
Exceptional Model Mining
Duivesteijn, W.

Citation
Duivesteijn, W. (2013, September 17). Exceptional Model Mining. Retrieved from
https://hdl.handle.net/1887/21760
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/21760
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/21760


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/21760 holds various files of this Leiden University 
dissertation. 
 
Author: Duivesteijn, Wouter 
Title: Exceptional model mining 
Issue Date: 2013-09-17 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/21760
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 6

Unusual Conditional Interactions –
Bayesian Network Model

In Chapter 4, we discussed an EMM instance with an internally unsuper-
vised model class, regarding the correlation between two attributes. In
Chapter 5, we discussed an EMM instance with an internally supervised
model class, classifying a single output target attribute based on one or sev-
eral input target attributes. Depending on the choice of classifier, this may
or may not incorporate complex interactions between sets of input target
attributes; in any case, such complex interactions have not yet been con-
sidered for an unsupervised model class. In this chapter we fill that void,
by considering the Exceptional Model Mining instance with a Bayesian
network as model class.

In the Bayesian network model class we allow multiple nominal targets
`1, . . . , `m. A description is deemed interesting, when the conditional de-
pendence relations between the targets are substantially different for the
description from these relations on the whole dataset. Hence we validate
the descriptions on the conditional interdependencies between the targets,
rather than the target values themselves. To capture these interdependen-
cies, we learn a Bayesian network between the targets, from data.

The choice to capture complex interactions between larger sets of unsu-
pervised target attributes by means of conditional dependence relations, is
inspired by the Pisaster example discussed in Chapter 2. Recall that the
field study of Robert T. Paine [86] yields, among many other results, that a
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50 CHAPTER 6. BAYESIAN NETWORK MODEL

conditional dependence relation exists between the sponge Haliclona, the
nudibranch Anisodoris, and the starfish Pisaster ochraceus. This study
gives a real-life example of multiple-target interactions that require the
complexity of a Bayesian network.

There are many algorithms to learn a Directed Acyclic Graph (DAG) model,
such as a Bayesian network, from data; see for instance [8, 47, 67]. We use
a non-deterministic hill climbing algorithm; using a hill climbing method
makes the algorithm speedy enough for use in an EMM setting, while its
non-deterministic nature decreases the chance that the algorithm will end
up in a local optimum.

We start with a Bayesian network with m vertices and no edges, and com-
pute the quality of that model. We choose the Bayesian Dirichlet equivalent
uniform (BDeu) score (see Section 5.3.1), because it assigns equal scores to
equivalent models and assumes no prior information. Then we hill-climb
through the space of Bayesian networks by applying the best single-edge
change in the model. At each step, we apply a random number of covered
arc reversals [12], in order to escape from a maximum that may be local.
For more details on this combination of methods, see [95].

Notice that this process is non-deterministic: at every step in the hill climb-
ing, and whenever we try to escape a maximum, a random number of ran-
domly selected covered edges is reversed. During our experiments we oc-
casionally find different Bayesian networks for the same data with different
random seeds. However, these variations were modest: few edges change,
and resulting networks for the same data are usually equivalent.

We consider the choice of method to learn a Bayesian network from data a
parameter of this EMM instance.

6.1 Quality Measure ϕweed

Having chosen a method to learn a Bayesian network from data, we would
like to employ such networks to capture deviating conditional dependence
relations between targets. Our quality measure uses the structure of the
learned networks to this end. The main idea is to start the EMM process
by learning a Bayesian network BNΩ between the targets from the entire
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Figure 6.1: Example Bayesian networks.

dataset. Then, for each descriptionD under consideration, we learn another
Bayesian network BND, but we learn it only from the records covered by
D. Comparing the structure of the networks BNΩ and BND then gives us
a measure for the quality of the description D. One might be tempted to
consider traditional edit distance between graphs to make this comparison,
but then we would not take into account some peculiarities about how
Bayesian networks represent independence relations.

