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Chapter 5

Deviating Predictive Performance –
Classification Model

As a more complex Exceptional Model Mining (EMM) instance, we turn to
a classification model. We strive to find subgroups of the dataset for which
the performance of a classifier is way off target, or particularly spot-on. In
classification models, the output target attribute y = `m is discrete. Gen-
erally speaking, the other targets `1, . . . , `m−1 can be of any type (binary,
nominal, numeric, etc.), though a particular choice of classifier may restrict
this. Our EMM framework allows for any classification method, as long as
some quality measure can be defined in order to judge the models induced.
Although we allow arbitrarily complex methods, such as decision trees,
support vector machines or even ensembles of classifiers, we only consider
a relatively simple classifier here, for reasons of simplicity and efficiency:
we consider the logistic regression model

logit(P(yi = 1|xi)) = ln
(
P(yi = 1|xi)

P(yi = 0|xi)

)
= β0 + β1 · xi

where y ∈ {0, 1} is a binary class label and x ∈ {`1, . . . , `m−1}. The coefficient
β1 tells us something about the effect of x on the probability that y occurs,
and hence may be of interest to domain experts. A positive value for β1
indicates that an increase in x leads to an increase of P(y = 1|x). The
strength of influence can be quantified in terms of the change in the odds
of y = 1 when x increases with, say, one unit.
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42 CHAPTER 5. CLASSIFICATION MODEL

5.1 Quality Measure ϕsed

To judge whether the effect of x is substantially different in a particular
subgroup GD (built from a description D), we fit the model

logit(P(yi = 1|xi)) = β0 + β1 ·D(i) + β2 · xi + β3 · (D(i) · xi) (5.1)

whereD(i) is shorthand forD
(
ai1, . . . , a

i
k

)
(cf. Section 2.1). Note that

logit(P(yi = 1|xi)) =

{
(β0 + β1) + (β2 + β3) · xi if D(i) = 1

β0 + β2 · xi if D(i) = 0

Hence, we allow both the slope and the intercept to be different for the
description and its complement. As a quality measure, we propose to use
one minus the p-value of a test on β3 = 0 against a two-sided alternative
in the model of Equation (5.1). This is a standard test in the literature on
logistic regression [84]. We refer to this quality measure as ϕsed, an acronym
whose meaning is lost in time, but maintained in order to correspond to
the acronym in the original paper [71].

5.2 Experiments

5.2.1 Datasets

We demonstrate the classification model on the Affymetrix dataset, which
was also used in the correlation model experiments. For more details on
the dataset, see Section 4.2.1.

5.2.2 Experimental Results

In the logistic regression experiment, we take NBstatus as the output
`2 = y, and age (age at diagnosis in days) as the predictor `1 = x. The
descriptions are created using the gene expression level variables. Hence,
the model specification is

logit{ P( yi = ‘relapse or deceased’ | xi ) }
=

β0 + β1 ·D(i) + β2 · xi + β3 · (D(i) · xi)
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We find the description

D3 : SMPD1 ≥ 840∧HOXB6 ≤ 370.75

with a coverage of 33 (52.4%), and quality ϕsed(D3) = 0.994. We find a
positive coefficient of x for the description, and a slightly negative coeffi-
cient for its complement. Within the description, the odds of NBstatus
= ‘relapse or deceased’ increase with 44% when the age at diagnosis in-
creases with 100 days, whereas in the complement the odds decrease with
8%. Within the description, an increase in age at diagnosis decreases the
probability of survival, whereas within the complement, an increase in age
slightly increases the probability of survival. Such reversals of the direction
of influence may be of particular interest to the domain expert.

5.3 Alternatives

Another classifier we can consider is the Decision Table Majority (DTM)
classifier [58, 62], also known as a simple decision table. The idea behind
this classifier is to compute the relative frequencies of the `m values for each
possible combination of values for `1, . . . , `m−1. For combinations that do
not appear in the dataset, the relative frequency estimates are based on that
of the whole dataset. The predicted `m value for a new individual is simply
the one with the highest probability estimate for the given combination of
input values.

Example 1. As an example of a DTM classifier, consider a hypothetical
dataset of 100 people applying for a mortgage. The dataset contains
two attributes describing the age (divided into three suitable categories)
and marital status of the applicant. A third attribute indicates whether
the application was successful, and is used as the output. Out of the 100
applications, 61 were successful. The following decision table lists the
estimated probabilities of success for each combination of age and mar-
ried. The support for each combination is indicated between brackets.

married = ‘no’ married = ‘yes’
age = ‘low’ 0.25 (20) 0.61 (0)

age = ‘medium’ 0.4 (15) 0.686 (35)

age = ‘high’ 0.733 (15) 1.0 (15)
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As this table shows, the combination married = ‘yes’ ∧ age = ‘low’
does not appear in this particular dataset, and hence the probability
estimate is based on the complete dataset (0.61). This classifier pre-
dicts a positive outcome in all cases except when married = ‘no’ and
age is either ‘low’ or ’medium’.

For this instance of the classification model we discuss two different quality
measures. The Bayesian Dirichlet equivalent uniform (BDeu) score,
which can be used as a measure for the performance of the DTM classifier
on GD, and the Hellinger distance, which assigns a value to the distance
between the conditional probabilities estimated on GD and GCD.

5.3.1 BDeu Score (ϕBDeu)

The BDeu score ϕBDeu is a measure from Bayesian theory [48] and is used
to estimate the performance of a classifier for a description, with a penalty
for small contingencies that may lead to overfitting. Note that this measure
ignores how the classifier performs on the complement. It merely captures
how “predictable” a particular description is.

