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Chapter 7

Different Slopes for Different Folks –
Regression Model

In Chapter 2, we have discussed the Giffen effect. This effect concerns cir-
cumstances under which the economic law of demand is broken. Normally,
all else equal, demand for a product will decrease if its price increases.
However, given certain conditions on the different kinds and relative prices
of available food sources (cf. Chapter 2), this relation reverses for the poor
but not too poor households: for them the demand for a certain prod-
uct will increase if its price increases. The relation between price of and
demand for products is captured by a regression model.

Inspired by this example, we consider the Exceptional Model Mining in-
stance with regression as model class: seeking descriptions for which (a
subset of) the parameter vector β significantly deviates from the parameter
vector estimated on the whole dataset. The targets `1, . . . , `m are internally
supervised: `m is the output of the regression model, and `1, . . . , `m−1 are
the input variables. Formally, we learn the model Y = Xβ + ε, where Y is
the N × 1 vector1 of `m-values from our dataset, and X is the N ×m full
rank matrix of which column 1 consists of N times the value 1 (representing
the intercept in the regression model) and the other columns contain the
`i-values from our dataset. So, in matrix form, we have

1We explicitly give both dimensions of all vectors for two reasons: on the one hand, to
clearly indicate whether the vector comes in row or column form; on the other hand, to
facilitate checking that the dimensions match in subsequent matrix products.
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70 CHAPTER 7. REGRESSION MODEL

Y =




`1m
`2m
...
`Nm


 X =




1 `11 `12 · · · `1m−1

1 `21 `22 · · · `2m−1
...

...
... . . . ...

1 `N1 `N2 · · · `Nm−1


 Y = Xβ+ ε

Here, β is the m × 1 vector of the unknown regression parameters, and ε
is the N× 1 vector of randomly distributed errors such that E(ε) = 0 and
Var(ε) = diag(σ2I) (where I denotes the N×N identity matrix).

Given an estimate of the vector β, denoted β̂, one can compute the vector of
fitted values Ŷ. These quantities can be used to assess the appropriateness
of the fitted model, by looking at the residuals e = Y− Ŷ. We will estimate
β with the ordinary least squares method, which minimizes the sum of
squared residuals. This leads [41] to the estimate

β̂ =
(
β̂i
)
=
(
X>X

)−1
X>Y

After computing the vector of fitted values, we find that we can now write
the corresponding residual vector as

e = (ei) = Y − Ŷ =
(
I− X

(
X>X

)−1
X>
)
Y

We will denote a part of this equation by V, i.e.

V = (vij) = X
(
X>X

)−1
X>

This matrix was dubbed the hat matrix by John W. Tukey, since Ŷ = V Y,
i.e. the hat matrix transforms Y into Ŷ [51].

7.1 Quality Measure ϕCook

In order to define a proper quality measure for comparing estimated pa-
rameter vectors, we need to take into account the variance of the estimator
β̂, and the covariances between β̂i and β̂j. For example, if β̂i has a large
variance compared to β̂j, then a given change in β̂i should contribute less
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to the overall quality than the same change in β̂j, because the change in β̂i
is more likely to be caused by random variation. This suggest that

(
β̂G − β̂

)> [
Cov

(
β̂
)]−1 (

β̂G − β̂
)

might be a better distance measure than the normal Euclidian distance. In
fact this expression is equivalent to Cook’s distance up to a constant scale
factor. Cook originally introduced his distance [13] in 1977 for determining
the contribution of single records to β̂. He states that according to normal
theory [42], the (1−α)×100% confidence ellipsoid for the unknown vector,
β, is given by the set of all vectors β∗ satisfying

(
β∗ − β̂

)> [
Ĉov

(
β̂
)]−1 (

β∗ − β̂
)

m
=

(
β∗ − β̂

)>
X>X

(
β∗ − β̂

)

ms2
≤ F(m,N−m, 1− α)

where

s2 =
e>e

N−m
Ĉov

(
β̂
)
= s2

(
X>X

)−1

and F(m,N − m, 1 − α) is the 1 − α probability point of the central F-
distribution withm and N−m degrees of freedom. Here, s2 is the unbiased
estimator for σ2.