6.1.1 Independence Relations in Bayesian Networks

There are two important peculiarities about the independence relations in
Bayesian networks, which we illustrate by the example networks in Fig-
ure 6.1. First, seemingly different Bayesian networks may represent the
same independence relations. If we look at network (b), we find that in
this network only one independence relation holds: x and z are condition-
ally independent given y. By symmetry of conditional independence, this
is the same independence relation as the one in network (a). Bayesian
networks that represent the same independence relations are called equiv-
alent. Note that this relation partitions Bayesian networks into equivalence
classes. Second, Bayesian networks with the same skeleton (the network
when we drop the directions) are not necessarily equivalent. In network (c),
x and z are marginally independent, unlike in networks (a) and (b).

We identify a special configuration of vertices and edges in a Bayesian
network that is relevant for the discussion in the rest of this chapter. It is
a structure as seen in network (c): a v-structure.
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Figure 6.2: Moralized graphs for the networks in Figure 6.1.

Definition (V-structure). A v-structure in a Bayesian network is a set of three
vertices {x, y, z} such that the network contains edges x → y and z → y,
but no edge between x and z.

The probabilistic interpretation of this v-structure is that x and z are
marginally independent, but conditionally dependent given y. A v-structure
is also known as an immorality, since the parents of vertex y are ‘unmar-
ried’, i.e. there is no edge between them. A graph can be moralized [17] by
first marrying all unmarried parents (i.e. draw an edge between all pairs of
vertices that have a common child but no common edge), and then dropping
directions. Thus, moralizing a graph removes all v-structures. The moral-
ized versions of the networks of Figure 6.1 are depicted in Figure 6.2. As
one can see, the moralized version of network (c) has an extra edge, which
corresponds to removing the v-structure from the original network.

Notice that the moral graph also is not sufficient to capture all informa-
tion about the underlying independence relations; x and z are marginally
independent in network (c) and marginally dependent in network (d), but
these networks have the same moral graph.

6.1.2 Edit Distance for Bayesian Networks

To overcome the peculiarities of Bayesian networks, we propose a heuristic
quality measure based on the following well-known result by Verma and
Pearl [111]
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Theorem 2 (Equivalent DAGs). Two DAGs are equivalent if and only if
they have the same skeleton and the same v-structures.

Since these two conditions determine whether two DAGs are equivalent,
it makes sense to consider the number of potential edges violating the
conditions as a measure of how different two DAGs are.

Definition (Edit distance for Bayesian networks). Let two Bayesian networks
BN1 and BN2 be given with the same set of vertices. Denote the edge
set of their skeletons by S1 and S2, and the edge set of their moralized
graphs by M1 and M2. Let

ζ =
∣∣∣
[
S1 	 S2

]
∪
[
M1 	M2

]∣∣∣

The distance between BN1 and BN2 is defined as

δ(BN1, BN2) =
2ζ

m(m− 1)

As usual in set theory, 	 denotes a symmetric difference: X	Y = (X∪Y)−
(X ∩ Y). The factor 2

m(m−1)
causes the distance to range between 0 and 1:

it is the expanded reciprocal of
(
m
2

)
, the number of distinct pairs of targets

in the dataset, hence vertices in the Bayesian networks.

We illustrate the edit distance by computing the mutual distances between
the networks in Figure 6.1. We find that δ(a, b) = 0 and δ(a, c) = δ(a, d) =
δ(b, c) = δ(b, d) = δ(c, d) = 1/3. Only for the two networks that are
equivalent, distance 0 is obtained. If we compare the networks to the
independence model ∅ which has no edges at all, we obtain δ(a,∅) =

δ(b,∅) = 2/3, and δ(c,∅) = δ(d,∅) = 1.

The edit distance can now be used to quantify the exceptionality of a
description

Definition (Edit distance based quality measure). Let a description D be given.
Denote the Bayesian network we learn from Ω by BNΩ, and denote the
Bayesian network we learn from GD by BND. Then the quality of D is

ϕed(D) = δ
(
BNΩ, BND

)
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If we would plug ϕed into the EMM framework, a familiar problem would
occur: unusual interdependencies between the targets are easily achieved
in very small subsets of the dataset. Thus, using ϕed would result in small
subgroups. For this reason, we combine the measure with the entropy func-
tion ϕef (cf. Section 3.2), to obtain the following aggregate measure.

