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Chapter 4

Deviating Interactions – Correlation
Model

An Exceptional Model Mining instance strives to find subgroups, for which
a particular kind of interaction between multiple target attributes is un-
usual, when compared to that same interaction between the same attributes
on the entire dataset. Possibly the simplest such interaction is the correla-
tion model. In this correlation model, we consider two numeric targets, `1
and `2. Within this model class, we will refer to them as x = `1 and y = `2.
We are interested in their linear association as measured by the correlation
coefficient ρ, estimated by the sample correlation coefficient

r̂ =

∑ (
xi − x̄

) (
yi − ȳ

)
√∑

(xi − x̄)2
∑

(yi − ȳ)2

where xi denotes the ith observation on x, and x̄ denotes its mean. We let
ρG and ρGC denote the population coefficients of correlation for G and GC,
respectively, and let r̂G and r̂GC denote their sample estimates.

4.1 Quality Measure ϕscd

To find descriptions with a substantial coverage and deviating correlation
coefficient, we develop a statistically-oriented quality measure, based on
the test

H0 : ρ
G = ρG

C

against H1 : ρ
G 6= ρGC
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Generally, the sampling distribution of r̂ is unknown. If x and y follow a bi-
variate normal distribution, we can apply the Fisher z transformation

z ′ =
1

2
ln
(
1+ r̂

1− r̂

)

The sampling distribution of z ′ is approximately normal [84]. Its standard
error is given by

1√
ξ− 3

where ξ is the size of the sample. As a consequence

z∗ =
z ′ − zC

′
√

1
n−3

+ 1
nC−3

approximately follows a standard normal distribution under H0. Here z ′

and zC ′ are the z-scores obtained through the Fisher z transformation for
G and GC, respectively. If both n and nC are greater than 25, then the
normal approximation is quite accurate, and can safely be used to com-
pute the p-values. As quality measure ϕscd (acronym for Significance of
Correlation Difference) we take 1 minus the computed p-value. Because
we have to introduce the normality assumption to be able to compute the
p-values, ϕscd should be viewed as a heuristic measure. Transformation
of the original data (for example, taking their logarithm) may make the
normality assumption more reasonable.

4.2 Experiments

4.2.1 Datasets

The Windsor Housing dataset [2] concerns 546 houses that were sold
in Windsor, Canada in the summer of 1987. The information for each
house includes the two attributes of interest, `1 = x = lot_size and `2 =
y = sales_price. An additional 10 attributes are available as descriptive
attributes, including the number of bedrooms and bathrooms and whether
the house is located at a desirable location. The correlation between lot
size and sale price is 0.536, which implies that a larger size of the lot
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Table 4.1: Statistics concerning the datasets used in the Correlation model
(this chapter), Classification model (Chapter 5), and alternative Regression
model (Section 7.4) experiments. Here, N is the total number of records,
k is the number of descriptive attributes, and m is the number of targets
on which the model is fitted.

Dataset Domain N k m

Affymetrix Bioinformatics 63 311 2

Windsor Housing Residential property value 546 10 2

coincides with a higher sales price. The fitted regression function is y =

34136+6.60·x, showing that on average one extra square meter corresponds
to a sales price increase of $6.60.

The Affymetrix dataset comes from the domain of bioinformatics. In ge-
netics, genes are organised in so-called gene regulatory networks. This
means that the expression (its effective activity) of a gene may be influenced
by the expression of other genes. Hence, if one gene is regulated by another,
one can expect a linear correlation between the associated expression-levels.
In many diseases, specifically cancer, this interaction between genes may
be disturbed. The Affymetrix dataset shows the expression-levels of 313
genes as measured by an Affymetrix microarray, for 63 patients that suffer
from a cancer known as neuroblastoma [64]. Additionally, the dataset con-
tains clinical information about the patients, including age, sex, stage of
the disease, etc. As targets, we consider the expressions of the two genes
ZHX3 (‘Zinc fingers and homeoboxes 2’) and NAV3 (‘Neuron navigator
3’), showing a slightly positive overall correlation of 0.218.

4.2.2 Experimental Results

On the Windsor Housing dataset, we run an experiment with ϕscd. As
discussed in Section 4.1, in order to be confident about the test results for
this quality measure, the coverage of a description has to be over 25. This
number was used as minimum support threshold for a run of Cortana using
ϕscd. The following description (and its complement) was found to show
the most significant difference in correlation (ϕscd(D1) = 0.9993)
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D1 : drive = 1∧ rec_room = 1∧ nbath ≥ 2

This is the group of 35 houses (covering 6.4% of the dataset) that have a
driveway, a recreation room and at least two bathrooms. The scatter plots
for theD1 andDC

1 are given in Figure 4.1. The subgroup shows a correlation
of r̂G1 = −0.090 compared to r̂GC

1 = 0.549 for the remaining 511 houses.
A tentative interpretation could be that D1 describes houses in the higher
segments of the market where the price of a house is mostly determined
by its location and facilities. The desirable location may provide a natural
limit on the lot size, such that this is not a factor in the pricing. Figure 4.1
supports this hypothesis: houses in D1 tend to have a higher price ($95, 947
on average, versus $68, 122 on the whole dataset).