We can exploit the confidence ellipsoid and F-distribution to define a qual-
ity measure suitable for the current EMM instance, with some desirable
properties. On the one hand, it respects the (co-)variances present in the
data, as discussed at the beginning of this section. On the other hand,
it comes with theoretical upper bounds that can be utilized to prune the
search space, as we will discuss in Section 7.3. To arrive at the definition
of the quality measure, however, we first need to determine the degree of
influence of single records on the parameter vector. Then we will discuss
generalizing this to the influence of deleting multiple records simultane-
ously. After that, we can give the definition.

Suppose we want to know how a single record ri influences β̂. Then one
could naturally compute the least squares estimate for β with the record
removed from the dataset. Let us denote this estimate by β̂(i). We can
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adapt the confidence ellipsoid as an easily interpretable measure of the
distance between β̂(i) and β̂. Hence, Cook’s distance is defined as

∆i =

(
β̂(i) − β̂

)>
X>X

(
β̂(i) − β̂

)

ms2

Suppose for example that for a certain record ri we find that ∆i ≈ F(m,N−

m, 0.5). Then removing ri moves the least squares estimate to the edge of
the 50% confidence region for β based on β̂.

Cook and Weisberg extended Cook’s distance to the case where multiple
records are deleted simultaneously [14]. Let I be a vector of indices that
specify the h records to be deleted. From now on, we let the subscript
(I) denote “with the h cases indexed by I deleted”, while the subscript I
without parentheses denotes “with only the h cases indexed by I remaining”.
The only notation that deviates from this rule of thumb is the definition
of Cook’s distance for multiple observations, which becomes

∆I =

(
β̂(I) − β̂

)>
X>X

(
β̂(I) − β̂

)

ms2
(7.1)

Its geometric interpretation is identical to the geometrical interpretation of
∆i. Any subset that has a large joint influence on the estimation of β will
result in a large ∆I.

The fact that the definition of Cook’s distance does not follow the no-
tational rule of thumb can be very confusing. We choose to retain the
definition in this form to make our work compatible with previously re-
leased papers and books. However, it is important to stress the notational
anomaly: whenever we write DI, Cook’s distance is computed for the case
where the records indexed by I are deleted. Whenever we write anything
else with a subscript I, it is computed for the case where the records in-
dexed by I are retained, and all other records are deleted.

For practical purposes one might not be interested in computing Cook’s
distance based on the entire parameter vector β̂. For instance, one might
be interested in the influence records have on the regression coefficient
corresponding to one particular attribute, while excluding the intercept
and other coefficients from the evaluation. To this end, Cook and Weisberg
[15] introduce the zero/one-matrix Z, with dimensions m ′ ×m, where m ′
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is the number of elements of β̂ that we are interested in (hence m ′ ≤ m).
The matrix Z is defined in such a way that ψ = Zβ are the coefficients of
interest. Hence, if we are interested in the last m ′ elements of β̂, Z will
start from the left with m−m ′ columns containing all zeroes, followed by
a m ′ ×m ′ identity matrix (Z = (0, Im ′)).

When using this transformation, Cook’s distance (Equation (7.1)) becomes

∆ψI =

(
β̂(I) − β̂

)>
Z>
(
Z
(
X>X

)−1
Z>
)−1

Z
(
β̂(I) − β̂

)

m ′s2

Since Cook’s distance is invariant to changes in scale of the variables in-
volved [13], it would make an excellent quality measure for use in EMM

Definition (ϕCook). Let D be a description. Its quality according to Cook’s
distance is given by

ϕCook(D) = ∆ψI , where I =
{
i
∣∣ ri ∈ Ω, D

(
ai1, . . . , a

i
k

)
= 0
}

The quality of a description according to Cook’s distance is the distance
bridged when the records not covered by the description are simultane-
ously discarded. Hence, Cook’s distance is computed for the case where
the records covered by the description D are retained.

