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Chapter 4

A Nontrivial Critical Point
in Granular Flows

4.1 Introduction

In this chapter we investigate the transition between slow and fast gran-
ular flows in the weakly vibrated split-bottom geometry. As we have seen
in chapter 2, this transition is hysteretic in stress-controlled experiments
at low vibration strength Γ .

To see how the transition develops with increasing Γ , we show a col-
lection of flow curves in Fig. 4.1. The red curves on top correspond to low
Γ , and the negative slope part around Ω = 0.1 rps reflects the hysteretic
regime. With increasing Γ , the magnitude of the hysteresis decreases. For
Γc ≈ 0.43, the flow curve no longer has a negatively sloped part, but in-
stead contains an essentially flat part. At this plateau, there is a large
range in Ω that corresponds to a very narrow range in torque around the
critical torque Tc. For Γ > Γc , the flow curves are monotonic.

In this chapter we will explore the idea that (Γc , Tc) is similar to a
second-order critical point. If we identify the flow curves with the vari-
ation of an order parameter (log(Ω )) as a function of two control param-
eters (T , Γ ), then these curves are analogous to the well-known (P, V )
curves for the gas-liquid transition, which are given by the van der Waals
equation [100]. Water can be turned into vapor via a first order phase tran-
sition by decreasing the pressure P at low temperatures. Here, the order
parameter which distinguishes the fluid phase from the gaseous phase is
the volume V . At a certain higher temperature Tc, the transition becomes
continuous at the second-order critical point (Tc, Pc). To make our anal-
ogy concrete, we associate the temperature with the vibration amplitude
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Figure 4.1: Examples of flow curves for different Γ . In the crossover between the curves
with a negative slope part (red) and the monotonic ones (blue), there is a curve for Γ ≈
0.43 with an essentially horizontal plateau.

Vibrheology Gas-Liquid Ising Model
Vibration Γ Temperature T Temperature T
Torque T Inv. Pressure P−1 Inv. Magnetic Field H−1

Flow rate Ω Volume V Inv. Magnetization M−1

Table 4.1: Comparison of the control and order parameters between our system, the
gas-liquid transition, and the Ising model.

Γ , the inverse pressure with the torque T and the inverse volume with the
rotation rate Ω 1. At low Γ , there is a discontinuous transition from slow
to fast flow as T is increased. By choosing the correct combination (Tc, Γc),
our flow transition becomes continuous. In Table 4.1, we summarize the
mapping between our system and the gas-liquid transition, as well as the
comparison to the Ising model [101, 102]. At this point, this is a purely an
analogy.

1We denote the rotation rate with Ω if it concerns a control parameter or a time aver-
aged value and with ω if it is a time-dependent order parameter.
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Figure 4.2: Three ω(t) signals for Γ just above Γc for T < Tc (Γ = 0.71, T = 30.1 mNm,
red), T ≈ Tc (Γ = 0.71, T = 31.0 mNm, pink) and T > Tc (Γ = 0.71, T = 31.6 mNm,
blue). The fluctuations are largest for the data set closest to the critical point.

To explore if the analogy to a critical point in our system is more than
just a superficial coincidence, we will perform several experiments, both
in rate and stress control.

First, we measure the flow curves T (Ω) in rate control. We study in
detail how the shape of the flow curves changes as we vary Γ . We will
consider: (a) the scaling of the distance between the local minimum and
maximum of the flow curves for Γ < Γc , that decreases when approaching
Γc , and (b) the scaling of the slope at the inflection point, which goes to
zero when approaching Γc either from above or below. We will find that
the shape of the flow curves can very well be described using a mean field
picture [103, 104], and the critical exponents we extract from the data are
equal to the mean field values within error bars.

Second, in stress control we study the fluctuations in ω(t). If we impose
Γ ∗ ≡ (Γ−Γc)/Γc ≈ 0 and T ∗ ≡ (T−Tc)/Tc ≈ 0 - which corresponds to the
plateau in Fig. 4.1 - we expect to see large fluctuations in ω. Moving away
from the critical point, the flow curve gets steeper and we expect smaller
fluctuations in ω. Indeed, we will provide evidence for such a variation of
the fluctuations.
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In general, the packing can be thought of to possess an effective vis-
cosity η, so that ω = T/η(T ). T is constant in experiments where we probe
the fluctuations in the flow rate, but the packing (and thus η) continuously
fluctuate. At the flat part of the flow curve, a tiny increase in T then leads
to a large increase in ω, which in turn corresponds to a large change in
η. If the flow curve is steep, a change in ω requires a large change in T .
Based on this reasoning, we expect the magnitude of the fluctuations σ to
be related to the slope of the flow curve via:

σ ∼ 1

∂T/∂Ω
. (4.1)

For each Γ , we thus expect the fluctuations to be maximal at the inflec-
tion point (Ωi ,Ti ) of the flow curve, where the slope is smallest. We have
explored Eq. 4.1 in detail and found that, indeed, the fluctuations increase
monotonically as the slope of T (Ω) gets flatter, but the prefactor depends
on Γ and is different for the slow and fast flowing branch [105].

In Fig. 4.2, we show three ω(t) curves for Γ just above Γc and T < Ti,
T ≈ Ti and T > Ti. We see that the fluctuations are non-monotonic in T
and are largest around Ti. We will find that, in general, the fluctuations
increase if the critical point is approached either by changing T or Γ ; the
corresponding critical exponent matches the mean field value.

Third, we study the characteristic time scale of the ω(t) signals via
their autocorrelation function. Whereas the lower curve in Fig. 4.2 fluc-
tuates rapidly with a time scale significantly below 1 s, there is a longer
time scale in the critical curve. We will find that the time scale increases
if the critical point is approached either by changing T or Γ . Even though
a precise single time scale is hard to identify, we conclude that the critical
exponent for the divergence of the characteristic time scale deviates from
the mean field value.

