM algorithm as the
actual descriptions found on the original dataset, i.e. the same hypothesis
space is traversed, the traversal is performed in the same way, and the search
is bounded by the same constraints. Hence the generated false discovery
can reasonably be considered a false discovery of the search process.
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8.2.2 Building a Statistical Model

When we have generated the baseline descriptions, there are plenty of ways
to build a statistical model from them (i.e. perform step II of the method).
The most straightforward technique, and the simplest in terms of statistical
interpretability, is a direct application of the central limit theorem (CLT)
[75]. Under the assumption that x (the number of baseline descriptions)
is sufficiently large, according to the central limit theorem, the mean of
ϕi
(
Bi1
)
, . . . , ϕi

(
Bix
)
follows a normal distribution, since these are indepen-

dent and identically distributed random variables. We use the sample mean
(µ̂) and sample standard deviation (σ̂) as distribution parameters, as sug-
gested by the method of moments [88]. We call this distribution, N (µ̂, σ̂),
the Distribution of False Discoveries (DFD). Let D ∈ S be a description
under consideration. We can now formulate the null hypothesis

H0 : ϕ (D) is generated by the DFD

We can compute a p-value corresponding to this null hypothesis for each
D ∈ S, and this p-value gives us the deviation required as result of step II
of the method.

Notice that although the null hypothesis is fixed, its interpretation may
vary depending on the randomization technique employed in step I of the
method.

Using the DFD, we can not only validate a found description, but also com-
pute threshold values for the quality measure at given significance levels,
prior to the actual mining run. Such a threshold could be used as lower
bound on the quality of a description in the SD/EMM process. This is
a nontrivial contribution to the process, since it is generally not easy for
an end-user to set a sensible lower bound for any given quality measure.
Additionally, such sensible values for a lower bound depend heavily on the
dataset at hand. Until now, it was common to use a default value for such
a lower bound by lack of a better method; the DFD gives us more sensible
threshold values.
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8.2.3 Comparing Quality Measures

For performing step III, comparing the relative performance of the quality
measures, we use a technique recently described by Demšar in an article
[19] on statistical comparisons of classifiers over multiple datasets. First
a Friedman test [31, 32] is performed to determine whether the quality
measures all perform equivalently. This is a non-parametric version of the
repeated-measures ANOVA. For each test case the quality measures are
ranked by their performance; in case of ties we assign average ranks. Let ri
denote the average rank over all test cases for quality measure ϕi, ∀i∈{1,...,g},
and let T denote the number of test cases. The null hypothesis states that
all measures perform similarly, hence their average ranks should be equal.
Under this null hypothesis, the Friedman statistic

χ2F =
12T

g(g+ 1)
·
∑

i

(
ri −

g+ 1

2

)2

follows a chi-squared distribution with g− 1 degrees of freedom.1

If the null hypothesis of the Friedman test is rejected, we can determine
which quality measures are significantly better than others with a post-hoc
test. Following Demšar’s proposal, we use the Nemenyi test [83], which is
similar to the Tukey test for ANOVA. In this test a critical difference (CD)
is computed

CD = qα

√
g(g+ 1)

6T

where the critical values qα are based on the Studentized range statistic [94,
pp. 451–452] divided by

√
2. If the difference between the average ranks of

two quality measures surpasses this CD, then the better-ranked measure
performs significantly better.

8.3 Experiments

To illustrate how our method performs, we run Subgroup Discovery ex-
periments on several datasets. The bulk of our empirical evaluation will

1Careful readers may notice that this formula is not the one given by Demšar. It is,
however, the one given by Friedman himself. Equivalence can be shown in four lines of
math; the equation shown here is slightly easier to compute, and easier on the eye.
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Table 8.1: UCI datasets used for the DFD experiments.