7.2 Experiments

7.2.1 Datasets

The Giffen Behavior dataset was used for a study that provided the first
real-world evidence of Giffen behavior, i.e. an upward sloping demand curve
[77]. As common sense suggests, the demand for a product will normally
decrease as its price increases. According to economic textbooks, there are
circumstances however, for which the demand curve should slope upward.
The common example is that of poor families that spend most of their
income on a relatively inexpensive staple food (e.g. rice or wheat) and a
small part on a more expensive type of food (e.g. meat). If the price of the
staple food rises, people can no longer afford to supplement their diet with
the more expensive food, and must consume more of the staple food.
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The dataset we analyze [53] was collected in a field study in different coun-
ties in the Chinese province Hunan, where rice is the staple food. The
price changes were brought about by subsidizing the purchase of rice. Each
household was randomly assigned to either a control group, or one of three
treatment groups. Households in the treatment groups were given vouch-
ers worth U0.10, U0.20, or U0.30, redeemable at selected vendors for a
reduction off the price of each jin (1 jin equals 500 grams) of rice. The
average price of rice in Hunan is U1.20 per jin, so the vouchers represented
substantial price changes. The programme provided vouchers for a time
period of five months, and subsidized for each person an amount of rice,
equal to roughly twice the average per capita consumption.

Data were gathered on three points in time: before the voucher programme
started, while the voucher programme was running, and after the voucher
programme had ended. Hence, for each household, two changes are ob-
served: the change between the first and second period (t = 2), capturing
the effect of giving the subsidy; and the change between the second and
third period (t = 3), capturing the effect of removing the subsidy. The
global model estimated in [53] is

%∆staplei,t = β0+β1%∆pi,t+
∑

β2%∆Zi,t+
∑

β3County×Timei,t+∆εi,t

where %∆staplei,t denotes the percent change in household i’s consumption
of rice, %∆pi,t is the percent change in the price of rice due to the subsidy
(negative for t = 2 and positive for t = 3), %∆Zi,t is a vector of percent
changes in other control variables including income and household size, and
County × Time denotes a set of dummy variables included to control for
any county-level factors that change over time. For further details about
the design of the study and the estimation strategy, we refer to [53].

The Ames Housing dataset contains information from the Ames Assessor’s
Office used in computing assessed values for individual residential proper-
ties sold in Ames, Iowa from 2006 to 2010. It consists of 2930 observations
on 82 variables. The global model is

Price = β0 + β1 × Lot Area+ β2 ×Quality

where Price is the sales price of the house in dollars, Lot Area is the lot
size in square feet, and Quality rates the overall material and finish of the
house on a scale from 1 to 10.
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The Auction dataset was analyzed in [93]. It concerns eBay auctions of
Apple iPod mini players from June 27 to July 18, 2006. The goal is to
model the final price reached in the auction in terms of auction, seller, and
product characteristics. The global model is

Price = β0 + β1 ×Nbid+ β2 × PositiveFeedback+ β3 ×Time

+ β4 × FeedbackScore+ β5 ×Memory+ β6 ×ResPrice

where Price is the final price of the auction in US dollars, Nbid is the
number of distinct people who bid in the auction, PositiveFeedback is the
seller’s positive feedback percentage (the coefficient is nonzero from the
fourth decimal place), Time is the time of he final bid expressed in seconds
after Dec. 31 1969, 22:00:00 PDT (the coefficient is nonzero from the fifth
decimal place), FeedbackScore is the seller’s feedback score, Memory is
the reported memory of the iPod in gigabytes, and ResPrice is the auction
reservation price in US dollars.

The EAEF dataset was extracted from the National Longitudinal Survey
of Youth 1979 (NLSY79). It contains information about hourly earnings of
men and women, their education, and other information. For more details,
see [22, Appendix B]. We fit a model relating years of schooling and years
of work experience to earnings in US dollars per hour. The model fitted on
the whole dataset is

Earnings = β0 + β1 ×YrsOfSchool+ β2 ×YrsWorkExp

The Personal Computer dataset was analyzed in [99]. The data was
collected from advertisements in PC Magazine. Each observation consists
of the advertised price and features of personal computers. We have learned
the following model from the complete dataset

Price = β0 + β1 × Spd+ β2 ×HD+ β3 ×RAM

+ β4 × Scr+ β5 ×Ads+ β6 ×Trend

where Price is the price in US dollars of a 486 PC, Spd is the clock speed
in MHz, HD is the size of the hard drive in MB, RAM is the size of RAM
in MB, Scr is the size of the screen in inches, Ads is the number of 486
price listings in the month the advertisement was placed, and Trend is a
time trend starting from January of 1993 to November of 1995.
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Table 7.1: Statistics concerning the datasets used in the Regression Model
experiments. Here, N is the total number of records, k is the number of
descriptive attributes , and m is the number of coefficients in the fitted
regression model.

