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Chapter 3

The Exceptional Model Mining
Framework

Exceptional Model Mining [23, 25, 71] is a data mining framework that can
be seen as a generalization of the Subgroup Discovery (SD) [50, 55, 114]
framework. SD strives to find descriptions that satisfy certain user-specified
constraints. Usually these constraints include lower bounds on the quality
of the description (ϕ(D) ≥ lb1) and size of the induced subgroup (|GD| ≥
lb2). More constraints may be imposed as the question at hand requires;
domain experts may for instance request an upper bound on the complexity
of the description. Most common SD algorithms traverse1 the search space
of candidate descriptions in a general-to-specific way: they treat the space
as a lattice whose structure is defined by a refinement operator η : D →
2D. This operator determines how descriptions can be extended into more
complex descriptions by atomic additions. Most applications (including
ours) assume η to be a specialization operator : every description Di that
is an element of the set η(Dj), is more specialized that the description
Dj itself. The algorithm results in a ranked list of descriptions (or the
corresponding subgroups) that satisfy the user-defined constraints.

In traditional SD, subgroup exceptionality is measured in terms of the
distribution of only a single target variable. Hence, the typical quality
measure contains a component indicating how different the distribution
over the target variable in the subgroup is, compared to its distribution

1we consider the exact search strategy to be a parameter of the algorithm
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14 CHAPTER 3. THE EMM FRAMEWORK

in the whole dataset. Since unusual distributions are more easily achieved
in small subsets of the dataset, the typical quality measure also contains a
component indicating the size of the subgroup. Thus, whether a description
is deemed interesting depends on both its exceptionality and the size of the
corresponding subgroup.

EMM can be seen as a generalization of SD. Rather than one single target
variable, EMM uses a more complex target concept. An instance of Excep-
tional Model Mining is defined by the combination of a model class over
the targets, and a quality measure over this model class. When an instance
has been defined, subgroups are generated (we will discuss how in the next
section) to be evaluated. Then, for each subgroup under consideration, we
induce a model on the targets. This model is learned from only the data
belonging to the subgroup. Using the quality measure, the subgroup is
evaluated based on model characteristics, to determine which subgroups
are the most interesting ones. The typical quality measure in EMM indi-
cates how exceptional the model fitted on the targets in the subgroup is,
compared to either the model fitted on the targets in its complement, or
the model fitted on the targets in the whole dataset — we will discuss this
fundamental choice in Section 3.2.2. Just like in traditional SD, exceptional
models are sometimes easily achieved in small subgroups, so if necessary,
an EMM quality measure also contains a component indicating the size of
the subgroup.

As we will explore in Section 3.2, there are several canonical choices that
can be made when designing a quality measure for a selected model class.
However, the framework allows a quality measure to be any function assign-
ing a quality quantification to a description. This allows EMM to search for
just about any imaginable instantiation of “interesting” subgroups.

So far, we have talked about Exceptional Model Mining in an informal,
colloquial manner. This is deliberate. The goal is to find interesting sub-
groups of a dataset, for whatever instantiation of “interesting” the user of
EMM cares for, which is intrinsically subjective. Therefore, any formal
definition of the EMM task will only concern a subset of what we attempt
to achieve with EMM. Nevertheless, to provide a more precise handle on
what we will be concerned with in the following chapters, we can consider
the following task definition
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Problem Statement (Top-q Exceptional Model Mining). Given a dataset Ω,
description language D, quality measure ϕ, positive integer q, and set
of constraints C. The Top-q Exceptional Model Mining task delivers
the list {D1, . . . , Dq} of descriptions in the language D such that

∗ ∀1≤i≤q : Di satisfies all constraints in C;

∗ ∀i,j : i < j⇒ ϕ (Di) ≥ ϕ (Dj);

∗ ∀D∈D\{D1,...,Dq} : D satisfies all constraints in C ⇒ ϕ (D) ≤ ϕ (Dq).

Informally, we find the q best-scoring descriptions in the description lan-
guage that satisfy all constraints in C. This set encompasses both user-
induced constraints and search strategy limitations. These limitations in-
clude information about the exact choice we make for the refinement op-
erator η, guiding how new candidate subgroups are generated out of other
subgroups, and the limits to which we will explore the search space. In the
following section we discuss the choices made for the search space traversal
and the refinement operator in the remainder of this dissertation. Note that
the general EMM framework leaves the choice for these matters open.