The outline of this chapter is as follows: in Sec. 4.2 we will explain
in more detail how we perform the experiments, and in Sec. 4.3 we will
explicitly introduce the scaling relations and exponents that we test in
our system. In Sec. 4.4 we discuss the scaling of the flow curves, and in
Sec. 4.5 we consider the magnitude and time scale of the fluctuations that
are measured in stress control. We finish with an appendix, where we
suggest a simple heuristic model to describe the flow in App. 4.A.3.
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4.2. Setup and Protocol

4.2 Setup and Protocol

To perform the measurements, we have developed an extended version of
the setup that was introduced in Sec. 2.2. Our geometry has the compli-
cation that, because of the flexure, the angle θ of the disk that drives the
system is not necessarily the same as the angle measured by the rheometer.
In the case of experiments at constant Ω , we are not significantly hindered
by this problem as we measure flow in steady state, where the deflection of
the flexure also reaches a steady state value. For stress-controlled fluctua-
tion measurements, the deflection of the flexure will vary, and the motion
above and below the flexure will definitely not be the same. To circumvent
this, we extended the setup by mounting an optical encoder just below the
flexure - see Fig. 4.3 - which is thus rigidly connected to the disk.

Figure 4.3: A photo of the
shear cell with the new angular
encoder.

In most encoders there is mechanical con-
tact between the sensor and the rotating
axis which results in a torque similar to the
torques we want to measure. We therefore
have specifically chosen an encoder in which
there is no contact between these two parts.

The encoder (Heidenhain ERO 1285 -
2500) consists of a glass disk with 2500 en-
graved lines which is mounted on the axis of
the system. Above the disk - attached to the
cell itself and not to the axis - there is an LED
and below the disk there are sensors that de-
tect how much light shines through the disk.
If there is a line between LED and detector,
the sensor measures a lower light intensity.
The light intensity is turned into a voltage,
which is the raw output of the device.

The disadvantage of a non-contact en-
coder is that it has to be mounted very accu-
rately. The distance between the sensor and
the engraved disk is crucial and has to be
0.2±0.03 mm and may not vary much over
a full rotation of the disk. To achieve this, we had to realign the entire
setup and renew the driving axis. The aligning is done by reading out the
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raw sine signal of the encoder and by adjusting the alignment such that
amplitude of the signal does not vary with θ.

In case of a constant rotation rate, the output of the encoder has the
shape of a sine wave with constant frequency. We use an interpolator
(Heidenhain IBV 101) which extracts from each sine wave a series of 10
block pulses. This increases our resolution by a factor 10. There are two
channels that measure the light through different spots of the disk, which
is required to determine the direction of the rotation. We connect the two
pulse signals we obtain from the interpolator to the counter ports on the
DAQ I/O card, which can count pulses with frequencies up to 80 MHz.
From the two pulse trains, θ can be calculated via a standard method
called “quadrature encoding” [106], which as a bonus gives an additional
factor 4 in resolution (resulting in 2500×10×4 = 105 pulses per rotation).
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Figure 4.4: Comparison between ω measured by the rheometer (black) and the encoder
(red). In (a), we control Ω at 5 different values, each for 10 s, in (b) we control T , also at
5 values, for 10 s. The encoder signal resolves more fluctuations because it measures the
disk’s angle at much higher temporal resolution. For the encoder signal we measure the
position of the disk using a temporal resolution of 63 Hz and obtain ω by taking a three-
point derivative. The good correspondence between the red and black data shows that the
encoder works well in the Ω range where we will measure.

The accuracy of an encoder depends on how constant the distance be-
tween the engraved lines on the disk is. An estimate for the accuracy is
10% of the grading, which in our case leads to 0.25 mrad [107]. How
strongly this affects the error on the rotation rate, varies with ω and the
time resolution used in the experiment. To ensure that the encoder is ca-
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pable of probing ω in the full range where we will measure, we perform
test experiments at both constant T and constant Ω that cover the two
relevant decades in ω. We compare the output of the encoder with the
numbers that are found by the rheometer and see that they correspond
well – see Fig 4.4.

When reading out the encoder at 1 kHz, we observe a significant 63 Hz
signal caused by the shaking at this frequency. Filtering out this signal is
not trivial, since it is distributed over a frequency band around 63 Hz with
a width of the order of 1 Hz, as well as over the higher harmonics. We
therefore decide to read out the encoder stroboscopically with a sample
rate of 63 Hz, where we use the sync output of the function generator that
is used to control the shaker as a trigger to read out θ (it triggers on the
moment the sine goes through the equilibrium from negative to positive).
This way, we always measure θ in the same position of the cycle, thereby
suppressing the spurious signal caused by the shaker.

4.2.1 Protocol

Filling Height – As shown in Fig. 3.3, the value of Γc depends on the rel-
ative filling height h ≡ H/rs. The reason for this Γ dependence stems
from the details of the flow structure, as explained in Sec. 3.4.2. For low
h, we have observed that Γc becomes close to 1, which makes the range of
monotonic flow curves we can study inconveniently small. Therefore, we
choose a relatively high filling height, h = 0.6, which, as we know from
exploratory stress-controlled experiments, results in Γc ≈ 0.65.

Control parameters – We perform two different types of measurements.
First, we measure flow curves T (Ω) in rate control to study the scaling

of the shape of the flow curves around the critical point. To study the
scaling of the flow curves, we measure a set of flow curves for 0.3 ≤ Γ ≤
0.7 with ∆Γ = 0.01 and Ω =1.0, 0.63, 0.40, 0.25, 0.16, 0.1,..., 0.001 rps
in 16 logarithmic steps. We average each point for 180 s, which is long
enough to reach the steady state – see Sec. 3.2.

