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Chapter 2

Motivation and Preliminaries

Finding elements that behave differently from the norm in a dataset is a
task of paramount importance. Most data mining research in this direction
focuses on detecting outliers: simply identifying the peculiarly-behaving
records. The characteristic feature of local pattern mining techniques that
separates them from such outlier detection methods, is that in local pattern
mining, we are not just looking for any outlying record or set of records in
the data. Instead, we are looking for subgroups: coherent subsets for which
we can formulate a concise description in terms of conditions on attributes
of the data. The existence of such descriptions makes the subgroups more
actionable: if we can tell a drug manufacturer that ten of his patients react
badly to a certain type of medication, this doesn’t help him much, but if we
can tell him instead that the group of smokers under the age of thirty react
badly, this gives the manufacturer a clear indication in which direction to
find a solution to his problem.

When the target concept in a dataset can no longer be captured by one
particular attribute, but we still want to find exceptional subgroups in the
dataset, we find a need for Exceptional Model Mining. As an example of
a relatively complex target concept, consider the research performed by
Robert T. Paine in 1963 and 1964 in Makah Bay, Washington [86]. It
concerns the carnivore starfish Pisaster ochraceus whose presence kept
a marine ecosystem consisting of 15 species stable. In this system, the
sponge Haliclona was browsed upon by the nudibranch Anisodoris. When
Pisaster was artificially removed, the bivalve Mytilus californianus and
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the barnacles Balanus glandula and Mitella polymerus rapidly grew and
crowded out other species. In total, only 8 species remained. Also, the
sponge-nudibranch food chain was displaced, and the anemone population
was reduced in density. Counterintuitively, when present, Pisaster did not
eat any of these last three species.

In the studied ecosystem, Pisaster was the top carnivore: it consumed
other species, but no other species consumed him, and Pisaster was the
only species in the system for which both these statements held. This made
Paine et al.’s research very relevant from a biological point of view; up until
that point, it was generally assumed that removing the top carnivore from
an ecosystem would increase diversity, but the Pisaster experiment proved
that that was not necessarily the case.

Paine remarks that the food chains are strongly influenced by Pisaster, but
by an indirect process. When dealing with a dataset detailing the presence
of individual species, existing methods can probably detect simple patterns
in the ecosystem, such as the growth of Mytilus, Balanus and Mitella and
the decline in the number of species when Pisaster is removed. However,
the more indirect influence of Pisaster on processes such as a food chain it
is not direcly related to, for instance between Haliclona and Anisodoris,
cannot be found by looking at single species or even correlations between
pairs of species: the (in-)dependence between Haliclona and Anisodoris
is conditional on the presence of Pisaster.

Paine models the food chains in the ecosystem as a Bayesian network. In
order to find subgroups where the food chains between species are sub-
stantially different from the norm, we need to be able to detect the in-
direct processes that can be captured with a Bayesian network. Using
an Exceptional Model Mining instance, we can for instance find subgroups
defined by environmental parameters in which complex food chains are dis-
placed. The ability to cope with Bayesian networks makes the same EMM
instance applicable to datasets from such diverse fields as information re-
trieval [9], traffic accident reconstruction [18], medical expert systems [20],
gene expression in computational biology [33], and financial operational
risk [82].

Another EMM instance could for example be used to find evidence for
the Giffen effect in data. This effect can be seen as a form of Simpson’s
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paradox for regression models. The economic law of demand states that, all
else equal, if the price of a good increases, the demand for the product will
decrease. Sir Robert Giffen described conditions under which this law does
not hold [77]. The classic example concerns extremely poor households,
who mainly consume cheap staple food, and relatively rich households in
the same neighborhood, who can afford to enrich their meals with a luxury
food. In this situation, when the price of the staple food increases, there
will be a point where the relatively rich households can no longer afford
the luxury food. These people need to uphold their calorie intake. Hence,
they react by consuming more of the cheapest food available to them,
which is the staple food whose price just increased. For the relatively rich
households in this poor neighborhood, an increase in the price of the staple
food, will lead to an increase in the demand for the staple food. Notice
that this relation does not hold for the extremely poor households: they
consume only the staple food to begin with, so when the price increases
they can simply afford less of it.