Dataset N # descriptors |`|

discrete numeric
1. Adult 48842 8 6 2

2. Balance-scale 625 0 4 3

3. Car 1728 6 0 4

4. CMC 1473 7 2 3

5. Contact-lenses 24 4 0 3

6. Credit-a 690 9 6 2

7. Dermatology 366 33 1 6

8. Glass 214 0 9 6

9. Haberman 306 1 2 2

10. Hayes-roth 132 0 4 3

11. Ionosphere 351 0 34 2

12. Iris 150 0 4 3

13. Labor 57 8 8 2

14. Mushroom 8124 22 0 2

15. Pima-indians 768 0 8 2

16. Soybean 683 35 0 19

17. Tic-tac-toe 958 9 0 2

18. Wisconsin 699 0 9 2

19. Yeast 1484 1 7 10

20. Zoo 101 16 1 7
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be done in terms of Subgroup Discovery with only one discrete target, but
this is by no means essential to the method. In fact, it can be applied to
any supervised Local Pattern Mining technique. We will briefly illustrate
this by applying our method not only to traditional Subgroup Discovery,
but also to the instance of Exceptional Model Mining with the correlation
model class, as introduced in Chapter 4. Results of the experiments on
traditional SD are described in Sections 8.3.1 and 8.3.2, and results on the
EMM instance in Section 8.3.3.

We pick the following parameters for the beam search process. On each
level, we select the w = 25 best descriptions, and refine these to create
the candidate descriptions for the next level. To bound the complexity of
the descriptions we use a search depth of d = 3. We let minsup =

⌊
N
10

⌋
,

i.e. a description must be covered by at least 10% of the dataset. These
parameter settings are somewhat arbitrary; we believe that this is not really
relevant for the purpose of demonstrating our new method.

The 20 datasets we have used for our tests with traditional SD, can be
found in the UCI Machine Learning Repository [3]. Table 8.1 contains
details on the datasets considered. Here, |`| denotes the number of distinct
target values in the dataset. Notice that, rather unfortunately, this table
features a second dataset named Yeast, after the one introduced in Table
6.1. The dataset considered in this chapter is the Yeast dataset that can
be found through UCI [3], and not the Yeast dataset that was introduced
in the paper by Elisseeff et al. [28].

Before experimenting with the method, let us empirically investigate a sim-
pler solution: empirical p-values. Given a description D to be validated,
one could simply assign as p-value the fraction of randomly generated re-
sults that outperform D. Though valid as a validation method for single
descriptions, the empirical p-values lack the expressive power necessary to
perform step III of our validation method, which is required when we want
to validate quality measures. This is illustrated by the histogram (rep-
resented by the jagged line), displayed in Figure 8.1, of qualities of 1000
random subsets on the CMC dataset with target value ‘no-use’, normal-
ized into Z-space (i.e. a subset has value one on the x-axis in the histogram
when its quality is one standard deviation higher than the sample mean).
The figure also contains our CLT-based normal distribution fitted to the
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random qualities (represented by the smooth curve) and the 13 descriptions
(represented by circles on the x-axis) found using a very shallow search of
d = 1. The rightmost nonzero value of the histogram occurs at x = 4, hence
all descriptions to the right of that point are indistinguishable by empiri-
cal p-values. The normal distribution never becomes zero, hence does not
suffer from this problem. Hence, with the CLT-based model we can still
compare the relative significance of the 4 best descriptions, whereas with
empirical p-values we cannot.

8.3.1 Validating Descriptions

We will first illustrate how to use our method to solve problem 1 from
Section 8.1: validating single descriptions. To this end, we only need the
method’s first two steps.

We consider just one quality measure: Weighted Relative Accuracy
(WRAcc) [55], arguably the most popular quality measure in Subgroup
Discovery. For each dataset, we perform an SD run for each target value,
and report the 1000 best descriptions. We then run the first two steps of
our method to determine how many of the found descriptions remain if
insignificant descriptions are removed. We report the average fraction of
descriptions that is retained per dataset for different significance levels in
Table 8.2.