Also noteworthy is the fact that this problem statement includes the tradi-
tional Subgroup Discovery problem. This is a feature rather than a bug: we
consider SD to be encompassed by EMM. In our view, Subgroup Discovery
is simply a version of Exceptional Model Mining in which m, the number
of targets as introduced in Section 2.1, is set to 1.

3.1 Search Strategy

Since the goal of SD/EMM is to find interesting subsets of the data, the
corresponding search space is potentially exponentially large. Hence, we
cannot simply explore this space by brute force; we need to find a more
sophisticated search strategy. Part of the problem is already solved by only
allowing subgroups. Since subgroups are subsets of the data for which a
description exists, the set of subgroups is smaller than the set of subsets
(although exactly how much smaller the set is, depends on the choice of
description language D). When many attributes in the dataset are numeric,
the difference is not very substantial.
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There are two main schools of thought in the community on how to over-
come this problem, each with their own focus. The one, following canonical
SD papers [55, 114], restricts the attributes in the dataset to be nominal
and imposes an anti-monotonicity constraint on the used quality measure.
Then the resulting search space can occasionally be explored exhaustively.
The other resorts to heuristic search. This allows the attributes to be nu-
meric as well, and facilitates a general quality measure. Since EMM is
developed to capture any concept of interestingness in subgroups, we find
allowing for any quality measure and numeric attributes more important
than exhaustiveness. Hence we select the heuristic path. Exhaustive SD
methods will be discussed in further detail in Section 3.3.1.

In the EMM setting, usually the beam search strategy is chosen, which
performs a level-wise search. On each level, the best w (for search width)
descriptions according to our quality measure ϕ are selected, and refined
to create the candidate descriptions for the next level. The search is con-
strained by an upper bound on the complexity of the description (also
known as the search depth, d) and a lower bound on the support of the
corresponding subgroup. This search strategy combines the advantages of
a greedy method with those of the implicit parallel search: as on each level
w alternatives are considered, the search process is less likely to end up in
a local optimum than a pure greedy approach, while selecting the w best
descriptions at each level keeps the process focused, hence tractable.

3.1.1 Refinement Operator and Description Language

An important part of the beam search strategy is generating the set of can-
didate descriptions for the next level, by refining another description. This
process is guided by the refinement operator η and the description language
D, for which we detail our choices in this section. Our description language
D consists of logical conjunctions of conditions on single attributes.

We treat the numeric attributes with a particular kind of discretization,
starting by fixing a positive integer b ≤ N (the number of bins) before
the EMM process starts. On the first search level, when the generating
description has no conditions, the discretization we apply is equal to static
pre-algorithm discretization of the attribute into b bins of equal size. How-
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ever, on each subsequent search level, our generating descriptions consist
of a positive number of conditions, hence they cover strictly less than N
records. Since on these levels we consider a discretization into b equal-sized
bins of the attribute-values within the generating non-empty description,
the bins may be different for each generating description. This dynamic
discretization during the process draws more information from the at-
tribute than we would use when statically discretizing it beforehand.

When η is presented with a description D to refine, it will build up the set
η(D) by looping over all the descriptive attributes a1, . . . , ak. For each at-
tribute, a number of descriptions will be added to the set η (D), depending
on the attribute type

if ai is binary: add D ∩ (ai = 0) and D ∩ (ai = 1) to η(D);

if ai is nominal, with values v1, . . . , vg: add { D ∩ (ai = vj), D ∩ (ai 6= vj) }gj=1
to η(D);

if ai is numeric: order the values of ai that are covered by the description
D; this gives us a list of ordered values a(1), . . . , a(n) (where n = |GD|).
From this list we select the split points s1, . . . , sb−1 by letting

∀b−1j=1 : sj = a(bjnbc)

Then, add { D ∩ (ai ≤ sj), D ∩ (ai ≥ sj) }b−1j=1 to η(D).

Informally, when presented with a description D, η will build a set of
refinements by considering the descriptive attributes one by one. Each such
refinement will consist of the conditions already present in D, plus one new
condition. If an encountered attribute ai is binary, 2 refined descriptions
will be added to η(D): one for which D holds and ai is true, and one
for which D holds and ai is false. If the attribute ai is nominal with g
different values, 2g refined descriptions will be added to η(D): for each of
the g values, one where D holds and the value is present, and one where
D holds and any of the g− 1 other values is present. If the attribute ai is
numeric, we divide the values for ai that are covered by D into a predefined
number b of equal-sized bins. Then, using the b−1 split points s1, . . . , sb−1
that separate the bins, 2(b− 1) refined descriptions will be added to η(D):
for each split point sj, one where D holds and ai is less than or equal to sj,
and one where D holds and ai is greater than or equal to sj.
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3.1.2 Beam Search Algorithm for Top-q EMM