Definition (Weighed Entropy and Edit Distance).

ϕweed(D) =
√
ϕef(D) ·ϕed(D)

The original components ranged from 0 to 1, hence the new quality measure
does so too. We take the square root of the entropy, thus reducing its bias
towards 50/50 splits, since we are primarily interested in a description with
large edit distance, while mediocre entropy is acceptable.

6.2 Experiments

6.2.1 Datasets

The Emotions dataset [103] consists of 593 songs, from which 8 rhyth-
mic and 64 timbre features were extracted. Domain experts assigned the
songs to any number of six main emotional clusters from the Tellegen-
Watson-Clark model of mood [102]: ‘amazed-surprised’, ‘happy-pleased’,
‘relaxing-calm’, ‘quiet-still’, ‘sad-lonely’, and ‘angry-fearful’.

The Scene dataset [6] is from the semantic scene classification domain, in
which a photo can be classified into one or more of 6 classes. It contains
2407 photos, each of which is divided into 49 blocks using a 7× 7 grid. For
each block the first two spatial color moments of each band of the LUV
color space are computed. This space identifies a color by its lightness (the
L* band) and two chromatic valences (the u* and v* band). The photos
can have the classes ‘beach’, ‘field’, ‘fall foliage’, ‘mountain’, ‘sunset’,
and ‘urban’.

From the biological field we consider the Yeast dataset [28]. It consists
of micro-array expression data and phylogenetic profiles with 2417 genes
of the yeast Saccharomyces cerevisiae. Each gene is annotated with any
number of 14 functional classes.
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Table 6.1: Statistics concerning the datasets used in the Bayesian Network
Model and Multi-label LeGo experiments (cf. Chapter 9). Here, N is the
total number of records, k is the number of descriptive attributes, and m
is the number of nodes in the fitted Bayesian network model. The column
Cardinality displays the average number of positive targets per record.

Dataset Domain N k m Cardinality
Emotions Music 593 72 6 1.87

Mammals Zoogeography 2221 69 101 24.43

Scene Vision 2407 294 6 1.07

Yeast Biology 2417 103 14 4.24

The three introduced datasets all have a relatively small number of targets.
Hence the fitted Bayesian networks are easy to interpret, and experiments
on these datasets form a nice proof of concept for our method. However,
EMM with the Bayesian Network model class can also handle larger, more
complex target systems. Hence, in addition to the MLC datasets, we anal-
yse theMammals dataset [40, 80]. It focuses on subdividing the geography
of Europe into clusters based on their fauna, which is a core activity of biol-
ogy. The dataset was created by combining two datasets: one documenting
presence or absence of 101 mammals for a set of 2221 grid cells covering Eu-
rope, and one documenting climate and elevation of the corresponding land
areas. We define candidate subgroups by conditions on the climate and el-
evation data, and fit Bayesian networks on the mammals. We use a version
of this dataset that was pre-processed by Heikinheimo et al. [49].

Some statistics regarding these datasets can be found in Table 6.1.

6.2.2 Experimental Results

Emotions Data

On the Emotions dataset, we obtained the networks shown in Figure 6.3.
Figure 6.3a depicts a network learned from the whole dataset, and Fig-
ure 6.3b displays a network learned from a subgroup of size 94 (15.9%) cor-
responding to descriptionD6 : STD_MFCC_7 ≤ 0.203∧Mean_Centroid
≥ 0.066, with quality ϕweed(D6) = 0.675. The first condition says that coef-
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Figure 6.3: Bayesian networks for the Emotions data.
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ficient 7 of the 13-band Mel Frequency Cepstrum has a low standard devia-
tion, which has a nontrivial interpretation. The second condition says that
the songs in the subgroup have a moderate to high mean spectral centroid.
This correlates with the impression of a bright sound [96].