As stated in Section 8.2, one could also use the Distribution of False Discov-
eries to determine quality measure thresholds for given significance levels,
a common practical issue with SD/EMM exercises. We illustrate this by
determining thresholds on the Contact-lenses dataset with target value
‘none’. Notice that WRAcc can theoretically assume values between −0.25

and 0.25. We find that with significance level α = 10% a subgroup needs
to have a WRAcc of at least 0.054 to reject the null hypothesis that it is a
false discovery, with α = 5% a subgroup needs to have a WRAcc of at least
0.068, and with α = 1% a value of at least 0.093. To provide context: the
best description found on this dataset with this target value has a WRAcc
of 0.188.
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Table 8.2: Fraction of descriptions retained when removing insignificant
descriptions.

Dataset α = 10% α = 5% α = 1%
Adult 1.000 1.000 1.000

Balance-scale 0.561 0.554 0.548

Car 0.650 0.591 0.518

CMC 0.506 0.484 0.445

Contact-lenses 0.069 0.069 0.052

Credit-a 1.000 1.000 1.000

Dermatology 0.838 0.808 0.761

Glass 0.738 0.675 0.562

Haberman 0.427 0.392 0.327

Hayes-roth 0.388 0.313 0.210

Ionosphere 1.000 1.000 1.000

Iris 0.902 0.879 0.834

Labor 0.628 0.567 0.401

Mushroom 0.967 0.966 0.964

Pima-indians 1.000 1.000 1.000

Soybean 0.724 0.713 0.689

Tic-tac-toe 0.493 0.446 0.311

Wisconsin 1.000 1.000 1.000

Yeast 0.687 0.673 0.647

Zoo 0.600 0.582 0.524

8.3.2 Validating Quality Measures

We can build on the instantiation of our model that we used in the previous
section to solve problem 2 from Section 8.1: validating quality measures.
We select 12 quality measures for single discrete targets that are quite
common in Subgroup Discovery, and test them against each other. The
measures are WRAcc, |WRAcc|, χ2, Confidence, Purity, Jaccard, Specificity,
Sensitivity, Laplace, F-measure, G-measure, and Correlation. Details on
these measures and their origins can be found in the paper by Fürnkranz
and Flach [35].
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Table 8.3: Average ranks of the quality measures.

All datasets Binary target
Measure q = 1 q = 100 q = 1 q = 100

χ2 4.435 4.038 4.694 3.889

Jaccard 5.224 5.622 5.361 7.028

Correlation 5.235 4.679 5.361 4.667

|WRAcc| 5.288 4.571 5.306 4.333

G-measure 5.312 5.538 5.417 6.750

F-measure 5.582 5.718 5.250 6.778

WRAcc 5.800 5.027 5.417 4.722

Confidence 6.506 6.865 7.333 7.028

Laplace 6.553 6.654 7.278 6.139

Specificity 7.465 8.455 8.306 7.806

Purity 10.235 10.141 8.389 7.361

Sensitivity 10.365 10.692 9.889 11.500

χ2F (α = 1%) 261.916 292.001 40.674 57.618

CD (α = 1%) 2.069 2.160 4.496 4.496

For each dataset, we perform steps I and II of our method in the same way
as in the previous section, with each of the 12 quality measures. We then
compare the measures in step III by comparing the p-values of the q best
descriptions, for both q = 1 and q = 100 (for q = 100 we take the average p-
values over the top-100 descriptions). Hence for all measures we obtain for
both choices of q one test score for each combination of dataset and target
value within that dataset. For q = 1 this leads to a grand total of 85 test
scores for each quality measure. On both the Car and the Contact-lenses
dataset, no 100 descriptions are found that satisfy the minsup constraint.
Hence there are no results on these datasets for q = 100, leaving a total of
78 test cases for q = 100.