Having described our choices for the search strategy and refinement oper-
ator that we will use in the remainder of this thesis, we can now describe
and analyze an algorithm for the top-q Exceptional Model Mining problem
stated earlier in this chapter. The pseudocode is given in Algorithm 1. In
the algorithm, we assume that there is a subroutine called satisfiesAll
that tests whether a candidate description satisfies all conditions in a given
set. Among the abstract datastructures we assume, the Queue is a standard
queue with unbounded length. The PriorityQueue(x) is a queue containing
at most x elements, where elements are stored and sorted with an associ-
ated quality; only the x elements with the highest qualities are retained,
while other elements are discarded. In a straightforward but not too naive
implementation, a PriorityQueue is built with a heap as its backbone. In
this case the elementary operations, insert_with_priority for adding an
element to the PriorityQueue and get_front_element for removing the
element with the highest quality from the PriorityQueue, have a computa-
tional cost of O (log x) [60, pp. 148–151].

Many statements in the algorithm control the beam search process in a
straightforward manner. However, the process is also controlled by the
interplay between the different (Priority-)Queues, which is more intricate
and deserves attention. The resultSet is a PriorityQueue maintaining the
q best found descriptions so far. Nothing is ever explicitly removed from
the resultSet, but if the quality of a description is no longer among the
q best, it is automatically discarded. Hence, the resultSet maintains the
final result that we seek. The beam is a similar PriorityQueue, but with a
different role. Here, the w best found descriptions so far on the current
search level are maintained. When all candidates for a search level have
been explored, the contents of the beam are moved into the unbounded
but (by then) empty Queue candidateQueue, to generate the candidates
for the next level.

Complexity

Since EMM is a highly parametrized algorithm, instantiated by a model
class and quality measure, we need to introduce some notation before we
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Algorithm 1 Beam Search for Top-q Exceptional Model Mining
Input: Dataset Ω, QualityMeasure ϕ, RefinementOperator η,

Integer w,d, q, Constraints C
Output: PriorityQueue resultSet
1 : candidateQueue ← new Queue;
2 : candidateQueue.enqueue({}); . Start with empty description
3 : resultSet ← new PriorityQueue(q);
4 : for (Integer level ← 1; level ≤ d; level++) do
5 : beam ← new PriorityQueue(w);
6 : while (candidateQueue 6= ∅) do
7 : seed ← candidateQueue.dequeue();
8 : set ← η(seed);
9 : for all (desc ∈ set) do
10 : quality ← ϕ(desc);
11 : if (desc.satisfiesAll(C)) then
12 : resultSet.insert_with_priority(desc,quality);
13 : beam.insert_with_priority(desc,quality);

14 : while (beam 6= ∅) do
15 : candidateQueue.enqueue(beam.get_front_element());

16 : return resultSet;

can analyze the computational complexity of the algorithm. We write
M(n,m) for the cost of learning a model from n records on m targets, and
c for the cost of comparing two models from the chosen model class.

Theorem 1. The worst-case computational complexity of Algorithm 1 is

O (dwkN (c+M(N,m) + log(wq)))

Proof. We start our analysis at the innermost loop, working bottom-up.
Line 12 inserts an element into a PriorityQueue of size q, which costs
O (logq). Line 13 does the same for a PriorityQueue of size w, and hence
costs O (logw). The conditions checked in line 11 are the user-induced con-
straints a domain expert may impose on the resulting descriptions. These
usually are relatively simple conditions concerning for instance a minimal
number of records covered by the descriptions. As such, they are relatively
cheap to check. For all reasonable constraints a domain expert may come
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up with, the necessary information can be extracted during the same scans
of the dataset we need when, for instance, computing the quality of the
description in the preceding line. As such, we assume the computational
complexity of line 11 to be dominated by the complexity of line 10. The
worst-case scenario is that all descriptions pass the test, hence the com-
mands inside the if-loop need to be computed every time. Thus, the total
complexity of lines 11 through 13 is O (logw+ logq) = O (log(wq)).