Dataset Domain N k m

Ames Housing Residential property value 2930 77 3

Auction eBay auctions 1225 3 7

EAEF Employment 2714 32 3

Giffen Behavior Food economics 1254 6 16

Personal Computer PC pricing 6259 3 7

Wine Wine pricing 5000 6 4

Finally, the Wine dataset was analyzed in [16]. It is composed of 9600
observations derived from 10 years (1991–2000) of tasting ratings reported
in the Wine Spectator Magazine (online version) for California and Wash-
ington red wines. Our analysis uses a random sample of size 5000 from the
original data. For a detailed description of the data we refer to [16]. The
global model is

Price = β0 + β1 ×Cases+ β2 × Score+ β3 ×Age

where Price is the retail price suggested by the winery, Score is the score
from the Wine Spectator, Age is the years of aging before commercializa-
tion, and Cases is the number of cases produced (in thousands). All coef-
ficients have the sign that one would expect based on common sense.

Table 7.1 lists some elementary properties of these datasets.

7.2.2 Experimental Results

Giffen Behavior Data

The global model estimated on the Giffen Behavior dataset is

%∆staplei,t = β0+β1%∆pi,t+
∑

β2%∆Zi,t+
∑

β3County×Timei,t+∆εi,t

The coefficient of primary interest is β1. If β1 > 0 we observe Giffen
behavior. The other variables are included in the model to control for other
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possible influences on demand, so that the effect of price can be reliably
estimated. Therefore it makes sense to restrict our quality measure to the
coefficient β1.

The authors of [53] suggest that for the extremely poor, one might not
observe Giffen behavior, because they consumed rice almost exclusively
anyway, and therefore have no other possibility than buying less of it in
case of a price increase. The Initial Staple Calorie Share (ISCS) was
also measured in the study, and the hypothesis is that families with a
high value for this variable do not display Giffen behavior. The authors
of [53] tried different manually selected thresholds on ISCS ; for example,
for the subgroup of households with ISCS > 0.8, indeed it is observed
that β̂1 = −0.585 (no Giffen behavior) whereas for ISCS ≤ 0.8 they find
β̂1 = 0.466 (Giffen behavior).

We analyzed this dataset with ISCS as one of the descriptive attributes.
The best description we found was D14 : ISCS ≥ 0.87 with β̂1 = −0.96

(against β̂1 = 0.22 for the complete dataset). The coverage of this de-
scription is |G14| = 106 (3.9%). This confirms the conclusion that Giffen
behavior does not occur for families that almost exclusively consume rice
anyway. This conclusion can also be reached by defining subgroups on
income per capita rather than ISCS. Particularly illustrative examples
are the 4th-ranked description D15 : Income per Capita ≤ 64.67, with a
slope of −0.41, and the 6th-ranked description D16 : Income per Capita
≥ 803.75, with a slope of 0.79 (strong Giffen behavior).

Ames Housing Data

The global model for the Ames Housing dataset is

Price = −108225.05+ 1.93× Lot Area+ 44201.87×Quality

By far the most deviating description we find is D17, where the building
type is a ‘townhouse inside unit’. For D17, the learned model is

Price = −17674.20+ 24.62× Lot Area+ 15786.88×Quality

The coverage of this description is |G17| = 101 (3.4%). The dependence
of Price on Lot Area is much stronger for town houses, whereas the de-
pendence of price on overall Quality is less strong than in general. In an
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attempt to explain this pattern, we note that the average lot area of town
houses (2353 square feet) is much smaller than the overall average (10148
square feet) which is largely determined by the predominant building type
‘single family detached’. Furthermore, it stands to reason that for town-
houses a larger part of the lot area is actually occupied by the house itself
than for the single family detached houses. This is consistent with a much
stronger dependence of their price on the lot area.

