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Chapter 5

The Role of Anisotropy in
Granular Flow

5.1 Introduction

In this chapter we study the influence of the anisotropy of a granular pack-
ing on its flow and rheology. When a granular system is sheared, the par-
ticles rearrange and form a dilated, anisotropic packing [47, 117–124]. We
believe that the buildup and release of anisotropy influences many granu-
lar experiments, typically during transients and reversals. In this chapter
we will develop a method to measure the anisotropy explicitly.

Figure 5.1: (a) Torque as a function of strain for a flow reversal experiment. When a
fully disordered packing is first sheared, is it isotropic and the required T is low. After a
strain of about a grain diameter, the steady state T is reached. When reversing the flow
direction (bottom curve), the required T initially is very low. (b) The height and density
of the packing. Upon reversal, the packing compacts. Image from [117].
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Chapter 5. The Role of Anisotropy in Granular Flow

An example where the anisotropy plays a role is an experiment by the
group of W. Losert, where the flow of a granular material is investigated
in a Taylor-Couette geometry [117]. The emphasis of this work is the re-
sponse of the flow to a reversal of the flow direction. Two main figures
from the paper are shown in Fig. 5.1. In (a), the torque that is required
to shear the system, is plotted as function of the strain. Initially, there is
a short transient where, for very low strain, the torque is very low. After
this stage, when a steady state anisotropy and density have been reached,
the system is in a steady state and T ≈ 4 Nm. When the flow is reversed,
there is a new transient where, initially, T is very low and the packing
compacts (b). After a transient in the strain of around 5 particle diame-
ters, a new steady state is reached. This experiment shows the influence
of the anisotropy of the packing: both the rigidity and the density of the
packing change when the shear is reversed. Similar results are also found
in a frictionless system [118].

Figure 5.2: Using photo elastic
disks, the force chains, directed
opposite to the flow, can be visu-
alized [118].

In general, the anisotropy of the packing
resists shear. This can also be seen in the
force chains that are formed in the direction
counter to the flow [118, 119]. This is visu-
alized in Fig. 5.2, which is made using photo
elastic disks [118]. In the figure, the white
arrow indicates the flow direction; the white
lines through the particles are the visualiza-
tion of the force chains.

In a third example, the rheological curve
T (Ω) of a granular material is measured in
the split-bottom geometry [47]. At the bot-
tom of the container there is a rotating disk
which fluidizes the system [38] (main flow).
Higher up in the system, the flow curves are
measured via the rotation of a vane (secondary flow) connected to a
rheometer for different rates of the bottom disk. It is found that, in the ab-
sence of any main flow, the probe experiences a clear yield stress, whereas
for any finite flow rate, the yield stress disappears and the secondary rhe-
ology takes on the form of a double exponential relation between Ω and
T . This secondary rheology does not only depend on the magnitude of T ,
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5.2. Protocol

but is anisotropic – which is shown by varying the relative orientation of
the probe and main flow [47].

We perform our experiments of the anisotropy with the setup that was
introduced in Sec. 2.2. The basic idea is as follows: we prepare a system by
shearing it in rate control until we reach a steady, critical state [125], with
a certain constant torque and anisotropy. When we then just vibrate this
packing, the vibrations will relax the anisotropy, which leads to a small
rotation of the disk in the direction counter to the direction of the initial
shear. We measure this rotation with the rheometer, where a larger ro-
tation means that the packing was more anisotropic. This explicit way to
measure the anisotropy is a beautiful example of what is possible with our
experimental setup that combines shear and vibration.

Anisotropy Density
Flow increase decrease
Vibrations decrease increase

Table 5.1: Flow and vibrations compete in terms of both anisotropy and density.

We study the anisotropy as a function of flow rate Ω and vibration
intensity Γ . Whereas the flow builds anisotropy, the vibrations relax the
packing. This means that there is a competition between the two, which
will eventually lead to a equilibrated value of the anisotropy. Interestingly,
this is very similar to density, which is increased by vibrations [126] and
decreased by flow [18]. The situation is summarized in Table 5.1. When
interpreting the data it is important to be aware of the subtle relation be-
tween shear and vibrations and the possible influence of density changes.