For a long time, the Giffen effect was a controversial theory in Economics,
since no real-life dataset featuring the effect was available. In 2008, more
than a century after the theorem was formulated for the first time, Nolan
and Jensen published a paper [53] containing the first real-world dataset
containing the Giffen effect, for rice in Hunan, China. Their field study
entailed distributing vouchers among randomly drawn households, with
which the recipients could buy rice at a lower price. The authors monitored
the price of and the demand for rice before, during, and after the voucher
programme, as well as a plethora of alternative factors that could influence
demand. The relation between the demand for rice and the influencing
factors (including the price of rice) was captured by a regression model.
Nolan and Jensen observed that the households consuming less than 80%
of their calorie intake through rice, i.e. the relatively rich households in this
poor neighborhood, displayed the Giffen effect, while the other households
did not.

The group of relatively rich households in a poor neighborhood is a sub-
group. The subgroup displays an unusual interaction between multiple
targets, as captured by the regression model. Hence, subgroups displaying
the Giffen effect can be automatically detected by an Exceptional Model
Mining instance, mining for an unusual slope of a regression line.
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2.1 Preliminaries

Having motivated Exceptional Model Mining in the previous section, we
will formally introduce the framework in the next chapter. To that end, we
first introduce some definitions and notations that will be used throughout
the remainder of this dissertation. Any symbol introduced in this section
may pop up at any given moment; we assume its meaning to be understood
by the reader from this point on.

We assume a dataset Ω to be a bag of N records r ∈ Ω of the form

r = (a1, . . . , ak, `1, . . . , `m)

where k and m are positive integers. We call a1, . . . , ak the descriptive at-
tributes or descriptors of r, and `1, . . . , `m the target attributes or targets
of r. The descriptors are taken from an unrestricted domain A. In later
chapters we will learn models from a selected model class over the targets;
restrictions on the type of each target may be imposed by the choice of
model class. We refer to (elements of) the ith record by superscript i.

For our definition of subgroups we need to define descriptions. In prac-
tice, descriptions will usually be taken from a description language D, to
be chosen by the user. We will leave this concept abstract for now; a par-
ticular choice we make for D will be discussed in Section 3.1.1. However,
mathematically, we will define descriptions as functions D : A → {0, 1}. A
description D covers a record ri if and only if D

(
ai1, . . . , a

i
k

)
= 1.

Definition (Subgroup). A subgroup corresponding to a description D is the
bag of records GD ⊆ Ω that D covers, i.e.

GD =
{
ri ∈ Ω

∣∣ D
(
ai1, . . . , a

i
k

)
= 1
}

From now on we omit the D if no confusion can arise, and refer to a sub-
group as G. We will freely associate subgroups with their descriptions and
vice versa. Also, the ‘patterns’ in the commonly used term ‘Local Pattern
Mining’ are equivalent to our descriptions, and hence imply subgroups.
These terms will all be used interchangably when a clear separation be-
tween the concepts is not necessary. Whenever it is clear that we have a
particular subgroup G in mind, we will write n for the number of records in
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that subgroup: n = |G|, to which we will also refer as the coverage of the
description. The complement of a subgroup is denoted by GC, and for its
number of records we write nC. Hence, GC = Ω\G, and nC = N−n.

In order to objectively evaluate a candidate description in a given dataset,
we need to define a quality measure. For each description D in the descrip-
tion language D, this function quantifies the extent to which the subgroup
GD induced by the description deviates from the norm.

Definition (Quality Measure). A quality measure is a function ϕ : D → R
that assigns a unique numeric value to a description D.

Since descriptions imply subgroups, we will occasionally write ϕ(G) and
refer to the quality of a subgroup.