EAEF Data

The global model fitted on the EAEF dataset is

Earnings = −29.15+ 2.78×YrsOfSchool+ 0.63×YrsWorkExp

The 4th ranked description we found was D18 : COLLBARG = 1, meaning
that the pay was set by collective bargaining. The learned model for this
description with coverage |G18| = 533 (19.6%) is

Earnings = −8.93+ 1.57×YrsOfSchool+ 0.43×YrsWorkExp

This suggests that for this group an extra year of schooling on average leads
to an increase of just $1.57 in hourly earnings, compared to $2.78 for the
whole dataset. The same is true for the influence of an extra year of work
experience: just $0.43 for the collective bargaining subgroup, against $0.63
in the complete dataset. This is consistent with the finding that unions
tend to equalize the income distribution, especially between skilled and
unskilled workers [1].

Personal Computer Data

The global model for the Personal Computer dataset is

Price =− 246.68+ 8.89× Spd+ 0.71×HD+ 47.39×RAM

+ 126.70× Scr+ 0.97×Ads− 47.08×Trend

By far the most important attribute for defining descriptions was whether
or not the company was a premium firm (IBM or COMPAQ). The most
deviating description was D19, the non-premium firms, with model
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Price =− 2130.21+ 13.15× Spd+ 2.31×HD+ 22.20×RAM

+ 252.80× Scr+ 0.79×Ads− 46.45×Trend

The coverage of this description is |G19| = 612 (9.8%). We get the clear-
est picture when we contrast this with the regression model fitted to the
premium firms, which is

Price = 165.69+ 8.50× Spd+ 0.67×HD+ 53.66×RAM

+ 99.96× Scr+ 0.65×Ads− 47.87×Trend

The coverage of this description is |GC19| = 5647 (90.2%). We find mostly
reasonable behavior in these subgroups: the price of computers from pre-
mium firms is based on a far higher intercept, since the premium brand
name ensures a vast price upkeep. Consequently, other factors have a
substantially smaller impact on the price than for computers from non-
premium firms. Oddly, the size of RAM memory does matter more strongly
for premium brands than for non-premium brands.

Wine Data

On the Wine dataset, the global model is

Price = −186.61− 0.0002×Cases+ 2.35× Score+ 5.51×Age

The most deviating description is D20 : Variety = ‘Non-varietal’ (alter-
natives are ‘Pinot noir’, ‘Cabernet’, ‘Merlot’, ‘Zinfandel’ and ‘Syrah’).
The regression model for D20 is

Price = −341.92− 0.0004×Cases+ 4.16× Score+ 7.22×Age

‘Non-varietal’ means that multiple varieties of grapes are used, and on
average these wines are more expensive than the single-variety wines (av-
erage price of $44.16 against $28.89). People buying those more expensive
wines tend to be better informed (e.g. read Wine Spectator Magazine) than
the average buyer. This explains to a certain extent why the price of those
more expensive wines is more sensitive to its score and age: their buyers
are more critical.
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7.3 Pruning with Bounds for Cook’s Distance

Cook’s distance is a theoretically well-founded quality measure for mining
descriptions for which the slope vector deviates. The bad news is that its
computation involves the computation of β̂G, which implies that we need to
invert a matrix for each candidate description. This is computationally very
expensive. Fortunately, some upper bounds have been derived for Cook’s
distance, which we can use to discard some candidates without having to
invert a matrix.

The upper bounds for Cook’s distance are derived [15, p. 136] by rewriting
the numerator of the right hand side of Equation (7.1) in terms of eI and
VI. Then the spectral decomposition of VI is used, rewriting the sub-matrix
of the hat matrix in terms of its eigenvalues and eigenvectors. We denote
those eigenvalues by λ1, . . . , λh, and can assume without loss of generality
that 0 ≤ λ1 ≤ . . . ≤ λh ≤ 1. Notice that if the last inequality is not
strict, i.e. λh = 1, then removing the records indexed by I would lead to a
rank deficient model, and we cannot properly perform the linear regression.
Finally, a proper approximation for these λi is required; Cook proposes to
use tr (VI) here, but notes that this is only a good approximation under
the condition that tr (VI) < 1. Assuming that this condition holds, we can
bound DI by

DI ≤
tr (VI)

(1− tr (VI))
2
·
∑

i∈I e
2
i

ms2
(7.2)

Unfortunately, this bound is potentially different for each I. Cook also
gives bounds that hold for all subsets I of a fixed size h. When we fix h
and let I vary over all such subsets, we can either use R2 = maxI