Line 10 computes the quality of a description. In the worst case, this
requires the learning of two models: one on the description and one on
its complement, and comparing these models. Hence: O (c+ 2M(N,m))

= O (c+M(N,m)) (recall the definition of c and M(N,m), as introduced
just before Theorem 1). In line 9, a loop is run for all refinements of a seed
description. By our choice of η, the worst case would be if every descriptive
attribute were nominal (or numeric) having N distinct values. For each of
the k descriptors (cf. Section 2.1), we would then generate 2N refinements.
The loop is thus repeated 2kN times, which costs O (kN). Hence, the total
complexity of lines 9 through 13 is O (kN (c+M(N,m) + log(wq))).

Line 8 enumerates all refinements of one description, which we have just an-
alyzed to cost O (kN). Line 7 dequeues an element from an ordinary Queue,
which can be done in O (1). Line 6 loops all previously analyzed lines as
many times as there are elements in the candidateQueue. This queue never
has more than w elements, since it is always emptied before (in line 15) at
most w new elements are added to the queue. Hence, the total complex-
ity of lines 6 through 13 is O (w (kN+ kN (c+M(N,m) + log(wq)))) =

O (wkN (c+M(N,m) + log(wq))).

On the same level we find line 5, which costs O (1), and the while-loop
of lines 14 through 15, which costs O (w logw) if done extremely naively.
These lines are dominated in complexity by lines 6 through 13. All these
lines are enveloped by a for-loop starting at line 4, which is repeated d
times. Lines 1 through 3 and 16 can be computed in constant time, and so
the total computational complexity of Algorithm 1 becomes

O (dwkN (c+M(N,m) + log(wq)))

This complexity seems relatively benign; we see no factors with exponents
higher than one, and the worst parameter has complexity O (w logw),
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which is tractable for a generous range of values for w. However, there
are some variables in the complexity expression, which can lead to higher
powers of parameters if we fill them in by selecting a model class and quality
measure. For instance, if we would perform traditional Subgroup Discov-
ery with this algorithm, we would be searching for descriptions having an
unusually high mean for one designated target. Hence, the model compu-
tation complexity becomes M(N, 1) = O (N), and the model comparison
cost becomes c = O (1). Thus, the total computational complexity of Beam
Search for Top-q Subgroup Discovery would be O (dwkN (N+ log(wq))),
which is quadratic in the number of records in the dataset.

Note that this computational complexity is in many respects a worst-case
scenario, whose bounds a real-life run of the algorithm is unlikely to meet.
Since data of such high cardinality is rarely obtained, the number of refine-
ments of a seed description is usually much lower than 2kN. Also, unlike
in the worst-case scenario, the beam search converges in such a way that
per search level the subgroups reduce in size, hence the modeling is done
over progressively smaller parts of the dataset. Also noteworthy are the
facts that when a dataset is extended with more data of the same cardinal-
ity, the algorithm scales linearly, and that the number of candidates under
consideration is roughly equal per search level, except for level d = 1.

3.1.3 Alternatives to Beam Search

Whereas the traditional EMM framework strives to find exceptional de-
scriptions by searching through the descriptive attribute space, and evalu-
ating on the target attribute space, interesting results have been obtained
by taking a more symmetrical approach to the two subspaces of the data.
The EMDM algorithm [69] strives to effectively find exceptional models by
iteratively improving candidate descriptions, exploiting structure in both
spaces. Each iteration consists of two steps, one for Exception Maximiza-
tion (EM) and one for Description Minimization (DM). In the EM step, a
compression-based quality measure guides the search for subsets having an
unusual model. In the DM step, a rule-based classifier is employed to find
a concise description that crafts a subgroup from the found subset. Upon
convergence, or when a threshold on the number of iterations is surpassed,
the subgroups are reported.
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The well-known FP-Growth algorithm has been adapted, to enable exhaus-
tive EMM. Lemmerich et al.’s generic pattern growth algorithm (GP-
Growth) [72] strives to avoid scanning the whole dataset to evaluate de-
scriptions. Instead, it builds a special data structure, in which the key
information of the model learned for a description is summarized. Such a
summary is called a valuation basis. It contains enough information to de-
termine the quality of any refinement of the description. The GP-Growth
algorithm can reduce the memory requirement and runtime of an EMM
instance by more than an order of magnitude, but only when a valuation
basis can be found that is suitably condensed. This depends on the compu-
tational expense of the model class: if a parallel single-pass algorithm with
sublinear memory requirements exists to compute the model from a given
set of records, profit can be gained from GP-Growth. Most of the model
classes we will discuss can benefit from GP-Growth, but in Chapter 6 we
will see a model which cannot.