From Figure 6.3a we find that on the whole dataset, the emotion sad-
lonely is correlated with all other emotions: it shares marginal dependence
relations with happy-pleased, relaxing-calm and quiet-still, and condi-
tional dependence relations given both relaxing-calm and quiet-still with
angry-fearful and amazed-surprised. When restricted to the description,
sad-lonely is correlated with none of the other emotions (cf. Figure 6.3b).
This seems reasonable: we would expect that bright sounds in music have
a great influence on whether humans perceive a song as sad-lonely or not.
Hence for songs with bright sounds it is more likely that sad-lonely is
less correlated with other factors (such as the other emotions); we already
have an explanation for the distribution of sad-lonely, so the probability
increases that it does not depend on the other emotions.

Scene Data

Figure 6.4 shows the networks fitted on the Scene dataset. In this dataset,
we found a description with quality ϕweed(D7) = 0.545, covering 452 records
(18.8%). The conditions indicate a high mean lightness in the upper right
corner of the photo, and a low mean u* chromatic valence in a more cen-
trally located area.

Yeast Data

The first-ranked description on the Yeast dataset has quality ϕweed(D8) =

0.437, and is defined by conditions on its 79-element gene expression data:
probe 3 ≤ −0.025 ∧ probe 66 ≥ −0.071. The three subsequent descrip-
tions in the ranking each share their first condition with the top-ranked
descriptions, hence they are not that interesting to present here. The fifth-
ranked description has quality ϕweed(D9) = 0.369 and conditions probe 9
≤ −0.063 ∧ probe 53 ≥ −0.081. The subgroup sizes are |G8| = 681 (28.2%)
and |G9| = 530 (21.9%).



58 CHAPTER 6. BAYESIAN NETWORK MODEL

FieldBeach

MountainSunset

Urban
Foliage

Fall

(a) Whole dataset.

Fall

Foliage
Urban

Sunset Mountain

Beach Field

(b) D7 : Mean L* band block 7 ≥ 0.699 ∧ Mean u*
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Figure 6.4: Bayesian networks for the Scene data.
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From the fitted Bayesian networks, many changes in dependence relations
can be deduced; we will outline a few. In G8 the functional class cell
growth, cell division, DNA synthesis has four dependence relations less
than on the whole dataset, and protein destination has five less. On the
other hand, energy and ionic homeostasis both have an extra depen-
dence relation. In G9, the functional classes cellular organization and cell
rescue, defence, death and aging have fewer dependence relations than
on the whole dataset (six and three, respectively), while metabolism and
cellular biogenesis have one more.

Mammals Data

On the Mammals dataset, the first-ranked description D10 is defined by
conditions latitude ≥ 49.85 ∧ prec_feb ≥ 28.75, i.e. northern areas with a
fair amount of precipitation in February. Two other interesting descriptions
(ranked sixth and eighth) are defined by meteorological conditions only. In
description D11 we have max_temp_nov ≤ 7.66 ∧ prec_feb ≤ 45.38,
i.e. November is not warm and precipitation in February is low, while in
description D12 we have max_temp_mar ≤ 7.97 ∧ max_temp_sep ≤
17.65, i.e. the temperatures in both March and September do not reach high
levels. The descriptions have quality ϕweed(D10) = 0.122, ϕweed(D11) =

0.121 = ϕweed(D12), and coverage |G10| = 839 (37.8%), |G11| = 835 (37.6%),
and |G12| = 834 (37.6%).

The Figures 6.5, 6.6, and 6.7 chart the regions in Europe that belong to
the descriptions. Areas that are unique to one description within this set
are Ireland and the Benelux for D10 (which had the condition that it is
wet in February), Romania and Poland for D11 (cold in November, dry in
February), and the Alps and Pyrenees for D12 (cold in both March and
September).