(∑
i∈I e

2
i

)
,

which turns Equation (7.2) into

DI ≤
tr (VI)

(1− tr (VI))
2
· R

2

ms2
(7.3)

or we could use T = maxI (tr (VI)), which turns Equation (7.2) into

DI ≤
T

(1− T)2
·
∑

i∈I e
2
i

ms2
(7.4)

Both estimates can be combined to turn Equation (7.2) into
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DI ≤
T

(1− T)2
· R

2

ms2
(7.5)

Rather obviously, there are relations between the bounds: bound (7.2) is
stricter than both bound (7.3) and bound (7.4), and those are both stricter
than bound (7.5).

Whenever one has the possibility to enumerate all candidate descriptions
for mining with Cook’s distance, the bounds (7.2)–(7.5) can be used for
pruning. In combination with the beam search strategy for top-q EMM,
we propose to do this in the following way.

Per search level, we enumerate all candidate descriptions in descending or-
der according to bound (7.5). Then we consider the subgroups in this order.
For each description, we compute the bounds in order of decreasing ease of
computation, i.e. first bound (7.5), then bound (7.4), then bound (7.3), and
finally bound (7.2). We check whether any of these bounds has a value that
is lower than Cook’s distance for the qth best evaluated description so far.
If so, we know that Cook’s distance for this new description can not enter
the top-q, since the bound is an upper bound for Cook’s distance. Hence
we can skip computing Cook’s distance for this description, which saves us
the computation of a relatively expensive regression. If none of the bounds
help us out, we compute Cook’s distance for the new description.

To illustrate what can reasonably be expected from pruning with the
bounds, we simulate their behavior on random subsets of the EAEF
dataset. For each possible subgroup size, we draw a random sample of
the data with that size. Then we compute the values of the bounds for
these subsets, when fitting the model

Earnings = β0 + β1 ×YrsOfSchool

The results can be found in Figure 7.1. The figure depicts the subset size
on the x-axis (linear scale), and the values of the bounds on the y-axis
(logarithmic scale).

The EAEF dataset has 2714 records, so when a subset approaches this size
it will correspond to deleting very few records, and as one would expect,
Cook’s distance becomes very small, as do the bounds. Furthermore, one
notices that the bound quality lines do not extend all the way to subset
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size 0. This is caused by limitations in the approximations used in the
bounds. As mentioned before, the bounds are only good approximations
whenever tr (VI) < 1. When this constraint is not satisfied, the bounds
cannot be computed. For bounds (7.4) and (7.5), the quantity T is used as
an estimate for tr (VI), but this too only makes sense when T < 1, or else
the bounds cannot be computed.

The practical upshot is that for subsets having less than 1960 records,
bounds (7.4) and (7.5) cannot be computed. For subsets having less than
roughly 1250 records, this also holds for bounds (7.2) and (7.3). When
viewed as a percentage of the number of records in the datasets, we find
that these borders are roughly the same over all datasets: bounds (7.2) and
(7.3) can only be computed when the subset contains at least 50% of the
records, and bounds (7.4) and (7.5) only when the subset contains at least
75% of the records. We also find that the more complex the model we fit,
the further these thresholds move towards larger percentages.

The bounds can not be computed for at least half of the subsets we con-
sider, and the bound values tend to increase enormously just before these
threshold values are reached. However, the bounds are computable for
the largest subsets, and the computation of the hat matrix is quadratic in
the subset size. Hence whenever we can prune a subset, it always takes a
relatively expensive regression computation out of the total runtime.

7.3.1 Empirical bound evaluation

To empirically see how the bounds function, we performed a depth-1 EMM
run on each dataset, with the goal to find the top-1 description. When nu-
meric attributes were used to generate candidate descriptions, we split them
into 12 equal-sized bins. We discarded any description covering fewer than
100 records, since we consider these too small to be considered interesting
from a statistical point of view. For each bound we counted how often it
was computed, and how often it caused a description to be pruned.