3.2 How to Define an EMM Instance?

As previously described, an EMM instance is defined by the choice of model
class over the targets, and quality measure over the model class. In the
following four chapters we define several such instances. Before that, we
discuss some general themes that recur in EMM instance definitions.

The choice of model class is usually inspired by a real-life problem. For
instance, when the goal is to find deviating dependencies between several
species in an ecosystem, one is drawn towards graphical models such as
Bayesian networks and Markov models. If we can formulate the relation
between the targets for which we are interested in finding exceptions, this
usually naturally directs our attention to a particular model class.

3.2.1 Quality Measure Concepts

Having chosen a model class, we need to define a quality measure that
extracts characteristics from the learned models, and extracts from these
characteristics a quantification of how different the models are from each
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other. Usually such a quantification is relatively straightforward to design.
For instance, if the model class is a regression model with two variables,
one could take the difference between the estimated slopes in each model
as quality measure. However, such a quantification is typically not enough
to design a proper measure for the quality of a description. After all,
deviations from the norm are easily achieved in very small subsets of the
data. Hence, directly taking a difference quantification as quality measure
probably leads to descriptions of very small subgroups, which are usually
not the most interesting ones to domain experts. Therefore, we somehow
want to represent the size of a subgroup in a quality measure.

In some of the canonical quality measures for Subgroup Discovery, such
as Weighted Relative Accuracy (WRAcc) [35], the size of a subgroup is
directly represented by a factor n or

√
n. Though their simplicity is ap-

pealing, we find it somewhat counter-intuitive to have a factor in a quality
measure that explicitly favors subgroups covering the entire dataset over
smaller subgroups. A slightly more sophisticated way to represent the sub-
group size, is to multiply (i.e. weigh) the quantification of model difference
with the entropy of the split between the subgroup and its complement.
The entropy captures the information content of such a split, and favours
balanced splits (1 bit of information for a 50/50 split) over skewed splits (0
bits for the extreme case of either subgroup or complement being empty).
The entropy function ϕef(D) is defined (in this context) as

ϕef(D) = −n/N lg n/N− nC/N lg nC/N

Another way to direct the search away from extremely small subgroups,
is by employing a quality measure based on a statistical test. For certain
models there may be hypotheses of the form

H0 : model parameter for description = model parameter for complement

H1 : model parameter for description 6= model parameter for complement

which we can test, usually involving some statistical theory, to derive an
expression for which we can compute a p-value. Then, using 1 − p as the
quality measure, we have constructed a measure ranging from 0 to 1 for
which higher values indicate more interesting descriptions.

Sections 4.1 (ϕscd), 5.1 (ϕsed) and 7.4 (ϕssd) feature examples of quality
measures that are directly based on a statistical test. In Sections 4.3 (ϕent)
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Figure 3.1: Should we compare a subgroup GD to its complement GCD, or
to the whole dataset Ω?

and 6.1 (ϕweed) we find examples of quality measures employing the en-
tropy function. Quality measures from Sections 4.3 (ϕabs), 5.3 (ϕBDeu and
ϕHel), 6.3 (ϕed), and 7.1 (ϕCook) consist solely of a difference quantification
(occasionally these are statistically inspired, but they are not directly based
on an established statistical test).

3.2.2 Compared to what?

So far we have discussed quality measure development as a means of as-
sessing how different two learned models are from one another, and how to
ensure that subgroups have a substantial size. However, we have neglected
a cardinal point. Since a quality measure should assign a quality to a de-
scription, its model should be compared, but to which other model? There
are two options: we can compare the model for a description of a subgroup
GD either to the model for its complement GCD, or to the model for the whole
datasetΩ. The simple constructed example from Figure 3.1 illustrates that
these two comparisons can lead to very different outcomes.

Suppose that we have a two-dimensional target space, and we are concerned
with finding descriptions having a deviating regression line in these two
dimensions. Figure 3.1 depicts the target space, and the six records in
the example dataset. The dotted grey line is the regression line of the
whole dataset, with slope −1. Now suppose that we find the description
D covering the records depicted as circles. The dashed grey line is the
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regression line of GD, with slope 1. The solid grey line is the regression
line of GCD, also having slope 1. When gauging the exceptionality of a
description solely by the slope of the regression line, we find GD interesting
when compared to Ω, but not at all when compared to GCD. Of course, the
assessment changes when we include the intercept in the evaluation.

The problem as displayed in Figure 3.1 is underdetermined; we have not
enough information to formulate an opinion on whether the subgroup should
be deemed interesting. It can therefore not be used to illustrate whether
comparing to GCD or to Ω is preferable; it merely illustrates that a different
choice may lead to a different outcome.