Among the relations between mammals that distinguish the descriptions
from each other and the whole dataset Ω are the following: the European
Water Vole (Arvicola terrestris) and the Mountain Hare (Lepus timidus)
are conditionally dependent given the Ermelin (Mustela erminea) on Ω
but not on any of the descriptions, only on D10 the Wildcat (Felis sil-
vestris) and the Beech Marten (Martes foina) are conditionally depen-
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Figure 6.5: Regions in Europe that belong to the subgroup corresponding
to D10 : latitude ≥ 49.85 ∧ prec_feb ≥ 28.75 (|G10| = 839).
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Figure 6.6: Regions in Europe that belong to the subgroup corresponding
to D11 : max_temp_nov ≤ 7.66 ∧ prec_feb ≤ 45.38 (|G11| = 835).
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Figure 6.7: Regions in Europe that belong to the subgroup corresponding
toD12 :max_temp_mar ≤ 7.97∧max_temp_sep ≤ 17.65 (|G12| = 834).
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dent given the Western Roe Deer (Capreolus capreolus), only on D11 the
Broad-toothed Field Mouse (Apodemus mysticanus) and the Lesser Mole
Rat (Nannospalax leucodon) are conditionally dependent given the Mar-
bled Polecat (Vormela peregusna), and only on D12 the Red Squirrel (Sci-
urus vulgaris) and the Least Weasel (Mustela nivalis) are conditionally
dependent given the European Badger (Meles meles).

6.3 Alternatives

In Section 6.1.2, we discussed how we incorporated an entropy term in
our quality measure ϕweed, in order to avoid obtaining small subgroups. If
small subgroups are required, we can also run this EMM instance with the
non-composite quality measure ϕed, selecting the good descriptions only by
virtue of their edit distance on Bayesian networks. To illustrate what the
outcome of such a run can be, we repeated the experiments from the previ-
ous section on the Mammals dataset with ϕed instead of ϕweed. The first-
ranked description we found with this distance is D13 : mean_temp_apr
≥ 11.86 ∧ mean_temp_aug ≤ 23.28. Its quality is ϕed(D13) = 0.147, and
its coverage is |G13| = 105 (4.7%). The regions in Europe that belong to
this description are displayed in Figure 6.8.

The relations between mammals that distinguish D13 from Ω include the
following. OnΩ, but not onD13, the Alpine Marmot (Marmota marmota)
and the Alpine Field Mouse (Apodemus alpicola) are conditionally depen-
dent given the Alpine Ibex (Capra ibex ), and the Beech Marten (Martes
foina) and the Red Fox (Vulpes vulpes) are conditionally dependent given
the Least Weasel (Mustela nivalis). On D13, but not on Ω, the Com-
mon Genet (Genetta genetta) and the European Mink (Mustela lutreola)
are conditionally dependent given the Crowned Shrew (Sorex coronatus),
and the European Snow Vole (Chionomys nivalis) and the Iberian Shrew
(Sorex granarius) are conditionally dependent given the Lusitanian Pine
Vole (Microtus lusitanicus).

Using plain ϕed instead of the composite ϕweed has its benefits and its
drawbacks. When we compare the description D13 found with ϕed, with
the descriptionsD10, D11, andD12 found with ϕweed, there are several things
to remark. As expected, using the plain edit distance leads EMM to report
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Figure 6.8: Regions in Europe that belong to the subgroup corresponding
to D13 : mean_temp_apr ≥ 11.86 ∧ mean_temp_aug ≤ 23.28 (|G13| =
105).
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smaller subgroups than we obtain when using the edit distance weighted
with entropy. Whether this is an argument for using ϕed or ϕweed depends
on the problem statement or domain expert at hand.

When we look at the deviating conditional dependence relations between
the mammals, we find that particularly in the description found with the
plain edit distance, the relations tend to focus on mammals that appear
only in a very small subarea of Europe. For instance, within the parts of
Europe covered by the dataset, the European Mink only occurs in a small
area in the South West of France and the North of Spain, while the Iberian
Shrew and the Lusitanian Pine Vole are confined to the Iberian peninsula.
So, roughly speaking, ϕed can be seen as more focused than ϕweed.