5.2 Protocol

The protocol that we use to measure the anisotropy is shown schemat-
ically in Fig. 5.3. When building the anisotropy, we impose a flow rate
Ωshear and vibration intensity Γshear. When probing the anisotropy we im-
pose T = 0 and Γprobe, where the rotation of the disk is purely caused by
the relaxation of the anisotropic packing. The protocol is complex, which
originates from the fact that we cannot instantly change from building the
anisotropy to measuring it. If we were to abruptly change from finite Ω
to T = 0, the inertia of the disk would cause it to keep rotating, which
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Chapter 5. The Role of Anisotropy in Granular Flow
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Figure 5.3: A schematic representation of the measurement protocol.

would interfere with measuring the relaxation. In addition, the spring,
that forms the flexure between the disk and the rheometer, is stretched
during the stage when we build the anisotropy. When switching to T = 0,
the spring relaxes, which results in a significant oscillation on the signal.
To circumvent these two complications, the following protocol is devel-
oped:

Preshear (not shown in figure): We start with a preshear that consists of 5 s
shear at 1 rps, followed by 10 s shear with -1 rps and again 5 s at 1 rps.
We conclude with a waiting period of 10 s during which the system is
not sheared. During the entire preshear stage, the vibrations are already
switched on at value Γshear.
Stage 1: This is the stage during which we build the anisotropy into the
system. There are two control parameters: the vibration intensity Γshear

and the constant rotation rate Ωshear. We verify that we reach steady state
flow by measuring T and making sure that it equilibrates. At the slowest
Ωshear that we probe, this takes approximately 1.6× 104 s.
Stage 2: Since we want the disk to be stationary at the beginning of the
measurement of the relaxation, we impose Ω = 0. To freeze the anisotropy,
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5.3. Steady State Relaxation

we simultaneously switch to Γ = 0. The system is now frozen, with the
anisotropy still present in the packing.
Stage 3: Now that the disk is frozen and the rheometer is at Ω = 0, the
flexure is still stretched. We therefore switch to T = 0 while Γ = 0. The
flexure now relaxes without significantly influencing the frozen packing.
Stage 4: We switch on the vibration (this moment is defined t = 0 s) and
measure the relaxation of the system. We probe at Γprobe = 0.4 and a sam-
ple rate of 5 Hz for 28 s. Since the flexure is relaxed and the rheometer
axis can rotate freely, there is no difference between the deflection of the
axis above and below the flexure (we have verified this with the optical
encoder that measures the position below the disk that we introduced in
Sec. 4.2). This means we can measure the relaxation using the rheometer.

We perform five measurements for each combination of Γshear and
Ωshear (except for the Ω < 10−5 rps, where we measure three times), and
average the results thus obtained.

5.3 Steady State Relaxation

5.3.1 Relaxation Speed

We measure the relaxation for Γshear = 0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8 and Ω =
1, 0.316, 0.1, ..., 10−6 rps, at H/Rs = 0.33 and Γprobe = 0.4. In Fig. 5.4(a)
we present the raw relaxation curves θ(t), where the color represents the
relaxation speed at t=0 s. The relaxation speeds vary over a large range,
but for all data, the relaxation becomes slower over time. Apart from some
exceptions, the curves do not intersect.

To see how the relaxation varies with Ωshear and Γshear, we want to
extract a number for the relaxation speed from the θ(t)-curve using a fit.
From the data in Fig. 5.4(a), we see that the relaxation curves seem to have
a logarithmic shape (this cannot be true for all t, since log(t) → ∞ for
t → ∞, whereas our data does not). We find that we cannot fit the data
using a 1-parameter fit. The reason for this is that not only the overall
relaxation speed, but also the curvature of θ(t) varies per data set. To take
into account both properties of the relaxation curve, we fit the data with:

θ(t) = a · log

(
t+ b

b

)
, (5.1)
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Figure 5.4: (a) The raw θ(t) relaxation curves. The color represents the relaxation speed
at t=0 s. (b) A collapse of the data onto the master curve log[(t + b)/b] (plotted in black)
using Eq. 5.1.

where b is a measure for the curvature (a higher b corresponds to less cur-
vature), and a/b is the slope of the relaxation curve at t = 0. In addition,
the fit function is chosen such that θ = 0 at t = 0. In Fig. 5.4(b), we show
that the fit with Eq. 5.1 works well by using it to collapse the data onto the
master curve log[(t+ b)/b].