In general sales_price and lot_size are positively correlated, but EMM
discovers a description with a slightly negative correlation. However, this
value is not significantly different from zero: a test of

H0 : r̂
G1 = 0 against H1 : r̂

G1 6= 0

yields a p-value of 0.61. The scatter plot confirms our impression that
sales_price and lot_size are uncorrelated within the description. For pur-
poses of interpretation, it is interesting to perform some post-processing.
In Table 4.2 we give an overview of the correlations within different de-
scriptions whose intersection produces the final result, as given in the last
row. It is interesting to see that the condition nbath ≥ 2 in itself actually
leads to a slight increase in correlation compared to the whole database,
but the combination with the presence of a recreation room leads to a sub-
stantial drop to r̂ = 0.129. When we add the condition that the house
should also have a driveway we arrive at the final result with r̂ = −0.090.
Note that adding this last condition only eliminates 3 records (the size
of the subgroup goes from 38 to 35) and that the correlation between
sales price and lot size in these three records (defined by the condition
nbath ≥ 2 ∧ ¬drive = 1 ∧ rec_room = 1) is −0.894. We witness a phe-
nomenon similar to Simpson’s paradox: splitting up a description with
positive correlation (0.129) produces two descriptions both with a negative
correlation (−0.090 and −0.894, respectively). This is a real-life occur-
rence of an effect similar to the one we witnessed in the artificial dataset
of Figure 3.1, used in Chapter 3 for the sake of argument.
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(a) G1, with r̂ = −0.090.
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(b) GC
1 , with r̂ = 0.549.

Figure 4.1: Windsor Housing - ϕscd: Scatter plot of lot_size and
sales_price for the subgroup G1 corresponding to description D1 : drive =

1∧ rec_room = 1∧ nbath ≥ 2 and its complement.
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Table 4.2: Descriptions on the housing data, and their sample correlation
coefficients and supports.

D r̂GD |GD|

Whole dataset 0.536 546

nbath ≥ 2 0.564 144

drive = 1 0.502 469

rec_room = 1 0.375 97

nbath ≥ 2∧ drive = 1 0.509 128

nbath ≥ 2∧ rec_room = 1 0.129 38

drive = 1∧ rec_room = 1 0.304 90

nbath ≥ 2∧ rec_room = 1∧ ¬drive = 1 −0.894 3

nbath ≥ 2∧ rec_room = 1∧ drive = 1 −0.090 35

4.3 Alternatives

A logical consideration for a quality measure would be the absolute differ-
ence of the correlation for the description D and its complement, i.e.

ϕabs(D) =
∣∣∣r̂GD − r̂G

C
D

∣∣∣

Unfortunately, this measure does not take into account the coverage of the
descriptions, and hence does not do anything to prevent overfitting.

On the Affymetrix dataset, recall that we analyse the correlation between
ZHX3 and NAV3, showing a very slight correlation (r̂ = 0.218) on the
whole dataset. We analyze this dataset in terms of the absolute difference
of correlations ϕabs, allowing the use of all remaining attributes (both gene
expression and clinical information) for building descriptions. As the ϕabs
measure does not have any provisions for promoting larger subgroups, we
use a minimum support threshold of 10 (15% of the patients). The largest
distance (ϕabs(D2) = 1.313) was found with the following description cov-
ering 11 records (17.5%) of the dataset

D2 : 11_band = ‘no deletion’∧survival time ≤ 1919∧XP_498569.1 ≤ 57

Figure 4.2 shows the plot for this description and its complement with the
regression lines drawn in. The correlation for the description is r̂G2 = −0.95
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(a) G2, with r̂ = −0.950.
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(b) GC
2 , with r̂ = 0.363.

Figure 4.2: Affymetrix - ϕabs: Scatter plot of the subgroup corresponding
to description D2 : 11_band = ‘no deletion’ ∧ survival time ≤ 1919 ∧

XP_498569.1 ≤ 57 and its complement.
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and the correlation in the remaining data is r̂GC
2 = 0.363. Note that the

description displays a very “stable” behavior: all points are quite close to
the regression line, with R2 ≈ 0.9.

As an improvement of ϕabs, the following quality function weighs the abso-
lute difference between the correlations with the entropy function of the
split between the description and its complement, as introduced in Sec-
tion 3.2.1. Hence, when we find descriptions with ϕabs, but we find their
coverage not substantial enough, we can solve this problem by running
EMM with the alternative quality measure ϕent, defined as

ϕent(D) = ϕef(D) ·
∣∣∣r̂G − r̂G

C
∣∣∣

4.4 Conclusions

In this chapter, we propose to use the correlation between two numeric
targets as a measure of exceptionality for descriptions. This is probably
the simplest form of target interplay for which Exceptional Model Mining
can find deviating descriptions. As such, a domain expert should be able
to easily interpret not only a found description, but also the associated
model. As we have seen, particularly in discussing description D1 found
on the Windsor Housing dataset, a rationale for a subgroup can relatively
easily be given based on the domain-specific interpretation of attributes on
which the description is defined. This rationale can be fortified straight-
forwardly by inspecting the corresponding sample correlation coefficients.
The statistical test, yielding the impression that the targets are uncorre-
lated within D1, gives us confidence that the rationale makes sense. Also,
a domain expert could learn a lot from observations such as the Simpson’s
paradox observed in Table 4.2. Thus, having only one parameter of in-
terest in gauging the interesting interplay between targets, even though it
restricts the EMM framework to relatively simple models, can enhance the
analysis of the experimental results.