On the other hand, if we look at the maps of regions of Europe belonging to
the subgroups, we see that ϕweed finds subgroups that are, geographically
speaking, more coherent than the subgroup found with ϕed. As we can see
in Figure 6.5, subgroup G10 spans the North West of Europe, and as we can
see in Figure 6.6, subgroup G11 spans the North East of Europe. At first
glance, the area depicted in Figure 6.7 seems to indicate that subgroups
G12 spans a dichotomous part of Europe: part is coherent, spanning Scan-
dinavia, Scotland, Wales, and the Baltic countries, but to the South of that
we find what appears to be rubble. However, if we compare this chart to a
map of Europe indicating altitude, we find that the “rubble” actually largely
overlaps with mountainous areas: we have found the Alps, the Pyrenees,
the Harz, and the Carpathians. So, G12 spans some Northern areas, and
some mountainous areas. By contrast, the regions belonging to subgroup
G13, as depicted in Figure 6.8, are far more scattershot. The coastal line of
Portugal is a fairly coherent part of the subgroup, but the remaining areas
seem relatively random. Although “mediterranean coastal” is a recurring
theme, the selection of parts of the mediterranean coast seems incoherent,
as does the isolated grid cell in Serbia and the small chunks in Bulgaria and
Turkey. Hence, roughly speaking, ϕweed seems to deliver more substantially
coherent subgroups than ϕed.
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6.4 Conclusions

In this chapter, we propose to use the interdependencies between discrete
target variables as an exceptionality measure for descriptions. These in-
terdependencies are modeled by Bayesian networks, and the quality of a
description is defined as the difference between the network on the whole
dataset and the network on the subgroup. To quantify this difference
and thus the exceptionality of the model, we define a distance metric on
Bayesian networks with the same vertex set. Experiments show that sub-
stantial findings on four domains can be made.

Compared to the previous two chapters, the model class in the current
chapter is substantially more complex. This allows EMM to search for
deviations in sophisticated interplay between multiple targets simultane-
ously. However, the price we pay for this advantage, is that interpreting
results becomes problematic. As always, the found descriptions themselves
can still be interpreted easily by a domain expert. Whether interpretation
of the associated models is possible, however, depends on the number of
targets in the dataset at hand.

As we have seen in our analysis of the results on the Emotions and Scene
datasets, we can obtain meaningful insights from comparing Bayesian net-
works having six vertices. However, on the Yeast dataset the Bayesian
network contains fourteen vertices, and on the Mammals dataset the net-
work contains 101 vertices. For such large networks, we can still analyze
the models associated with descriptions in a limited way, by highlighting
dependence relations in small subsets of the vertices that differ between
the description and the whole dataset. Having an overview of deviating
(conditional) dependence relations between entire networks, however, has
become impossible.

In such cases, it helps when the dataset has a third set of attributes, in
addition to the descriptors and the targets. In the Mammals dataset, such
a third set is available: the location information of grid cells throughout
Europe. If a description, defined on the first set of attributes and evaluated
on the second set, also displays coherence on the third set of attributes, then
this reinforces our belief that we have found something substantial in our
dataset. For instance, the fact that the geographically coherent region of
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the Alps is highlighted in Figure 6.7, even though D12 was neither defined
nor evaluated on location information, is strong corroborating evidence
that this description indicates an actual underlying phenomenon in the
dataset.

The work presented in this chapter can be extended in various ways. For
instance, we could integrate our approach with the Hellinger distance intro-
duced in Section 5.3.2, to determine the exceptionality of a description by
comparing underlying probability distributions. Considering the Bayesian
network parameters, or merely the signs of the correlations for ordered
variables, could also improve our method.

Perhaps the most promising direction in which this EMM approach could
be employed will be explored in Chapter 9: as a building block to be
used in the Local Pattern Discovery phase in the LeGo framework [57].
As our descriptions identify parts of the input space where exceptional
sets of dependencies hold, they can be thought of as a means to simplify
a given multi-label classification problem, by allowing for different clas-
sification models in different descriptions. As descriptions may represent
more coherent samples of the data, compared to the whole database, it can
be expected that the LeGo building blocks can be employed to improve
predictive accuracy.
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