The results can be found in Table 7.2a. This table features the datasets,
dataset characteristics, number of times every bound is computed, number
of descriptions pruned with every bound, fraction of candidate descriptions
for which at least one bound was computable, and fraction of candidate
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descriptions that were pruned. Notice that there is a strong dependency
between the “Bound computed” and “Descriptions pruned” columns: in the
Ames Housing dataset we can compute bound (7.5) for 196 descriptions,
of which we can prune 155, so only 41 subgroups remain for which we
compute bound (7.4). However, the number of descriptions for which we
compute bound (7.3) is larger, since the condition under which this bound
is computable is less strict than the condition for bound (7.4) and (7.5).
Of the 228 descriptions for which we compute bound (7.3) we can prune
191, leaving 37 descriptions for which we compute bound (7.2).

As we indicated earlier, the fraction of descriptions for which we can com-
pute the bounds is strongly dependent on the complexity of the fitted
model. As we can see from the table, in the datasets for which 3 ≤ m ≤ 4
we can compute bounds for over 40% of the descriptions, in the datasets
for which m = 7 we can compute bounds for 33− 35% of the descriptions,
and in the dataset for which m = 16 we can compute bounds for just 1%
of the descriptions. This dependency becomes somewhat less direct when
we look at the percentage of descriptions we can actually prune, since this
is relatively low for the EAEF dataset on which we fit a relatively simple
model. However, apart from this one dataset, we still see a strong relation
between model simplicity and pruning success.

Since we are rarely interested in only the one best-performing description,
we replicate these experiments with the goal to find the top-50 descriptions.
Since we need to have considered at least 50 descriptions before we can make
sure others will not enter the top-50 based on their bounds, we know in
advance that there will be little or no pruning possible for the Auction,
PC486, and Wine datasets. We also expect to gain little information from
the Giffen Behavior dataset, hence Table 7.2b encompasses the results
of these experiments on merely the Ames Housing and EAEF dataset.
Notice that the fraction of descriptions we can prune on the Ames Housing
dataset has only decreased slightly, while the fraction of descriptions we can
prune on the EAEF dataset is cut in half.

We repeat all these experiments with depth-2 EMM runs with beam width
w = 10. We find that in these experiments, we can barely compute bounds
for any level-2 descriptions, let alone prune them. This is caused by the fact
that level-2 descriptions are refinements of well-scoring level-1 descriptions,
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which usually cover relatively few records. Such descriptions scarcely ever
cover more than 50% of the records, hence their refinements also scarcely
ever do so. Fortunately, that also means that the regression computations
for these level-2 descriptions is relatively cheap.

7.4 Alternatives

We can define a simpler, statistically founded quality measure when we
restrict ourselves to a simpler regression model, allowing only one input
(y = `2) and one output variable (x = `1) in the regression, i.e.

yi = β0 + β1xi + εi (7.6)

Consider model (7.6) learned from a subgroup G and its complement GC.
Of course, there is a choice of distance measures between the fitted mod-
els. We propose to look at the difference in the slope β1 between the two
models, because this parameter is usually of primary interest when fitting a
regression model: it indicates the change in the expected value of y, when
x increases with one unit. Another possibility would be to look at the in-
tercept β0, if it has a sensible interpretation in the application concerned.
As with the correlation model, we use significance testing to measure the
distance between the fitted models. Let βG1 be the slope for the regression
function of G and βGC

1 the slope for the regression function of GC. The
hypothesis to be tested is

H0 : β
G
1 = βG

C

1 against H1 : β
G
1 6= βG

C

1

We use the least squares estimate β̂1 for the slope β1, and unbiased esti-
mator s2 for the variance of β̂1, i.e.

β̂1 =

∑
(xi − x̄) (yi − ȳ)∑

(xi − x̄)
2

s2 =

∑
ε̂2i

(ξ− 2)
∑

(xi − x̄)
2

where ε̂i is the regression residual for individual i, and ξ is the sample
size. Finally, we define our test statistic t ′. Although it does not have a t
distribution, its distribution can be approximated quite well by one, with
degrees of freedom given at the top of the next page (cf. [81])
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t ′ =
β̂G1 − β̂G

C

1√
sG

2 + sGC2
df =

(
sG

2
+ sG

C2
)2

sG
4

n−2
+ sG

C4

nC−2

The approximation is accurate when n + nC ≥ 40 (cf. [81]), so unless
we analyze a very small dataset we should be confident to base p-value
computation on it. Our quality measure ϕssd (acronym for Significance of
Slope Difference) is one minus this p-value.