To test if we could fit the data with a 1-parameter fit function, we plot
the correlation between the initial slope R = a/b and the curvature b in
Fig. 5.5(a). We see a correlation where, in general, a faster initial relaxation
corresponds to a more curved relaxation curve. However, the relation is
quite scattered, which means that a 1-parameter fit would correspond sig-
nificantly less to the data.

To investigate the quality of the fits, we calculate their standard weight-
ed χ2 [127] and show the results in Fig. 5.5(b). It can be seen that the
logarithmic fit matches the data better for fast relaxations. This is also
visible in the collapse of the raw data in Fig. 5.4(b). Here, the slow (red)
relaxation curves do not collapse perfectly, but lay just above the master
curve for large t. We find that, for low R, the initial relaxation is relatively
fast, but for t > 5 s, the curvature is very low (an example is plotted in
Fig. 5.10(a)). This results in a shape that does not fully match a logarithm.

Hence, the scatter in Fig. 5.5(a) suggests that it is hard to character-
ize the relaxation curve with a single parameter, and the correlation in
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Figure 5.5: (a) A scatter plot of the initial relaxation rate R = a/b versus the inverse
curvature b. There is a clear correlation, however, for low R, the scatter is large. (b) A
scatter plot of the quality of the fit χ2 vs R. There is a trend that the fit is better for faster
relaxations.

Fig. 5.5(b) shows that the fit with Eq. 5.1 systematically works better for
fast relaxations. However, we already know that the relaxation curves
cannot be true logarithms as our data does not go to θ = ∞. More-
over, as shown by the relatively low values of χ2 and the good collapse
in Fig. 5.4(b), the fits do match the data closely. Fig. 5.4 shows that the
general shape of the relaxation curves is robust, and the curves do not in-
tersect. Therefore, we are confident that we can characterize the relaxation
process by the single parameter R - defined as the initial relaxation speed
at t = 0, a/b - as it is a good proxy the the anisotropy of the frozen state.
We have verified that the main results that we report are independent of
the precise choice of order parameter.

5.3.2 Dependence on (Ω , Γ ) and (T ,Γ )

In Fig. 5.6(a) we show R as function of the control parameters Γ and Ω .
The red curve corresponds to the case without vibrations, Γ = 0. We see
that, for this curve, R is essentially independent of Ω . This is what we
expect: at Γ = 0, the flow is rate independent for the range in Ω that we
measure (except for Ω > 0.1 rps). As a result, different values of Ω corre-
spond to the same anisotropy and R; it will only take a different amount
of time to reach the steady state. For Ω > 0.1 rps, R decreases. We be-
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Figure 5.6: (a) The relaxation R as a function of the control parameters Γ and Ω . (b) The
data collapses when we plot R as a function of the steady state T that we measure during
stage 1 where we build the anisotropy.

lieve this is caused by the flow itself, which is so fast, that it fluidizes and
relaxes the packing. Overall, the values of R for Γ = 0 seem surprisingly
low, we will discuss this in Sec. 5.5.1.

For Γ > 0, the situation is more complex. During stage 1, there is a
competition between the flow, that is increasing the anisotropy, while the
vibrations are relaxing it. For low Ω , this results in a monotonic lower-
ing of R with Γ . Surprisingly, for intermediate Ω ≈ 10−2 rps, R is non-
monotonic in Γ – the relaxation is strongest for Γ ≈ 0.4. This means that,
even though the system is relaxing during stage 1, R for Γ = 0.4 is larger
than for Γ = 0. This suggests that more anisotropy can be built into a
weakly vibrated and thus softened packing. There is, however, a second
effect that could play a role in our system; density. Contrary to the ani-
sotropy, flow decreases the density [18], while vibrations increase it [126].
From our current data it is hard to determine whether the stronger relax-
ation is caused by the anisotropy or by the density.

To see how the relaxation is related to T , we plot R as a function of
the steady state T and Γ during stage 1 in Fig. 5.6(b). In this representa-
tion, we find a nice data collapse, especially for the slow flows. When Γ
is increased, the flow rate will be higher for equal T , but because of the
higher vibrations, the anisotropy also relaxes more. The collapse indicates
that, in terms of relaxation, these two effects cancel. In other words: it
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5.4. Dynamics of Anisotropy

is the T that sets how much anisotropy is built into the system, or even:
it is the anisotropy that determines how much T is required for the flow.
The concept that a stress-dependent back stress is generated in sheared
granular materials, is also known from geophysical kinematic hardening
models [128].