Second, we measure θ(t) in a stress-controlled experiment to probe
the fluctuations in its derivative ω, for a range of torques and vibration
amplitudes which form a grid in (T,Γ )-space. If we want data that is
suitable to accurately determine the scaling of the fluctuations with Γ ∗,
we have to be certain that the grid is closely centered around the critical
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point. From test measurements in stress control we know that Γc ≈ 0.65
and Tc ≈ 30.5 mNm. We have taken two data sets. In data set 1, we choose
our 20x20 grid with T going from 28.9 mNm to 31.75 mNm in steps of
∆T = 0.15 mNm and Γ going from 0.65 to 0.935 with ∆Γ = 0.015. In data
set 2, where we focus on what happens around the inflection points of the
flow curves, we take Γ from 0.62 to 0.77 with ∆Γ = 0.01, but different T
values for each Γ around Ti. From exploratory measurements, we estimate
that Ti [mNm] ≈ 34.64 − 5.16Γ and we choose the ten T -values such that
they surround Ti with ∆T = 0.1 mNm. In both data sets, we measure
40 min per (T,Γ ) for good statistics and to be able to extract time scales
up to a few minutes.

4.3 Theoretical Framework

By comparing the transition from slow to fast flow to the liquid-gas and
the Ising ordered-disordered transitions, as shown in the mapping in Ta-
ble 4.1, we obtain several predictions for the scaling behavior and values
for the critical mean field exponents [108, 109].

Parameters – In this section we summarize the many parameters that we
will use throughout this chapter. We denote the rotation rate by Ω if it
concerns a control parameter or a time averaged value, and by ω if it is
a time-dependent order parameter. When looking at scaling relations,
we will quantify the flow rate with l ≡ log10(Ω/1 rps). Throughout this
chapter we will see several examples that imply that l is the natural coor-
dinate. For example, many properties of the system (for instance Eq. 4.2)
scale with l via a power-law relation whereas the scaling in Ω would take
a more complex form.

For each Γ , the flow curve has an inflection point (Ti, li). At the critical
Γc , this is the critical point (Tc, lc). We define the reduced Γ ∗ ≡ (Γ−Γc)/Γc

and T ∗ ≡ (T − Ti)/Ti, both of which are zero at the critical point (at the
critical point, Ti = Tc and T ∗ ≡ (T − Tc)/Tc).

Flow Curves – To examine the shape of the flow curves, we wish to deter-
mine their inflection points (Ti, li), as well as the slope at these inflection
points χ−1 ≡ ∂Ti/∂li and the distance between the local minimum and
maximum, ∆l, for Γ ∗ < 0. To obtain accurate values for Ti, li, χ−1 and ∆l,
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4.3. Theoretical Framework

we do not wish to calculate numerical derivatives from our experimen-
tal data, but rather use simple polynomial fits. From the raw T (l)-curves
that are shown in Fig. 4.5(a), we see that the shape of the flow curves
around their inflection points is reminiscent of a third order polynomial,
where the linear part dominates the inflection point and controls the slope
around li. We therefore will fit the flow curves around the inflection point
with:

T = a(l − li)3 + χ−1(l − li) + Ti . (4.2)

In the next section we will show that this fit is capable of fitting the flow
curves in the region around the inflection point given by −1.6 < l < 0.

The susceptibility χ of a system describes its response to an applied
field and diverges at the critical point. However, since we consider T (l),
the slopes at our inflection points vanish towards the critical point, which
is why we denote this slope as χ−1.

Based on what we can measure for our system, we can test the follow-
ing three scaling relations:

T ∗ ∼ l∗δ , (4.3)

χ−1 ∼ |Γ ∗|γ , (4.4)

∆l ∼ |Γ ∗|β . (4.5)

The mean field values of these exponents are:

δ = 3 , (4.6)

γ = 1 , (4.7)

β = 1/2 . (4.8)

Note that we do not measure the value of δ, but based on the shape
of the flow curves and mean field prediction, we have set it to δ = 3.
The fact that fit of the data to Eq. 4.2 works well justifies this assump-
tion. As ∆l is found by identifying the zero crossings of the derivative of
a(l− li)3 +χ−1(l− li), ∆l and χ−1 are related. This results in the constraint
γ = 2β. Hence, from the flow curves we can extract a single exponent (ei-
ther γ or β); the determination of the other is then a consistency check.

Fluctuations – As diverging fluctuations are an important hallmark of
critical behavior, we want to study the fluctuations in the velocity of the
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Chapter 4. A Nontrivial Critical Point in Granular Flows

flow. However, we measure the disk angle θ and we cannot a priori know
that we are allowed to calculate a velocity for our fluctuating disk; for fluc-
tuating systems such as a random walker, the velocity is not even defined.

Of course, because of the inertia of our driving disk, the velocity can-
not grow arbitrarily large, and extremely rapid velocity fluctuations are
suppressed. To get an idea of the relevant scales, we note that the moment
of inertia of our disk and corotating grains ≈ 0.3 g m2. Even if we sud-
denly subject the disk to the typical driving torque of 30 mNm, we expect
its rate to vary with 0.3 rps in 1/63 s. As the effective torque fluctuations
are typically much smaller, we do not expect rate differences of the order
of 0.1 rps between two consecutive data points. Therefore, we expect a
smooth θ(t) that we can differentiate.

We will use two different methods to extract values for the magnitude
σ2 and characteristic time scale τ of ω(t).