Running EMM on the Windsor Housing dataset (cf. Table 4.1) using ϕssd

as quality measure, we find as first-ranked description D21 the 226 houses
(41.3% of the dataset) that have a driveway, no basement and at most
one bathroom

D21 : drive = 1∧ basement = 0∧ nbath ≤ 1

From the subgroup G21 and its complement GC21 (320 houses, 58.7%) we
learn the following two regression functions, respectively

G21 : y = 41568+ 3.31 · x
GC21 : y = 30723+ 8.45 · x

The description quality is ϕssd(D21) > 0.9999, meaning that the p-value of
the test

H0 : β
G2

1 = β
GC

2

1 against H1 : β
G2

1 6= β
GC

2

1

is virtually zero. There are descriptions with a larger difference in slope,
but the reported description scores higher because its coverage is quite big.
Figure 7.2 shows the scatter plots of lot_size and sales_price for the
description and its complement.

7.5 Conclusions

In this chapter, we propose to use Cook’s distance in an Exceptional Model
Mining setting. This allows us to find descriptions, for which a regression
model fitted on the targets is substantially different from that model for
the whole dataset. The use of Cook’s distance has two benefits.
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(a) G21, y = 41568+ 3.31 · x.
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(b) GC
21, y = 30723+ 8.45 · x.

Figure 7.2: Windsor Housing - ϕssd: Scatter plot of lot_size and
sales_price for the subgroup corresponding to D21 : drive = 1 ∧

basement = 0∧ nbath ≤ 1 and its complement.
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On the one hand, Cook’s distance has some desirable properties. It is
invariant under changes in the scale of a variable, and it explicitly takes the
covariance matrix of β̂ into account. Hence, when using Cook’s distance, we
need not worry whether the outcome of the EMM algorithm is influenced
by the scale ones attributes happen to arrive in (attributes need not be
normalised), or the interactions that happen to be present between the
regression parameters.

On the other hand, there are some theoretical upper bounds on Cook’s
distance, that can be computed without actually performing the relatively
expensive regression computations. As we have seen, these bounds can only
be computed under certain constraints, which correspond to the description
covering at least 50% of the records. On the one hand, this means that we
can compute the bounds for relatively few descriptions, but on the other
hand, whenever we can prune a description, we always prune a relatively
expensive regression computation. In future research, we would like to
develop bounds for Cook’s distance that can be computed for descriptions
with small coverage as well.

As we have seen in Section 7.3, the fraction of descriptions that can be
pruned is strongly dependent on the complexity of the regression model we
fit. We have seen some datasets (Ames Housing and Wine) for which the
model complexities are modest, on which we can prune almost 40% and 30%
of the descriptions, respectively. On datasets whose model complexities are
mediocre, we can still prune approximately 20%, and on the dataset for
which the model complexity is high, we can prune only 1%.

In Section 7.2.2 we have discussed some illustrative examples of descrip-
tions found on datasets from different domains. The models fitted on these
descriptions are discussed. These examples show the versatility of the prob-
lems which EMM with Cook’s distance can solve.

Theoretically, the joint influence of records makes Cook’s distance for single
observations theoretically unsuitable for use in a setting where multiple
observations are removed simultaneously. However, it may very well be
that this problem is not that serious on real-life datasets. Hence, in future
research, we would like to see whether we can use Cook’s distance for single
observations as a proxy for Cook’s distance for multiple observations, for
instance by summing over Di for all i ∈ I.
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Also in future work, we would like to explore whether we can improve
pruning for complex models. Often one is not interested in the influence
of all model coefficients, and at the end of Section 7.1 we have seen an
adaptation of Cook’s distance such that it is evaluated on a subset of the
coefficients. Modifying the bounds accordingly is done in a rather blunt
way. We plan to study whether more sophisticated bounds can be derived,
with which we can prune more descriptions.

Finally, this chapter was motivated by the Giffen behavior example, in
which coefficients not only substantially change in magnitude, but addi-
tionally change in sign. Such sign changes can be found on other datasets as
well, and the descriptions to which such models are fitted are usually among
the most striking deviations we can find. In future work, we would like to
develop a quality measure that explicitly seeks for such sign changes.