The measures are subsequently ranked, where a lower test score (p-value)
is better. The resulting average ranks can be found in the second and third
columns of Table 8.3. This table also displays the results of the Friedman
tests, the values for χ2F. With a significance level of α = 1% we need χ2F
to be at least 24.73 to reject the null hypothesis that all quality measures
perform equally well. Hence we comfortably pass this test.
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Since the Friedman test is passed, we can now perform Nemenyi tests to
see which quality measures outperform others. For the q = 1 setting, the
critical difference CD equals 2.069 with significance level α = 1%. For
each pair of measures we compute from Table 8.3 whether their difference
is larger than CD, and if so, the one with the smaller average rank is
better than the other. The corresponding CD chart [19] can be found in
Figure 8.2. Such a chart features a horizontal bar of length CD for each
quality measure ϕi, starting at its average rank. Hence ϕi is significantly
better than each quality measure whose bar starts to the right of the bar
of ϕi. For instance, in Figure 8.2 we see that χ2 is significantly better than
Laplace, Specificity, Purity, and Sensitivity. Figure 8.3 displays the CD
chart for the q = 100 setting.

When we have a dataset with many distinct target values, we repeatedly
let one of the target values correspond to positive examples and the rest
to negative examples. Hence the more distinct target values we have, the
lower the average fraction of positive examples in the dataset. To see
whether certain quality measures suffer from this effect, we also computed
the average ranks considering only the 9 datasets with a binary target.
The results can be found in the last two columns of Table 8.3. Again, the
average ranks easily pass the Friedman test. Now that we have only 18
test cases, the critical difference for the Nemenyi test becomes CD = 4.496

with significance level α = 1%.

8.3.3 Validating EMM Results

So far we have illustrated our method with measures for Subgroup Dis-
covery over a single discrete target. We now turn to the variant of EMM
with the correlation between two targets as model class, as introduced in
Chapter 4. In that chapter, we introduced three quality measures for the
problem: ϕabs, ϕent, and ϕscd. We validate these measures, together with
some simpler measures that do not explicitly compare multiple models, but
rather simply search for descriptions maximizing one particular quantity.
For such quantities we consider a high positive correlation, by maximizing
r̂, a high negative correlation, by maximizing −r̂, a high positive or negative
correlation, by maximizing r̂2, and a near-zero correlation, by maximizing
−r̂2. Notice that these four measures do not take the correlation on the
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Table 8.4: Average ranks for correlation model measures.

Measure Average rank
ϕent 1.75

r̂ 3.00

r̂2 3.75

ϕabs 4.25

−r̂ 4.75

−r̂2 5.25

ϕscd 5.25

χ2F 21.96

CD (α = 1%) 4.114

whole dataset or the correlation on the complement into account. Hence
they do not comply with the EMM quality measure design guidelines we
outlined in Section 3.2.

We validate the 7 measures for this setting on the datasets and target
concepts introduced in Table 4.1. The resulting average ranks over the
2 datasets — Windsor Housing and Affymetrix — can be found in Ta-
ble 8.4. The Friedman test value for these ranks is χ2F = 21.96, where 16.81
would be enough with 7measures, so we can proceed with the Nemenyi test.
The critical difference is CD = 4.114 with significance level α = 10% when
testing 7 measures on 4 test cases (aggregating over the results for q = 1

and q = 100). In these modest experiments, we find that no significant
conclusions can be drawn.

8.4 Discussion

The previous section summarized the results experimentally obtained with
our new method; in this section we will interpret them. We start with
the results obtained by the technique for validating descriptions in a set S
found through SD/EMM.
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8.4.1 Validating Descriptions

From Table 8.2 we find that we cannot refute any descriptions from S in
several datasets: Adult, Credit-a, Ionosphere, Pima-indians, and Wis-
consin. To explain this result, we craft a metalearning dataset from Tables
8.1 and 8.2. We select the columns from Table 8.1 as descriptors of our
metalearning dataset, and add three new columns, representing the to-
tal number of descriptors in the dataset, a boolean column representing
whether the dataset has discrete descriptors, and a boolean column repre-
senting whether the dataset has numeric descriptors. As target column we
add the last column of Table 8.2: the fraction of descriptions retained when
insignificant descriptions are removed, with significance level α = 1%. On
this metalearning dataset we perform a shallow (using search depth d = 1)
but exhaustive Subgroup Discovery run, using Klösgen’s mean test [55] as
quality measure. The resulting metadescriptions should consist of those
datasets with a relatively high fraction of kept descriptions.