The data collapse in Fig. 5.6(b) also implies that when trying to under-
stand granular flow and searching for a constitutive relation [68–70, 90],
the anisotropy is a relevant factor that should be taken into account.

5.3.3 Conclusion

In this section we studied how anisotropic a packing becomes after shear-
ing at certain Ω and Γ . After a certain strain, a steady state is reached
where the effects of shear (that builds anisotropy) and vibrations (that re-
lease it) balance. We can then measure the anisotropy by probing how fast
the packing relaxes (R) as we impose T = 0 while vibrating.

We find that for Γ = 0, R is constant. For Γ > 0, as expected, R
decreases with decreasing Ω . Surprisingly, for Ω ≈ 0.01 rps, R is non-
monotonic in Γ . This suggests thatR could be determined by two physical
properties of the system, likely the anisotropy and the density.

5.4 Dynamics of Anisotropy

In the previous section we studied the relaxation of sheared packings that
were in steady state; here we will investigate how the anisotropy builds up
by measuring the relaxation of packings that are in a transient state.

We focus on two questions. First, we probe whether the anisotropy
has a unique steady state, by studying its evolution from state 1 to state
2, varying state 1. Second, we investigate how the relaxation curves θ(t)
evolve during the transient between two steady states.

We begin by discussing the transient to a steady state from the pre-
sheared state in Sec. 5.4.1. In Sec. 5.4.2 we discuss the results of experi-
ments with an extended protocol, involving two different stages whose Γ ,
Ω , and duration we vary independently.
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Figure 5.7: (a) Complex relaxation curve where different parts of the system have op-
posite anisotropy. This situation occurs when the last stage of the preshear is opposite to
the flow during the evolution stage. (b) The dependence of R1 on the strain during the
evolution stage.

5.4.1 Relaxing from Preshear to Steady State

The packing that we create with the preshear protocol is well-defined and
reproducible, but already anisotropic. This implies that during the evolu-
tion stage of the protocol of Fig. 5.3 (stage 1), the anisotropy evolves from
an already anisotropic state. Because of the large range of shear rates

.
γ

that are present in split-bottom flow, the local transient time scale can be
expected to vary with location, and the global relaxation time is not eas-
ily guessed. Moreover, the relative direction of preshear and evolution
stage matters. If the last stage of the preshear was in the counterclock-
wise (–) direction, and the evolution stage is in the clockwise (+) direc-
tion, during the transient, different parts of the packing will have oppo-
site anisotropies. An example of the complex, non-monotonic relaxation
curves that result from this is shown in Fig. 5.7(a), where we believe that at
different times, different locations in the system dominate the relaxation
process. Of course, a complex relation curve such as in Fig. 5.7(a) cannot
be fitted with Eq. 5.1. Therefore, we use the alternative R1 to character-
ize the relaxation, which is defined as the angle that the disk rotates back
during the first 28 s.

To probe the duration of the transient, we determine the plateau where
R1 does no longer depend on the amount of shear during the evolution
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5.4. Dynamics of Anisotropy

stage θshear. In Fig. 5.7(b) we investigate this for Γ = 0.4, Ω = 10−4 rps
and Γ = 0.6, Ω = 10−3 rps. The preshear always consists of three phases,
but we vary in which direction the last phase is. We can either start in
the (+) direction, then do (–) and end in (+) (in Fig. 5.7(b) we label this as
+–+), or the opposite (–+–). The evolution stage is always performed in
the (+) direction. The data in Fig. 5.7(b) shows that, for the –+– preshears,
R1 is negative for small θshear, which indicates that the overall anisotropy
is dominated by the preshear. For θshear & 100 mrad, R1 takes a con-
stant value, independent of whether the preshear was +–+ or –+–. This
shows that the steady state anisotropy has been reached, and that the cor-
responding value of R1 is independent of the direction of preshear. We
note that all steady state data in Sec. 5.3 was taken for θshear ≥ 100 mrad.
The final stage of the preshear, at the fast rate of 1 rps, has been imposed
for a large strain of 3× 105 mrad.