The BDeu score is defined as

∏

`1,...,`m−1

Γ(θ/I)

Γ(θ/I +#(`1, . . . , `m−1))

∏

`m

Γ(θ/IJ +#(`1, . . . , `m))

Γ(θ/IJ )

where Γ denotes the gamma function, I denotes the number of value com-
binations of the input variables, J the number of values of the output
variable, and #(`1, . . . , `m) denotes the number of records with that value
combination. The parameter θ denotes the equivalent sample size. Its
value can be chosen by the user.

5.3.2 Hellinger (ϕHel)

Another possibility is to use the Hellinger distance [115]. It defines the dis-
tance between two probability distributions P(x) and Q(x) as follows

H(P,Q) =
∑

x

(√
P(x) −

√
Q(x)

)2
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where the sum is taken over all possible values x. In our case, the distri-
butions of interest are

P (`m | `1, . . . , `m−1)

for each possible value combination `1, . . . , `m−1. The overall distance mea-
sure becomes

ϕHel(D) = H
(
P̂GD , P̂G

C
D

)
=

∑

`1,...,`m−1

∑

`m

(√
P̂GD(`m|`1, . . . , `m−1) −

√
P̂G

C
D(`m|`1, . . . , `m−1)

)2

where P̂GD denotes the probability estimates on GD. Intuitively, we measure
the distance between the conditional distribution of `m in GD and GCD for
each possible combination of input values, and add these distances to obtain
an overall distance.

5.3.3 Experimental Results

For the DTM classification experiments on the Affymetrix dataset, we
have selected three binary attributes. The first two attributes, which serve
as input variables of the decision table, are related to genomic alterations
that may be observed within the tumor tissues. The attribute 1p_band
(`1) describes whether the small arm (‘p’) of the first chromosome has been
deleted. The second attribute, mycn (`2), describes whether one specific
gene is amplified or not (multiple copies introduced in the genome). Both
attributes are known to potentially influence the genesis and prognosis of
neuroblastoma. The output attibute for the classification model is NBsta-
tus (`3), which can be either ‘no event’ or ‘relapse or deceased’. The
following decision table describes the conditional distribution of NBstatus
given 1p_band and mycn on the whole dataset

1p_band = mycn = ‘amplified’ mycn = ‘not amplified’
‘deletion’ 0.333 (3) 0.667 (3)
‘no change’ 0.625 (8) 0.204 (49)
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In order to find descriptions for which the distribution is significantly dif-
ferent, we run EMM with the Hellinger distance ϕHel as quality measure.
As our quality measures for classification do not specifically promote de-
scriptions with larger coverage, we have selected a slightly higher mini-
mum support constraint: minsup = 16, which corresponds to 25% of the
data. The following subgroup of 17 patients (27.0%) was the best found
(ϕHel(D4) = 3.803)

D4 : prognosis = ‘unknown’

1p_band = mycn = ‘amplified’ mycn = ‘not amplified’
‘deletion’ 1.0 (1) 0.833 (6)
‘no change’ 1.0 (1) 0.333 (9)

Note that for each combination of input values, the probability of ‘relapse
or deceased’ is increased, which makes sense when the prognosis is un-
certain. Note furthermore that the overall dataset does not yield a pure
classifier: for every combination of input values, there is still some confu-
sion in the predictions.

In our second alternative classification experiment, we are interested in
“predictable” descriptions. Therefore, we run EMM with the ϕBDeu mea-
sure. All other settings are kept the same. The following subgroup (|G5| =
16 (25.4%), ϕBDeu(D5) = −1.075) is based on the expression of the gene
RIF1 (‘RAP1 interacting factor homolog (yeast)’)

D5 : RIF1 ≥ 160.45

1p_band = mycn = ‘amplified’ mycn = ‘not amplified’
‘deletion’ 0.0 (0) 0.0 (0)
‘no change’ 0.0 (0) 0.0 (16)

For this description, the predictiveness is optimal, as all patients turn out
to be tumor-free. In fact, the decision table ends up being rather trivial,
as all cells indicate the same decision.
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5.4 Conclusions

In this chapter, we propose to find descriptions for which a classifier learned
from the targets has deviating performance. In theory, this can be done
with any classification algorithm, which can be as complex as one desires.
In practice, we have developed statistically and probabilistically inspired
quality measures for a few relatively simple classification algorithms: lo-
gistic regression with merely one predictor, and a multi-predictor Decision
Table Majority classifier.

As we have seen in our analysis of description D3, similarly to some of
the findings in the previous chapter, the classification model allows for
extensive model inspection. The description merely indicates that a com-
bination of expression level constraints corresponds to deviating behavior.
From further model analysis, however, we can learn that the value of one
of the predictors has a positive influence on the output value within D3,
while the influence is negative outside of D3. This Simpson’s paradox is
invaluable knowledge for a domain expert.

Specific interest in the resulting subgroups on the dataset domain aside,
EMM with this particular model class is potentially extremely interesting
within our own field of study, by delivering meta learning information.
When data miners are working with, or developing their own, classifica-
tion algorithms, this instance of EMM can deliver important indications
when the algorithm works particularly well, and when it performs not so
well. Classification algorithm developers can incorporate this knowledge to
improve their algorithms. For classification algorithm users, particularly
descriptions such as D5 found with ϕBDeu are potentially interesting. This
measure aims to find predictable descriptions. The resulting decision table
shows that description D5 highlights a part of the dataset where predic-
tiveness is optimal: the corresponding subspace of the total search space
has essentially been solved. Considering this part of the problem to be
solved, we can then focus our attention on classifying the rest of the input
space, making the hypothesis space smaller and potentially reducing the
computational burden of subsequent classifier runs.