The best metadescription is defined by the condition that the datasets have
more than five numeric descriptors. The eight datasets covered by this
metadescription are Adult, Credit-a, Glass, Ionosphere, Labor, Pima-
indians, Wisconsin, and Yeast. This set encompasses all datasets for
which we cannot refute any of the descriptions from S. This makes sense,
since for each dataset we have only considered the top-1000 descriptions, a
fixed number independent of dataset characteristics. Numeric descriptors
usually have many different values, resulting in a hypothesis space that
is much larger than it would have been if the descriptors were discrete.
Hence in datasets with relatively many numeric descriptors, it is more
likely that the 1000 best descriptions represent relatively rare spikes in a
quality distribution consisting mainly of low values. Therefore it is less
likely that the random baseline incorporates some of these spikes, and thus
the baseline is more likely to be relatively weak.

8.4.2 Validating Quality Measures

The results we obtained by the technique for validating quality measures
show that χ2 achieves the best performance of all quality measures in distin-
guishing the top-q descriptions from false discoveries. Many of the relations
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between quality measures, however, are not significant. For q = 1, all other
quality measures perform significantly better than Purity and Sensitivity.
Additionally, Specificity performs significantly worse than Jaccard, Cor-
relation, |WRAcc|, and the G-measure, and χ2 significantly outperforms
Laplace.

For q = 100, we see some slight changes: χ2 and |WRAcc| now also perform
significantly better than Confidence, and Specificity is now additionally
outperformed by the F-measure and WRAcc while it no longer performs
significantly better than Purity. Finally, Correlation significantly outper-
forms Confidence. Obviously, some measures might be better than others
in distinguishing the top-q descriptions from false discoveries when q = 1,
while others might be better when q = 100. The observed changes are not
very dramatic, and we consider the selection of q a user-derived parameter
in the method.

One of the significant relations that seems somewhat peculiar, is the re-
sult that for both q = 1 and q = 100, Confidence performs significantly
better than Purity, while the latter is defined to be max{Confidence, 1 −
Confidence}. While there may be a good theoretical reason to consider the
Purity of a description, we can see from the definition that Purity has a
lower bound of 0.5, hence the random baseline will generate higher values
with Purity than with Confidence. Apparently the quality of the descrip-
tions found with Purity does not increase enough compared to those found
with Confidence to compensate for this effect.

By comparing the second and third columns of Table 8.3 with the last two
columns, we can see that |WRAcc|, WRAcc, and particularly Purity per-
form better when we restrict the tests to datasets with a binary target.
These measures benefit from the fact that in these test cases we have a
better balance between positive and negative examples in the data, com-
pared to test cases on other datasets. We can also read from the table
that we have fewer measures that are significantly better than others on
datasets with a binary target. This is mainly because significance is hard
to achieve in an experiment with only 18 test cases as opposed to 85 or 78
on all datasets. With 18 test cases, the critical difference for the Nemenyi
test with significance level α = 1% is CD = 4.496, rather than CD = 2.069

with 85 test cases. Since the average ranks range from 1 to 12, a critical
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difference of 4.496 is substantial. More significant difference relations be-
tween the quality measures can be expected when experiments would be
performed on more datasets with a binary target.

8.4.3 Validating EMM Results

The results for the EMM variant were generated on a modest number of
test cases. As a result, the critical difference for the Nemenyi test is quite
high, and one could not expect to find many significant results. Extensive
experimentation may give a significant reason to prefer one measure over
another in this setting. For now, what matters is that this illustrates that
our method is applicable in more general settings than just traditional
Subgroup Discovery.

Another noteworthy result, albeit non-significant, is the empirical illustra-
tion that a difference quantification is not always enough to make a good
quality measure for EMM, as announced in Section 3.2.2. We had stated
that deviations from the norm are easily achieved in small subsets of the
data. Hence, quality measures that evaluate merely on the difference in
model characteristics, such as ϕabs, will favor relatively small descriptions.
It is relatively easy to find a small description with a high value for such
a quality measure on swap-randomized data as well. This effect can be
mitigated by incorporating an entropy term in the quality measure, as we
have done with ϕent. Recall that ϕent = ϕabs · ϕef. As can be seen in
Table 8.4, the incorporation of the entropy term can lift a quality measure
with mediocre performance (ϕabs) in distinguishing real from false discov-
eries, to top-level performance (ϕent).