5.4.2 Two Stage Relaxation

In the experiments that were described in Sec. 5.3 and 5.4.1, relaxation
from fast preshear to steady flow was studied. To probe how the mate-
rial’s internal structure evolves with time, we now extend the experimen-
tal protocol such that it contains two consecutive evolution stages during
which we shear the system at fixed Γi and Ωi. In this extended protocol
there are two transients, first from the preshear to stage 1 (with reversal),
then from stage 1 to stage 2 (without reversal). Since we are interested in
the time evolution of the anisotropy, the strain in each stage (measured in
terms of the angle θi) is a crucial control parameter. This results in a total
of six control parameters for the experiment: Ω1, Γ1 and θ1 during stage 1,
and Ω2, Γ2, θ2 during stage 2. The precise protocol is shown in Fig. 5.8.

We will address several questions using the two stage relaxation. First,
by varying the flow in stage 1, we will probe whether the anisotropy of
stage 2 is unique. Second, we will examine how the relaxation curve
evolves during the transient in between steady states.

Results – In Fig. 5.9 we show the main results of the experiments, all for
H/Rs = 0.6 and Γprobe = 0.8. As in the previous section, we measure each
relaxation five times and report the average, where the error bars repre-
sent the standard deviation over the five runs. We note that, once the re-
laxation has been measured, it is impossible to restart the flow and simply
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Figure 5.8: The extended protocol where there are two evolution stages after the pre-
shear. There are two transients, one from the preshear to the first stage, the other from the
first to the second stage. The parameters that characterize a stage are Ωi, Γi, and the total
disk rotation θi.

measure the next data point. Therefore, for each measurement, we have
to start from the beginning (with the preshear). As a consequence, the
measurements performed with the extended protocol are relatively time
consuming. Also note that for small θ1, complex relaxation curves such as
in Fig. 5.7(a) occur, so that we cannot fit all our data with Eq. 5.1. As the
temporal resolution of our data is too low to find the instantaneous relax-
ation rate using a numerical derivative, we will characterize the relaxation
curves by R1; the angle that the disk rotates back during the first 28 s.

In Fig. 5.9(a-b) we show experiments for Γ = 0.7, where the black data
corresponds to Ω1 = 10−2 rps and Ω2 = 10−4 rps, and the red data to
the opposite, i.e. Ω1 = 10−4 rps and Ω2 = 10−2 rps (in Fig. 5.9, all the left
panels correspond to stage 1, and the right panels to stage 2). In Fig. 5.9(a)
the black data shows that for Ω1 = 10−2 rps, the anisotropy monotonically
reaches a plateau value of R1 ≈ 8 mrad. If we then change to the second
stage with Ω2 = 10−4 rps (panel (b), black), we see that the relaxation
monotonically drops to a steady state value of R1 ≈ 4 mrad. This trend is
consistent with the prior results: for lower Ω , the vibrations are relatively
more important, which leads to a less anisotropic packing.
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Figure 5.9: The relaxation R1 for experiments using the extended protocol as shown in
Fig. 5.8. By interchanging the Γ or Ω that is imposed during stage 1 and stage 2, we can
investigate the uniqueness of the steady state values of the anisotropy.

In red, we show the inverse experiment. In Fig. 5.9(a) we find that
the red data (Ω1 = 10−4 rps) equilibrates at R1 ≈ 4 mrad, and for Ω2 =
10−2 rps, the red data in Fig. 5.9(b) evolves to R1 ≈ 8 mrad. Hence, for
these parameters, the asymptotic value of R1 only depends on its current
stage and not on the previous stage; irrespective of the system’s history, at
Γ = 0.7, an Ω of 10−4 rps corresponds to a R1 of 4 mrad, and Ω = 0.01 to
R1 ≈ 8 mrad. We finally note that (with the exceptions for small θ1), all the
relaxations are logarithmic, and the anisotropy changes monotonically.

In (c-d) we keep Ω constant at 10−4 rps, but change Γ between 0.3 and
0.7. Also here the steady state is history-independent and unique, and the
anisotropy evolves monotonically.