First, we will show further evidence that we indeed probe θ(t) fast
enough to evaluate its derivative ω, and then calculate its variance σ2

ω

as a measure for the magnitude of the fluctuations. The characteristic
time scale τa is obtained from the autocorrelation function of l (which is
log10(ω/1 rps)).

Second, we interpret the motion of our disk as the path of a massive
random walker, whose behavior is given by an overall drift plus a noise η.
To capture the effect of inertia, the noise η is not delta-correlated, but we
assume it has an exponential correlation:

〈η(t′)η(t′′)〉 = σ2
c exp(−|t′′ − t′|/τc) , (4.9)

where σ2
c is the magnitude and τc the time scale of the fluctuations. For a

random walker with drift, the quantity to look at is σ2
∆θ as a function of

∆t . For a system with noise as in Eq. 4.9, this is given by [110]:

σ2
∆θ = 2σ2

c τc[∆t− τc(1− e−∆t/τc)] . (4.10)

For small ∆t , this reduces to σ2
c∆t2, i.e., ballistic motion due to the cor-

related nature of η. In this regime, ω is well-defined. For large ∆t , σ2
∆θ

approaches 2σ2
cτc∆t , i.e. diffusive behavior (where σ2

cτc is the diffusion
constant D). We stress that, in this model, the complete behavior of σ2

∆θ is
governed by two parameters: σ2

c and τc .
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4.4. Flow Curves

In Sec. 4.5.6 we will show that the analyses via ω(t) and σ2
∆θ produce

similar results for σ2 and τ ; both the fluctuation magnitudes and correla-
tion times are consistent between both methods.

The scaling relations we will test for the fluctuations are:

σ2 ∼ Γ ∗−γ , (4.11)

τ ∼ Γ ∗−ν . (4.12)

The mean field values of these exponents are:

γ = 1 , (4.13)

ν = 1/2 , (4.14)

where γ is the same as in Eq. 4.4. Of course, we measure the fluctuations
as a function of both Γ ∗ and T ∗, so if we want to look at the scaling only
as a function of Γ ∗, we have to decide for which T to select τ and σ2. Since
the critical point is the inflection of the curve for Γ ∗ = 0, we will take τ
and σ2 at the inflection point for each Γ ∗.

In conclusion, we can determine two independent scaling exponents
of our data; ν, which characterizes the divergence of the characteristic
time scale; and γ = 2β, which can be obtained from the magnitude of the
fluctuations, and from the steady state flow curves.

4.4 Flow Curves

In this section we will fit the flow curves with a cubic polynomial and
demonstrate that the fit accurately describes the data. We will use the fit
parameters thus obtained to determine Γc and to discuss how the flow
curves vary with Γ . We then extract values for the inverse slope at the
inflection point, χ, and the distance between the local minimum and max-
imum of the flow curve, ∆l, and finally determine their scaling with Γ ∗.

Fit – To determine the shape of the flow curves T (l), we fit the flow curves
with a cubic polynomial (Eq. 4.2):

T = a(l − li)3 + χ−1(l − li) + Ti .
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Figure 4.5: (a) The flow curves measured in rate control. The color indicates Γ from
0.3 (blue) to 0.7 (red). The dotted lines indicate the region of the curves we fit. (b) Using
the fit to Eq. 4.2, we collapse the flow curves onto the master curves (plotted in black)
T − Ti = li + 1/2(l − li)3 ± 3/2(l − li), using the horizontal scale factor b =

√
|χ−1/3a|

and the vertical scale factor c =
√
|4(χ−1)3/27a|. Note that for Γ ∗ very close to 0, b and c

become very small, which magnifies the small deviation between the fit and the data (see
purple outliers for Γ ≈ 0.46).

From the raw data, shown in Fig. 4.5(a), it can be seen that it is not possible
to fit the flow curve over the full range of l with a cubic polynomial in l, as
Eq. 4.2 is symmetric around (li, Ti), whereas the data is not. We find that
the fit corresponds well to the data for all Γ if we limit the fitting range to
−1.6 < l < 0 (we have verified that there is no strong dependence of the
fit parameters on the choice of these boundaries).

To demonstrate that the fit accurately describes the data in this range,
we collapse the flow curves using the fit parameters. To achieve a collapse,
we plot (l − li)/b on the horizontal axis and (T − Ti)/c on the vertical
axis. This way, the inflection point is shifted to the origin, and b and c
are chosen such that the local maximum for Γ ∗ < 0 rescales to (-1,1).
The actual values b =

√
|χ−1/3a| and c =

√
|4(χ−1)3/27a| are found by

solving a simple quadratic equation derived from Eq. 4.2. We show that
the rescaled data nicely collapses onto two branches in Fig. 4.5(b). The
master curves, T − Ti = li + 1/2(l − li)3 ± 3/2(l − li) are added in black.

The dependence of the four fit parameters of Eq. 4.2 on Γ is shown in
Fig. 4.6. In (a), we plot χ−1, which sets the slope at the inflection point, as
function of the actual Γ . The curve is close to linear and its zero crossing
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Figure 4.6: The four parameters of the fit with Eq. 4.2 as a function of Γ . χ−1 (a) is
linear in Γ and crosses χ−1 = 0 at Γc . We determine Γc and γ by fitting this data (the fit is
overplotted in red); the dashed line indicates Γc i.e. Γ ∗ = 0. li (b) and Ti (c) vary linearly
with Γ ∗. a (plotted in (d)) is constant, especially around Γ ∗ = 0.

defines Γc . We use this data to determine Γc as well as the exponent γ
(which is the scaling exponent of the slope at the inflection point as a
function of Γ ∗) by fitting the data with: χ−1 = α · sgn(Γ − Γc)|Γ − Γc |γ .
Doing so, we find γ = 1.07± 0.27, and Γc = 0.460± 0.012. The red dashed
line in Fig. 4.6(a) represents Γc , i.e., Γ ∗ = 0.