There is not always a clear-cut preferred choice whether to compare to GCD
or to Ω. Sometimes, the real-life problem at hand can point in one di-
rection: if we are interested in deviations from a possibly inhomogeneous
norm, it makes more sense to compare to Ω, whereas if we are interested in
dichotomies, it makes more sense to compare to GCD. On other occasions, a
statistically inspired quality measure may require choosing either Ω or GCD,
to prevent violation of mathematical assumptions. Lastly, when the model
class is so complicated that learning models from data covered by descrip-
tions has a nontrivial computational expense, efficiency might dictate the
choice: when comparing n descriptions to Ω, learning n+1 models suffices,
but when comparing them to GCD, learning 2n models is required.

The previous two practical considerations supersede any personal prefer-
ence that we outline; if the model class choice and quality measure design
somehow require comparing to either GCD or Ω, then that is the way to go.
However, when given the choice, we would consider comparing to Ω prefer-
able. After all, Exceptional Model Mining is designed as a Local Pattern
Mining task, where we strive to find coherent subsets of the data where
something interesting is going on. The goal is to pinpoint many such de-
viations of the norm, possibly overlapping, without consideration for the
coherence and model parameters occurring in the remainder of the dataset.
When we compare the model for a subgroup GD to the model for Ω, we
evaluate a subgroup by comparing its behavior to the behavior for the en-
tire dataset. This implies that we strive to find subgroups deviating from
the norm. By contrast, when we compare the model for a subgroup GD to
the model for GCD, we evaluate a subgroup by comparing its behavior to the
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behavior on the complement of the dataset. This implies that we strive to
find schisms in the dataset: not necessarily one subgroup deviating from
the norm, but rather a partitioning of Ω into two subgroups displaying
clearly contrasting behavior. We think this is a very interesting task, but
it may not strictly adhere to the goals of Exceptional Model Mining.

3.3 Related Work

Exceptional Model Mining extends a vast body of work, of which this sec-
tion contains some highlights. First we discuss the search strategies devel-
oped to deal with the exponential search space. Then we look into other
local pattern mining tasks, and other extensions of Subgroup Discovery.
Finally, we discuss how similar questions arise in other data mining disci-
plines, and what distinguishes them from EMM.

3.3.1 Search Strategies for SD/EMM

When striving to find interesting subsets of a dataset, the search space
is exponential in the number of records. By restricting the problem to
finding interesting subgroups, i.e. subsets with a concise description, the
search space remains theoretically exponential in size, but we obtain a
handle with which we can tackle the problem. Traditionally [55], this is
done by compelling all attributes in the dataset to be nominal. In this
case, occasionally exhaustive search is possible, using filters akin to the
anti-monotonicity constraints known from frequent itemset mining. When
not all attributes are nominal, traditionally there was no other option than
to resort to heuristic search.

Recently, Grosskreutz and Rüping developed a new pruning scheme with
accompanying SD algorithm, MergeSD [45], which allows for exhaustive
mining even when the attributes are taken from a numeric domain. Their
key idea is to exploit bounds between related numeric descriptions to prune
with optimistic estimates, thus reducing the search space to tractable levels.
Unfortunately, the pruning scheme cannot be used with any quality mea-
sure; implicitly a constraint similar to anti-monotonicity is imposed.
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In work dedicated to expanding the description language D available to
Subgroup Discoverers, Mampaey et al. introduced an efficient treatment
of numeric attributes [76]. The description space is not explored exhaus-
tively. Instead, the algorithm finds richer descriptions efficiently, by finding
an optimal interval for every numeric attribute, and an optimal value set
for every nominal attribute. The efficiency comes from considering only
descriptions that lie on a convex hull in ROC space, and evaluating them
with a convex quality measure. Hence, the method is only suitable for a
target concept that can be properly expressed in ROC space, i.e. traditional
SD with a nominal target, and a convex concept of interestingness.

Another problem stemming from the exponential search space is the re-
dundancy in a resulting description set. When a description is deemed
interesting, small variations will very likely deliver other descriptions that
are also quite interesting. Therefore it is not uncommon, especially when
there are numeric attributes in the dataset, to find the top of a description
chart dominated by many copies of what technically may all be slightly
different descriptions, which in practice all indicate the same underlying
concept. Van Leeuwen et al. [70] introduced three degrees of subgroup
redundancy, and incorporated selection strategies based on these redun-
dancies in a beam search algorithm. This results in non-exhaustive, but
interestingly different search strategies.