In Fig. 5.9(e-f) we illustrate qualitatively different curves that govern
the evolution between Γ = 0.7 and Γ = 0. Several saillant features stand
out. First: for Γ1 = 0, the transient seems longer than in previous data,
but after a strain θ1 ≈ 500 mrad, the system reaches a steady state R1 =
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4 mrad. Second: the steady state R1 is the same for Γ1 = 0.7 and Γ1 = 0
– this is consistent with the observation in Fig. 5.6(a) that at intermediate
flow rates, the anisotropy is non-monotonic in Γ . Third: comparing the
steady state values in (e) and (f), we find that they are consistent: also here,
the steady state value of R1 is unique. Fourth: the behavior of the black
curve in (f) is surprising: if we switch on the vibrations, the relaxation
almost instantly increases from R1 ≈ 4 mrad to R1 ≈ 8 mrad. A possible
explanation for this is that the vibrations compact the packing, and that
a denser packing leads to a higher anisotropy. With increasing θ2, the
packing adapts to its steady state R1 ≈ 4 mrad. Fifth: as shown by the
red curve in (f), the evolution from R1 ≈ 4 mrad (which is the steady
state for Γ = 0.7) to the similar relaxation value R1 ≈ 4 mrad for Γ = 0,
is strongly non-monotonic: R1 does not remain constant at 4 mrad, but
dips to 1 mrad (while T peaks to a maximum) before growing back to
4 mrad. This means that for small strains, the flow first removes anisotropy
from the packing. This suggests that even though Γ = 0.7 and Γ = 0
correspond to the same amount of relaxation, the way the anisotropy is
built into the packing is different between these two cases.

The examples in (e-f) suggest that Γ = 0 is a special case. Even though
the steady state values of the anisotropy are unique, the evolutions show
surprising non-monotonic behavior, indicating that there are different ways
for the packing to be anisotropic.

We proceed by looking at the raw relaxation curves to see how they
change as the system evolves towards a new steady state. In Fig. 5.10 we
show the curves that correspond to the red data in Fig. 5.9(f) for θ2 =
0.40, 24, 628 mrad – as indicated in the legend. The black and red curves
correspond to similarR1, however, the black curves (as emphasized by the
normalized curves in (b)) are slightly more curved. This is consistent with
Fig. 5.5(a) where we found scatter in the relation between the initial slope
and the curvature of the relaxation curve.

The blue curves in Fig. 5.10(a) correspond to the dip in Fig. 5.9(f). For
these curves, the relaxation is significantly slower than for the red and the
black data. This demonstrates that even though it is impossible to grasp
all the precise characteristics of the curve with a single parameter, the dip
in Fig. 5.9(f) is a robust effect which would also have been easily picked
up by the original parameter R.
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Figure 5.10: (a) The relaxation curves for the red data points in Fig. 5.9(f) with
θ2[mrad] = 0.40, 24, 628. The black and the red curves correspond to similar R1, how-
ever, the black data is slightly more curved. The relaxation in the blue data is significantly
slower. (b) The red and black data as in (a), normalized by R1, confirm that the black data
is more curved.

During the evolution between stage 1 and 2, the relaxation curves ap-
pear to be logarithmic – just as for steady states. As a check, we calculate
χ2 for the fits and compare the values to the ones found for the steady state
relaxation in Fig. 5.5(b). We find that the values are consistent, suggesting
that the shape of the relaxation curves during the evolution is the same as
the shape for steady state relaxations.

Finally, we want to verify the robustness of the deviating behavior for
Γ = 0 that was observed in Fig. 5.9(e-f). Therefore, we perform more
experiments, with different Ω1, Γ1, Ω2, and Γ2 (either Γ1 or Γ2 is 0), and
show the results in Fig. 5.11. As we are only interested in the surprising
behavior during stage 2, we take a constant θ1 of 600 mrad (long enough
to reach a steady state), and probe only the relaxation during the second
stage.

The blue and the green curve in Fig. 5.11 represent the case where Γ1 =
0 and Ω1 = 10−4 rps. As we know from Fig. 5.9, the corresponding R1 =
4 mrad. The behavior for these cases is the same as for the black curve
in Fig. 5.9(f); as soon as the vibrations are switched on, the anisotropy
suddenly increases significantly. The fact that the increase is of different
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Figure 5.11: Additional experiments to investigate the deviating results when either Γ1

or Γ2 is 0. In this case, we only probe the relaxation during stage 2.

size between the green (which goes to Γ2 = 0.6) and the blue curve (Γ2 =
0.8), shows that the increase is Γ -dependent.

The red and the gray curve are for the case where Γ2 = 0. Again, we
see the characteristic significant dip in R1, similar to the dip in the red
curve in Fig. 5.9(f).

For the black curve we change both Γ and Ω . We start from a very
anisotropic packing that we reached with relatively fast flow: Γ1 = 0.8
and Ω1 = 0.01 rps. We then switch to slow flow (10−4 rps) at Γ2 = 0, and
again see a strongly non-monotonic R1(θ2).