The rotation rate at the inflection point, li, increases linearly with Γ ∗

(Fig. 4.6(b)). The corresponding Ti, that decreases linearly with Γ ∗, is plot-
ted in Fig. 4.6(c). These scalings offer insight into the underlying mech-
anisms of the transition from slow to fast flow, and will be discussed in
App. 4.A.3. The global cubic shape of the flow curve is set by the fit pa-
rameter a. In Fig. 4.6(d) we plot a(Γ ∗), which, especially around Γ ∗ = 0, is
essentially constant. This agrees with the observation that, away from the
inflection point, the flow curves exhibit a very similar shape (Fig. 4.5(a)).
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Figure 4.7: The scaling of χ−1 and ∆l with Γ ∗. (a) Susceptibility for rate control Γ ∗ > 0,
(b) for Γ ∗ < 0, (c) for stress control. In (a-c), the red lines are linear fits. (d) ∆l for rate
control. Here, the red line is a square root fit.

Susceptibility χ – The susceptibility χ is defined as the inverse slope of
T (l) at the inflection point, and is expected to diverge as Γ ∗ → 0. In
Fig. 4.7(a), we plot χ−1 (actual slope; inverse susceptibility) versus Γ ∗ for
Γ ∗ > 0, and in Fig. 4.7(b) we plot χ−1 for Γ ∗ < 0, both measured in
rate control. In both cases, the scaling is close to linear as can be seen
from the linear fits added in red. The prefactors for (a), 6.02±0.21 and
(b), 6.16±0.25, are equal within error bars. In Fig. 4.6(a), we found an
exponent γ = 1.07 ± 0.27 for the full range in Γ ∗. Here, we show that
an exponent 1 (which is the mean field value) also matches the data well.
The very nice linear relation between Γ ∗ and χ−1 indicates that our data
agrees with a mean field description of the system.

We can also obtain χ−1 from the stress-controlled measurements that
we use to study the fluctuations. The 400 measurements from data set 1
are performed as 40 torque ramps at constant Γ ∗. From these 40 ramps,
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4.5. Fluctuations

we can extract 40 flow curves and extract χ−1. The result is shown in
Fig. 4.7(c) and tells us that also in stress-controlled experiments, χ−1 grows
linearly with Γ ∗. We note however that in this case, the prefactor is 2.32±
0.19, which is different than in Fig. 4.7(a-b). As we shall see in Sec. 4.5,
the flow curves measured in T control are not exactly the same as the
curves measured in Ω control. One possible explanation is that constant
T and constant Ω measurements sample different ensembles, and 〈ω(T )〉
and Ω(〈T 〉) need not coincide.

Rate Difference ∆l – In Fig. 4.7(d), we plot ∆l - which is extracted from
the fit to the flow curve via ∆l =

√
−4χ−1/3a - as a function of Γ ∗. In red,

we add a fit with a power-law with exponent 1/2 (the mean value for β).
We find that this fit accurately matches the data. As explained above, we
have the constraint γ = 2β. The fact that this is indeed true for the data,
supports our claim that the steady state flow curves can be described us-
ing a mean field picture.

Conclusion – In this section we have seen that that the mean field descrip-
tion works well to describe the shape of the flow curves. The scaling of χ−1

and ∆l agrees with mean field scaling exponents γ = 1 and β = 1/2.

4.5 Fluctuations

In this section we will discuss the magnitude and time scale of the fluctu-
ations in the ω(t) signals, which are measured in experiments at fixed Γ
and T .

As explained in Sec. 4.3, the fluctuations will be analyzed using two
different methods. In Sec. 4.5.2- 4.5.3, we will show that we measure θ(t)
at high enough temporal resolution so that we can evaluate its derivative
ω(t). Using ω(t), we then calculate the fluctuation magnitude σ2

ω and time
scale τa from the autocorrelation function of l(t). In Sec. 4.5.4, we ap-
proach the problem from a statistical point of view by studying the evo-
lution of σ2

∆θ as function of time. Using Eq. 4.10, we obtain magnitude σ2
c

and time scale τc . In Sec. 4.5.5 we discuss how to locate the critical point
in stress-controlled experiments, and in Sec. 4.5.6 we show the scaling of
σ2
ω and τa with Γ ∗.
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Figure 4.8: The slow and fast flow regime, separated by a hysteretic regime (Γ ∗<0) and
the Widom/Frenkel line (Γ ∗>0) [111], in (T,Γ )-space.

4.5.1 Phenomenology

Before we study the velocity signals in detail, we identify the different
regimes in (T,Γ )-space in Fig. 4.8. For Γ < Γc , we plot the values of T
at the local minima and maxima of the flow curves. In between these two
boundaries, the system is hysteretic. This means that if we do experiments
in torque control in this regime, the flow is bistable and fluctuations may
cause ω to be jumping back and forth between the slow and fast flowing
branch. At Γc , these boundaries come together. For Γ > Γc , we plot a line
which connects the torque values at the inflection point. This line - which
is called Widom or Frenkel line [111] - signifies the smooth crossover be-
tween the slow and the fast flow, and it is here where we expect the fluctua-
tions to peak for each Γ . While studying the behavior close to the Widom
line, we will also identify several fundamental differences between the
slow and the fast flowing regime. This suggests that the transition that we
study is between two flowing, but very different, states.