The only work so far on exhaustive Exceptional Model Mining, is Lem-
merich et al.’s GP-Growth algorithm [72], which was discussed in detail
earlier in this chapter. It can severely reduce the memory requirement and
runtime of an EMM instance, but only when a parallel single-pass algo-
rithm with sublinear memory requirements exists to compute the model
from a given set of records. This can be done for relatively simple model
classes, but not for more computationally expensive model classes (cf. Sec-
tion 3.1.3).

3.3.2 Similar Local Pattern Mining Tasks

Subgroup Discovery research orginated in the mid-nineties, in a simple
single-table setting with a binary target attribute [55], and in a multi-
relational setting [114]. Tasks that are very similar to, but slightly different
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from Subgroup Discovery, include Contrast Set Mining [4], where the goal
is to find “conjunctions of attributes and values that differ meaningfully
in their distributions across groups”, and Emerging Pattern Mining [21],
which strives to find itemsets whose support increases substantially from
one dataset to another. One could view the latter task as an amalgamation
of two separate Subgroup Discovery runs (one for each dataset), followed
by a search for classification rules (where a found subgroup has class 1 when
found on dataset 1, and class 2 when found on dataset 2). Kralj Novak et
al. provide a framework unifying Contrast Set Mining, Emerging Pattern
Mining, and Subgroup Discovery [65].

Giving a full overview of all work related to Subgroup Discovery is beyond
the scope of this dissertation; such overviews are available in the literature
(for instance: [50]). In the remainder of this section we focus on work
related to supervised local pattern mining with a more complex goal.

As the antithesis to Contrast Set Mining, Redescription Mining [39, 91]
seeks multiple descriptions of the same subgroups, originally in itemset
data. Recent extensions incorporate nominal and numeric data [38].

Umek et al. [109] consider Subgroup Discovery with a multi-dimensional
output space. They approach this data by considering the output space
first: agglomerative clustering in the output space proposes candidate sub-
groups that have records similar in outcomes. Then, a predictive modeling
technique is used to test for each identified candidates whether they can
be characterized by a description over the input space.

One of the few papers that explicitly seeks a deviating model over a target
attribute, concerns Distribution Rules [54]. In this work, there is only one
numeric target, and the goal is to find subgroups for which the distribution
over this target is significantly different from the overall distribution, mea-
sured in terms of the Kolmogorov-Smirnov test for goodness of fit. Since
rules are evaluated by assessing characteristics of a model, this can be seen
as an early instance of Exceptional Model Mining, albeit considering only
one target attribute.
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3.3.3 Similar Tasks with a Broader Scope

General concepts from EMM, like fitting different models to different parts
of the data, or identifying anomalies in a dataset, appear in tasks beyond
Local Pattern Mining. In this section we discuss a few such tasks, and how
they relate to EMM.

In Outlier Detection, traditionally the goal is to identify records that devi-
ate from a general mechanism. Usually there is no desire to find a coherent
set of such outliers, which can succinctly be described: identifying non-
conforming records is enough. As Outlier Detection becomes more and
more mature and sophisticated, we witness more attention towards the un-
derlying mechanism making a point an outlier, for instance in recent work
by Kriegel et al. [66]. Their method to detect outliers in arbitrarily oriented
subspaces of the original attribute space also delivers an explanation with
each outlier, consisting of two parts: an error vector, pointing towards the
expected position of the outlier, and an outlier score, quantifying the like-
liness that this point is an outlier. Searching for the reason for outliers is
a step towards bridging the gap with finding coherent deviating subsets as
done in EMM, although the approaches differ vastly. Alternatively, Konijn
et al. [63] have designed a hybrid method, post-processing regular Outlier
Detection results with a Subgroup Discovery run. This enables higher-level
analysis of Outlier Detection results.

When fitting a regression function to a dataset with a complex underlying
distribution, one could employ Regression Clustering [116]. The idea is to
simultaneously apply K > 1 regression functions to the dataset, cluster-
ing the dataset into K subsets that each have a simpler distribution than
the overall distribution. Each function is then regressed to its own subset,
resulting in smaller residual errors, and the regressions and clustering opti-
mize a common objective function. Catering for parts of the dataset where
a fitted model is substantially different is a shared idea between Regression
Clustering and EMM. However, in Regression Clustering the subsets are
not necessarily coherent, easy to describe subgroups: the goal is not to
explore exceptionalities, but to give a well-fitting partition.
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A similar caveat holds for the well-known Classification And Regression
Trees [7], where a nominal or numeric target concept is assigned a differ-
ent class or outcome depending on conditions on attributes. While the
recursive partitioning given by the tree ensures that every path from the
root to a leaf constitutes a coherent, easy to describe subgroup, there is
again no explicit search for exceptionalities. A partition that performs well
is enough, and if multiple exceptional phenomena that happen to have
similar effects on the target are found in the same cell of the partition, the
CART algorithm judges this as a good outcome while from the Exceptional
Model Mining viewpoint it is not.