8.5 Related Work

Statistical validation specifically tailored for Subgroup Discovery barely
exists. Fortunately, many techniques for statistical validation in local pat-
tern mining settings, which have been developed ever since association
rules were invented, are applicable in Subgroup Discovery. Most of the
recent approaches employ empirical p-values, as shortly introduced in Sec-
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tion 8.3. This method has been applied in papers concerning significant
query results on multi-relational databases [85] and swap randomization
on high-dimensional 0/1 datasets [43]. In many circumstances, the use of
empirical p-values is very appropriate. However, we attempt to validate de-
scriptions with a high quality by comparing them to random descriptions
that are expected to have a more moderate quality. Since we are trying to
validate outliers in the quality measure distribution, in many cases we will
find empirical p-values to be zero for many measures, hence they are not
very useful for comparing the measures with each other.

A method that assigns nonempirical p-values to single association rules has
been proposed by Megiddo and Srikant [79]. They use random approxima-
tion techniques to assign significance to single association rules and sets of
associations. Unfortunately, their choice of underlying distribution is not
motivated in any way.

Quality measures exist for Subgroup Discovery that directly implement a
statistical significance test. For instance, one can show that Klösgen’s mean
test

(√
n (p− p0)

)
[55] is order-equivalent to a t-test. Also well suited for

Subgroup Discovery is the chi-squared
(
χ2
)
measure [98], originally defined

for association rules. While such quality measures automatically statisti-
cally validate single descriptions, their application in Subgroup Discovery
and hence use in a vast search space will invariably suffer from the multiple
comparison problem, and hence the results will fall prey to the problem we
attempt to solve in this chapter.

Tan et al. have developed a method [101] to compare quality measures
on contingency tables by intrinsic properties. The results this method
delivers are somewhat inconclusive, hence the method relies on experts to
decide which measure is to be preferred. Also, the method seems not to be
extendable beyond k-way contingency tables.

Finally, Webb devised a procedure to assign significance to individual de-
scriptions [112]. He gives two different ways to perform a Bonferroni-style
adjustment to the significance level: direct adjustment, and an approach
that is very similar to the train-and-test-set procedure known from the
determination of the predictive accuracy of a classifier. As is typical for
Bonferroni correction, the adjustments may be a bit too strict. This espe-
cially holds when the search space becomes very large, for instance when
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dealing with numeric descriptors. When applying a Bonferroni correction
one assumes that the different hypotheses are independent, which in a Sub-
group Discovery setting is not the case, leading to too strict adjustments
to the significance level. Also, rather than being a method that assigns
significance to descriptions, Webb’s work is more a framework that can be
used with any statistical hypothesis test.

8.6 Conclusions

We propose a method that deals with the multiple comparisons problem
in SD/EMM, i.e. the problem that when exploring a vast search space one
basically considers many candidates for a statistical hypothesis, hence one
will inevitably incorrectly label some candidates as passing the test. Our
method tackles this problem by building a statistical model for the false dis-
coveries: the Distribution of False Discoveries (DFD). This distribution
is generated by, given a dataset and quality measure, repeatedly running
an SD/EMM algorithm on a swap-randomized version of the data. In this
swap-randomized version, while the distribution of each target is main-
tained, the correlations with the descriptors and the correlations between
targets are destroyed. Hence the best description discovered on this dataset
represents a false discovery. The DFD is then determined by applying the
central limit theorem to the qualities of these false discoveries.

Having determined the DFD, one can solve many practical problems preva-
lent in SD/EMM. For any discovered description, one can determine a p-
value corresponding to the null hypothesis that it is generated by the DFD;
refuting this null hypothesis implies that the description is not a false dis-
covery. Given a set of quality measures, one can use the DFD to determine
which quality measures are better than others in distinguishing the top-q
descriptions from false discoveries. This gives an objective criterion for se-
lecting a quality measure that is more likely to produce exceptional results.
Finally, given some desired significance level α, one could extract from the
DFD a minimum threshold for the quality measure at hand.