A natural question to ask is what happens when the fluctuation exper-
iments are performed in rate control. You could expect very large fluc-
tuations in T for flow in the negative slope regime, since there is no con-
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Figure 4.9: ω(t) for Γ just above Γc and T < Ti (a-b), T ≈ Ti (c-d), T > Ti (e-f). The
vertical scale is equal for all panels to visualize that the fluctuations are the largest for
T ≈ Ti; b,d,f zoom in on shorter time scales. The fluctuations are much smaller for fast
flow than for slow flow, but are maximal at the inflection point (Widom line).

stant T for which there is stable flow in this regime. Around the critical
point the fluctuations could be small, since a small change in T results
in a significantly different Ω . However, we found that these experiments
cannot be performed in our setup. The problem is that the native mode of
the rheometer is stress control, and rate-controlled experiments require
a feedback system. The characteristic time of the feedback loop, the so-
called csr-value, completely dominates the size of the fluctuations, and
there is no clear relation between the amplitude of the fluctuations and
the distance to the critical point.

4.5.2 Determination of the Velocity

In this section we study the raw signal, θ(t), and its derivative ω(t), to
demonstrate that we probe θ(t) at a high enough temporal resolution to be
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Figure 4.10: ω(t) calculated for four different values of ∆t as indicated in the legend.
(a) ω(t) for (Γ ∗ = 0.060, T ∗ = −0.032) (b) ω(t) for (Γ ∗ = 0.060, T ∗ = 0.0032). For ∆t =

1/63 s, 2/63 s and 6/63 s, the signal looks roughly the same, only the fluctuations become
smaller for longer averaging. For ∆t = 1 s, which is longer than the τ corresponding to
(a), the dominated features of the curve completely disappeared, in (b) τ ≈ 1 s, and the
slow fluctuations are still present in the green signal.

allowed to take a derivative. In Fig. 4.9 we plot ω(t) (a three-point deriva-
tive of θ(t) with ∆t = 1/63 s) for slow, intermediate and fast flow. Again
it can be seen that the fluctuations are largest at intermediate flow rate.
In panels (c,d,f) we show a magnification of the data which clearly shows
the individual data points (in (a,c,e) we only plot each 500th point). On
this scale, the signal appears smooth which means that θ does not corre-
spond to purely delta-correlated diffusive behavior; rather, θ is sufficiently
smooth on short time scales so that ω(t) is well-defined.

As an additional check to see if we extract a proper velocity, we calcu-
late the three-point derivative of θ(t) for different ∆t and show the results
in Fig. 4.10. For ∆t = 1/63 s, 2/63 s and 6/63 s, the signal looks quite
similar. For ∆t =1 s (which we will show to be longer than the correla-
tion time τ that corresponds to (a)), the dominant fluctuations are strongly
suppressed. On the contrary, for the data in (b), for which we will show
that τ ≈ 1 s, the dominant slow features of the curve are still visible in the
curve for ∆t = 1 s.
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Figure 4.11: Autocorrelation functions Rl for the data in Fig. 4.9. For small ∆t , the
curves can be fitted with a stretched exponential. The black (•) curve is for slow flow
and has a short time scale, the red (+) curve corresponds to large fluctuations and has the
longest time scale. The blue (×) curve is for fast flow and also has a high τ . For large ∆t ,
the curves take the shape of a power-law where the fast flow has the highest exponent.

4.5.3 Autocorrelation

Now that we have established that we have a well-defined l(t), we will ex-
tract the characteristic time τa from its autocorrelation function Rl(∆t).
In principle, it would also be possible to directly calculate the autocorre-
lation function of θ(t). The reason that we do not do this, is that long time
fluctuations in the signal will dominate the autocorrelation function and
result in an ∞ time scale. If we first differentiate to get l(t), we can see
both the fast time scale (in the initial exponential decay) and the longer
time scale (in the tail of the correlation function). The autocorrelation
function is defined as:

Rl(∆t) =

N−∆t−1∑
k=0

(lk − l̄)(lk+∆t − l̄)

N−1∑
k=0

(lk − l̄)2

, (4.15)

where N is the number of data points in l(t) after the removal of a tran-
sient. We removed a 4 min transient from each data set, which even for
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Figure 4.12: (a) The autocorrelation function Rl for (Γ ∗ = 0.19, T ∗ = −0.024) fitted
with the five different fit functions that are indicated in (b). (b) The distributions χ2 for
the five fits. Clearly, the fit with Eq. 4.16 is the best.

the slowest runs corresponds to a strain of 7 rotations – enough to be sure
that the system has reached a steady state.

In Fig. 4.11 we show Rl (∆t) for the slow, intermediate, and fast flow
curves shown in Fig. 4.9. The curves have significantly different and com-
plex shapes and cannot easily be collapsed or fitted with a standard expo-
nential decay fitting function. In this section we will carefully investigate
in what way best to extract a time scale from these correlation functions.

We will start by finding a fitting function for Rl. The data in Fig. 4.11
suggests that the autocorrelations are stretched exponentials for small ∆t ,
crossing over to power-laws for larger ∆t . This is illustrated in Fig. 4.12.
In (a), we show fits to Rl for a slow flow run (Γ ∗ = 0.060, T ∗ = −0.0032).
Attempts to fit the data with an exponentially decaying function (pur-
ple) and stretched exponential (blue) fail for large ∆t, where Rl decreases
more slowly. We will therefore use a fit that is a linear combination of
two functional forms, one for ∆t < τa and another for ∆t > τa . We start
with a three-parameter fit that combines stretched exponential decay and
a power-law (in cyan):

R(∆t) =
s(τa)

e
(∆t/τa)

η + [1− s(τa)]e−(∆t/τa)ζ , (4.16)
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where ζ is the stretching exponent, and η is the slope of the power-law
for large ∆t . s(τa) is a logistic function that governs the crossover from
stretched exponential to power-law, with its center around τa:

s(τa) =
1

1 + eλ(log10(τa/∆t))
, (4.17)

where s ≈ 0 for ∆t < τa, s ≈ 1 for ∆t > τa, and λ determines the width
of the crossover. We find that the crossover in our data is sharp and verify
that the fit does not significantly depend on λ as long as λ & 50 (we pick
λ = 100).