Hence, all the curves in Fig. 5.11 are consistent with the behavior that
was observed in Fig. 5.9.

5.5 Conclusion and Discussion

In this chapter we have investigated the anisotropy of packings by probing
how the anisotropy relaxes from the packing as it is weakly vibrated. In
Fig. 5.6(b) we found that the strength of the relaxation is set by the torque
that was imposed during the flow. This observation suggests that the an-
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isotropy is a crucial ingredient towards finding a constitutive relation for
granular flows.

In Fig. 5.9 we found that for each Γ , Ω , there is a unique value of
the anisotropy – independent of the history of the system. The relaxation
curves, both for a steady state and an evolving packing, can be fitted using
a two-parameter logarithmic function. There is a robust trend that this fit
matches the data slightly better for faster relaxations.

From our measurements it is hard to precisely quantify the anisotropy
at a certain point in time. First, the non-monotonic evolution of the an-
isotropy in time in Fig. 5.9 and Fig. 5.11 shows that the relaxation is a
complex quantity, which seems to depend not only on anisotropy, but also
on density. We expect these two effects to be coupled [129], so it requires
great care to separate the influences of the two and to assign a value to
the anisotropy. A second difficulty is the complex flow profile in the split-
bottom geometry. We find that, because of the large range of strain rates
that are present in the system, different parts of the system can corre-
spond to a different value of the anisotropy. The relaxation that we mea-
sure is a collective result of the relaxation of all the different regions. In
Fig. 5.9(a,c,e) it seems that the building of anisotropy from the presheared
state is logarithmic in time. However, because of spatial inhomogeneities,
we cannot claim that this dependence is true for all, especially more sim-
ple, flow geometries. In fact, in simulations it is found that anisotropy
grows exponentially in time [130]. Another consequence of the complex
shape of the relaxation curves is that they cannot precisely be character-
ized using a single parameter. However, the relaxation curves are similar
in size enough to allow us to obtain robust results, independent of the
precise order parameter.

In general, we expected flow to build anisotropy and vibrations to relax
it. In Fig. 5.6(a) this was confirmed for finite Γ and small Ω , which cor-
responds to a significantly slower relaxation. For intermediate flow rates,
Ω ≈ 0.01 rps, the relaxation is non-monotonic in Γ – also suggesting that
the relaxation that we measure is the result of at least two different phys-
ical properties of the system. This physical picture is backed up by the
data in Fig. 5.9 and Fig. 5.11. In these results we found the additional
evidence that equal relaxation does not imply that the precise anisotropic
state of the packing is also the same. Even though the steady state val-
ues of the relaxation are unique and independent of the system’s history,
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we observed surprising behavior during the (non-monotonic) evolutions,
where in some cases vibrations increase the relaxation and flow decreases it.
All the deviating transients involve Γ = 0, either as initial or destination
state. This shows once more that the granular flow in a system with “zero
temperature” differs significantly from the case with weak vibrations.

5.5.1 Outlook

For future experiments, we suggest two modifications to the protocol that
was introduced in Fig. 5.3.

First, the way we switch off the shaker during the freezing stage can
be improved. For the experiments reported in this chapter, we stopped
the shaking abruptly – at an arbitrary phase of the oscillation. However,
this can result in a fast relaxation of the shaker to its equilibrium position,
which might affect the packing. We have performed exploratory measure-
ments where we smoothly damp out the vibrations using a Doepfer A-143-
2 voltage controlled amplifier that gradually decreases the wave ampli-
tude to 0 over a period of ten oscillations. We found that the main results
reported in this chapter, including the torque collapse in Fig. 5.6(b), are
unaffected by this modification of the protocol.

Second, we would modify the way the flexure is relaxed during the
freezing stage. In the reported experiments, we abruptly switch to T = 0,
which we do not expect to alter the frozen packing. However, at Γ = 0,
the flexure is stretched with a torque of the order of the yield torque, and
we cannot be certain that the impact, that the packings endures when we
switch to T = 0, does not affect the packing. In fact, this impact could
explain the surprisingly low values of R for Γ = 0 in Fig. 5.6. To improve
the protocol, the torque can be reduced to zero smoothly. We stress that
the main result of this chapter, the torque collapse in Fig. 5.6(b), is not
sensitive to the way the torque is reduced, as the collapse occurs for low
torque experiments, where the torque in the spring is significantly below
the yielding torque of the frozen packing.
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