When validating single descriptions, we see that our method removes in-
significant descriptions found on datasets that have few numeric descrip-
tors. From metalearning we find that on large datasets, for instance with
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more than five numeric descriptors, the random baseline is more likely to
accept many descriptions. This is reasonable because of the associated
larger hypothesis space. Table 8.2 shows that our method can remove in-
significant descriptions on some of the datasets with more than five numeric
descriptors, but not on all of them.

When we validate quality measures, we have outlined that the method
we described determines the extent to which a quality measure is also
an exceptionality measure. We have seen that of the twelve measures for
Subgroup Discovery we tested, χ2 is the best exceptionality measure, and
Purity and Sensitivity are by far the worst. For the EMM correlation
model variant no significant conclusions can be drawn from the modest
experiments.

In this chapter we have presented a technique making extensive use of swap
randomization. Notice that we do not by any means claim to have invented
this particular randomization method. Also, its use in step I of the method
we introduced in this chapter is not the only option available. We have ex-
tensively explained why using swap-randomized data leads to a good model
for false discoveries, but it comes at a price: for every result of an SD/EMM
run one wishes to validate, one has to run the same SD/EMM algorithm
an additional x times, where x needs to be large enough to satisfy the con-
straints of the Central Limit Theorem. In the more traditional Subgroup
Discovery setting, one can usually afford this extra computation time. For
more complex settings, for instance the EMM variant using Bayesian net-
works introduced in Chapter 6, this becomes problematic. When compu-
tation time becomes an issue, one might consider different randomization
techniques to generate B1, . . . , Bx, for instance by simply drawing a random
sample from Ω of a certain size for each Bi. Before such a technique can be
employed, its theoretical ramifications need to be explored. In future work,
we also plan to empirically investigate the effect of certain parameters on
the outcome of the method.

Another randomization-related point that is worthy of further investiga-
tion, is induced by the general applicability of the validation method be-
yond traditional Subgroup Discovery. Most of the experiments run in this
chapter concern SD. In this setting, the exact implementation of swap-
randomizing the target is clear-cut, as well as its philosophical implica-
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tions: there is only one target to be permuted, and doing this breaks all
connections between target and descriptors while keeping the target distri-
bution intact. By contrast, in Exceptional Model Mining, there are multiple
targets. Swap-randomizing these targets can be done in two straightfor-
ward ways, whose philosophical implications are unclear. In Section 8.2.1,
we outlined how each target column is permuted independently from the
other target columns. This ensures that connections between targets and
descriptors are broken, while keeping themarginal distribution of each tar-
get intact. However, the joint distribution over the targets is broken. This
last effect can be prevented by the design choice to swap-randomize the
targets not independently, but jointly: we generate only one permutation,
and apply that same permutation to every target column.

The goal of EMM is to measure unusual interactions between several tar-
gets. Hence, on first glance, it seems preferable to maintain the joint dis-
tribution over the targets when swap-randomizing. However, more specif-
ically, EMM strives to find subgroups coinciding with unusual target in-
teractions, where these interactions are gauged in terms of some kind of
modeling over the targets. The subgroups are based on coherent descrip-
tions: conditions on a few descriptive attributes of the dataset. Depending
on the model class under consideration, the descriptive attributes may be
representing latent variables that actually should have been present (for in-
stance as a dummy variable) in our model. In fact, the subsequent chapter
concerns an application of representing found subgroups in a global model.
In this light, it becomes unclear to assess whether it still makes sense to
simultaneouslymaintain the internal connections between the targets, and
break the connections between targets and descriptors. Though breaking
the joint target distribution, swap-randomizing targets independently at
least has clear philosophical implications. Further study is needed regard-
ing both the theoretical foundations and empirical consequences of choosing
one of these swap randomization variants.