In Fig. 4.12(a), we compare this three-parameter fit with a two-para-
meter combination of a simple exponential decay and a power-law (Eq. 4.16
with ζ = 1, plotted in red):

R(∆t) =
s(τa)

e
(∆t/τa)

η + [1− s(τa)]e−∆t/τa , (4.18)

and a two-parameter combination of a simple and a stretched exponential
(pink):

R(∆t) = s(τa)× e−(∆t/τa)ζ + [1− s(τa)]e−∆t/τa . (4.19)

In Fig. 4.12(a) we see that only the fit with Eq. 4.16 is capable of grasp-
ing all the features of the data. We verify if this is the case for all the runs
by plotting the distributions of the quality of the fits, χ2, for the five dif-
ferent functional forms that are shown in Fig. 4.12(a) in Fig. 4.12(b). The
high peak at low χ2 in the cyan curve shows that the fit with Eq. 4.18 is
clearly superior. This is not surprising as it is the one with the most fit
parameters. However, Fig. 4.12 shows that the three-parameter fit is sig-
nificantly better than the two-parameter fits, suggesting that we need three
fit parameters to describe the complex shape of Rl.

To see how Rl varies throughout our parameter space, we plot the val-
ues of τa , ζ and η as a function of Ω and Γ in Fig. 4.13. Even though T is
the control parameter, we plot as a function of Ω so that we can compare
τa to the duration of one revolution 1/Ω .

In Fig. 4.13(a), we see that, for each Γ , τa initially increases with Ω
and reaches a peak for Ω ≈ 0.2 rps. For large Ω , τa decreases but does
not drop back very much, and approaches Ω−1 for large Ω – this suggests
that in this regime, correlations due to the periodicity of the system start
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Figure 4.13: The fit parameters of the autocorrelation function. (a) the time scale τa as a
function of Ω , color coded by Γ (red corresponds to low Γ ). The black line indicates τa =

1/Ω . (b) The T for which the time scale is longest T (max τa) is the torque at the inflection
point Ti. Ti is found using a fit with Eq. 4.2. (c) The stretching exponent ζ. The (*) and
(+) symbols reflect slow and fast flow. (d) The power-law slope η of the autocorrelation for
long ∆t .

to dominate. Nevertheless, the data shows a clear peak, which is largest
for Γ ∗ ≈ 0.

The dependence of ζ (Fig. 4.13(c)) is more complex. For slow and
fast flow, ζ ≈ 1, whereas in the intermediate range, ζ varies between
1.5 and 0.5. Surprisingly, the region where ζ varies most dramatically,
Ω ≈ 0.07 rps, is significantly below Ωi (as indicated by the plot symbols).

The dependence of η (Fig. 4.13(d)) is noisy but there is a trend that η
is lower for slow flow. In Fig. 4.13(b) we plot the T at which the time scale
peaks versus the inflection torque Ti and see that, as expected, the time
scale peaks at the inflection point.

We will now investigate the behavior of τa for large Ω , where τa ≈ Ω−1.
In Fig. 4.14, we test if a concomitant periodicity is visible in the raw data
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for a fast flow run. In (a), we plot ω as a function of θ but find that it is
hard to see which frequencies are present in the signal. Therefore, we plot
the power spectrum (PS) as a function of frequency of ω(θ) in θ space (fr)
in (b). We see that PS ∼ f−2

r , which corresponds to normal Brownian
noise. Nevertheless, zooming in on the spectrum around fr = 1, we find
that there is a 1 rev periodicity in the data (inset).
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Figure 4.14: (a) ω as a function of θ. For this run, τa = 1.24 s whereas Ω−1 = 1.53 s.
(b) The power spectrum (PS) of ω(θ) scales as PS ∼ f−2

r , which corresponds to normal
Brownian noise. In the inset, we show the spectrum around fr = 1, which shows that
there is a 1 rev periodicity in the system.
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Figure 4.15: All the autocorrelation functions Rl for data set 2. In (a), we show the
uncorrected data. In (b), we show Rl where the 1 rev component in filtered out before
calculating the correlation function. In both cases, there is a (blue) cluster of fast flowing
curves with a τa ≈ Ω−1.
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Figure 4.16: Scatter plots of τa vs η (a), τa vs ζ (c) and η vs ζ (e). The color of the data
points indicates l (yellow: l < li, green: l ≈ li, blue: l > li), the symbol size indicates Γ

where a larger blob corresponds to a higher Γ . The local blobs show how Rl is system-
atically different for flow, intermediate and fast flows. These blobs are also visible in the
distributions of τa (b), η (d) and ζ (f).

We want to investigate whether filtering out the Ω−1 component from
l(t) significantly changes the signal; this might make the results for slow
and fast flow more comparable. In Fig. 4.15 we show all the correlation
functions for data set 2 for both the unfiltered (a) and the filtered (b) case.
We find that although the filtering affects Rl, in both panels of the figure
there is a cluster of (blue) curves for fast flow with a time scale of approxi-
mately Ω−1. This suggests that the behavior of τa ∼ Ω−1 is not only caused
by a spurious Ω−1 component in the spectrum.