As an extension of the regression tree algorithm provided by CART, where
the leaves contain numeric values as opposed to the classes found in the
leaves of a decision tree, the M5 system [90] produces trees having multi-
variate linear regression models in the leaves. Instead of learning a global
model for the entire dataset, M5 partitions the dataset by means of the
internal nodes of the tree, and learns a local model for each leaf. Essen-
tially, the resulting tree can be seen as a piecewise linear regression model.
M5 can also be seen as a sibling of Regression Clustering, but with an
easy-to-describe partition and a hierarchical clustering. As is the case with
CART and Regression Clustering, contrary to EMM the goal of M5 is not
to find exceptionalities but to completely partition the data, and the focus
is on the overall performance in the target space rather than separation of
exceptional phenomena.

Contrary to ordinary decision trees, where the classes are found in the
leaves of the tree and the internal nodes merely contain conditions for clas-
sification, a Predictive Clustering Tree (PCT) [5] has each internal node
and each leaf corresponding to a cluster. A cluster is represented by a
prototype, and a distance measure is assumed that computes the distance
between prototypes hence clusters. Given all this, the decision tree al-
gorithm is adapted to select in each node the condition maximizing the
distance between the clusters in its children. Defining a quality measure
that finds an optimal separation between a subset of the data and its com-
plement, is a common concept in PCT and EMM. However, the goal of
PCT is not to find global exceptionalities, but rather find a partition of the
data that is optimal in some sense.
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The work on PCTs has been generalized to concern the general problem
of mining on a dataset with structure on the output classes, whether this
structure takes the form of dependencies between classes (tree-shaped hi-
erarchy, directed acyclic graph) or internal relations between classes (se-
quences). A tree ensemble method for such data was proposed by Kocev et
al. [61]. Their method is able to give different predictions for parts of the
dataset that behave differently from the norm. Contrary to EMM, there is
no explicit identification of the deviating subgroup and model.

3.4 Software

In the following chapters, we will introduce model classes and quality mea-
sures, and run experiments with the corresponding Exceptional Model Min-
ing instances. These experiments are primarily performed with the Cor-
tana discovery package [78]: a Java implementation that is an open-source
spin-off of the Safarii Data Mining system.

Cortana is not limited to Exceptional Model Mining; it provides multiple
supervised Local Pattern Mining tasks. The user can set the task he/she
wants Cortana to perform by selecting a target concept. For the simplest
target concept, SINGLE_NOMINAL, the user must highlight one nom-
inal attribute, and Cortana will perform Subgroup Discovery with that
attribute as target. Similarly, for the SINGLE_NUMERIC target concept,
one numeric attribute needs singling out, for Cortana to use as numeric
target in a Subgroup Discovery run. Several Exceptional Model Mining in-
stances are covered by other target concepts: DOUBLE_CORRELATION
handles the Correlation model from Chapter 4, the MULTI_LABEL target
concept corresponds to the Bayesian network model from Chapter 6, and
the DOUBLE_REGRESSION target concept concerns the simple Regres-
sion model from Section 7.4. For each target concept, a range of quality
measures is available that allow the user to define exactly what sort of ex-
ceptional subgroups Cortana should search for. The subgroup validation
method we develop in Chapter 8 is also available in Cortana.

Independent of the choice of target concept and quality measure, Cortana
provides a parametrized search algorithm. Several search strategies are
included (breadth-first, depth-first, best-first, beam, and cover-based beam
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[70]), and the user can select one of many strategies for dealing with numeric
attributes. Furthermore, conditions can be set on the minimal subgroup
size, the minimal subgroup quality, the maximal description length, the
maximal number of subgroups to present at the end of the algorithm, and
the maximal amount of total time the algorithm spends on the task.

Apart from many more things, Cortana provides a parametrized version
of the Beam Search algorithm for Top-q Exceptional Model Mining, as
detailed in Algorithm 1. It is available online, at http://datamining.
liacs.nl/cortana.html.