To further investigate qualitative differences between slow and fast
flows, we study the results of the fit with Eq. 4.16 in more detail in Fig. 4.16.
The scatter plots of τa vs η (a), τa vs ζ (c) and η vs ζ (e) show several blobs,
which we believe to correspond to physically different flow regimes. In (a),
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Figure 4.17: A scatter plot of τa vs
∫

∆tRl for data set 2 shows a good correspondence.
The correlation is not perfect, which is caused by the complex shape of Rl. This can be
seen from the size of symbols that represent η (larger symbols are larger η). A large η
results in a large area under the curve and a relatively large

∫
∆tRl.

there are two clear blobs, one at low τa for slow flow and one at high τa for
fast flow. In (c), we see a systematic relation between τa and ζ, and a large
blob arises for fast flow at ζ ≈ 1. Panel (e) shows that slow, intermediate,
and fast flow are well separated with different ζ, whereas within one flow
regime, there is a large spread in η. The different regimes arise as peaks
in the distributions of τa (b) and ζ (f). The blobs in Fig. 4.16 suggest that
the dominant fluctuations in the slow (quasi-static) and fast flow (inertial)
regime might be caused by different physical phenomena.

Because of the three-parameter form of our fit, and the complex vari-
ation and dependencies of the fit parameters, doubt might arise on the
values found for τa. We therefore extract a time scale from Rl without
having to fit, by evaluating its integral over time. Due to long time fluc-
tuations in Rl, the integral over Rl does not converge to zero but rather
slowly fluctuates around zero, which makes the integral of Rl for ∆t→∞
ill-defined. To get a well-defined value for

∫
∆tRl, we stop integrating

once Rl ≤ 10−2 – this leads to robust estimates for
∫

∆tRl, not strongly
dependent on the value of the cut-off.

In Fig. 4.17 we show a scatter plot of τa vs
∫

∆tRl which shows a good
correspondence. Nevertheless, systematic deviations can be seen: for ex-
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ample, large values of η (large symbols) lead to
∫

∆tRl > τa.

Conclusion – In this section we have shown that we can fit the autocor-
relation function Rl with Eq. 4.16 and obtain τa. The fit parameters sys-
temically vary with T and Γ . Not only do we see that τa increases towards
the critical point, but we also find that the fits are systematically different
for flow rates above and below the critical point, suggesting qualitative
differences between fast and slow flows. The correspondence between τa
and

∫
∆tRl indicates that we have extracted a robust time scale from l(t).

4.5.4 Statistics of ∆θ

In this section we will analyze the data by looking at the statistics of ∆θ.
This way, we avoid having to calculate the instantaneous velocity of the
probe, but instead, look at the fluctuations in ∆θ around the overall drift
〈θ〉 = Ω∆t. By fitting σ2

∆θ(∆t) to Eq. 4.10:

σ2
∆θ = 2σ2

c τc[∆t− τc(1− e−∆t/τc)] ,

we get values for the magnitude σ2
c and time scale τc of the fluctuations,

independent of those obtained from l.
We calculate ∆θ via ∆θ = θ(t + ∆t)− θ(t) for ∆t = ceil(10n/5)/63,

with n = 0, 1, .., 23 (as before, we always remove a 4 min. transient).
In Fig. 4.18 we show distributions of ∆θ for slow and fast flows and

different ∆t. It is clearly visible that the center of the distributions moves
to larger ∆θ for larger ∆t, which is an indication that the fluctuations do
not dominate the overall drift of the signal.

In Fig. 4.19 we show the rescaled distributions (∆θ−〈∆θ〉)/σ∆θ, where
σ∆θ =

√
〈(∆θ − 〈∆θ〉)2〉, for slow (a), intermediate (c), and fast (e) flows.

We find that these rescaled pdf’s for different ∆t collapse reasonably well;
hence their variation with ∆t can be captured by σ∆θ. The pdf’s typically
are asymmetric and have the shape of skewed Gaussians. There is a trend
that for slow flow, the pdf is positively skewed whereas for fast flow, it is
negatively skewed. We suggest that this originates from the fact that the
flow curve becomes flatter towards the inflection point. We expect that
fluctuations in ω can be larger where the flow curve is flatter. This leads
to an asymmetry in P (∆θ). Note that for fast flows, the inflection point
is so far away that the pdf becomes symmetric and Gaussian – see e.g.
Fig. 4.19(e).
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Figure 4.18: The distributions of ∆θ for examples of slow flow (a) and fast flow (b) for
∆t = 1/63, 2/63, 4/63, 10/63 s. The center of the distributions move to larger ∆θ for
larger ∆t, which indicates that the fluctuations do not dominate the signal and that a clear
average l can be extracted. The precise shape of the distributions depends on the distance
to the critical point and will be discussed below.

We proceed our analysis by calculating the variance of ∆θ, σ2
∆θ (equiv-

alent to the mean squared displacement) as a function of ∆t, and plot
σ2

∆θ/∆t as function of ∆t in Fig. 4.19(b,d,f). For ballistic behavior, σ2
∆θ/∆t

grows linearly with ∆t, whereas for a diffusive system, σ2
∆θ/∆t is a con-

stant (we divide by ∆t because it is easier to identify a plateau than a line
with slope 1). In Fig. 4.19, we see both kinds of behavior, and observe bal-
listic behavior for small ∆t and a crossover to a plateau at long times. The
fact that the crossover occurs for ∆t > 1/63 s, agrees with our claim that
we are allowed to differentiate ∆θ on a time scale of 1/63 s to obtain ω.

For most of our data we do not observe a nice plateau, but instead, see
the curve bend up again for ∆t > 100 s (see for example Fig. 4.19(b,f)).
This, we believe, is caused by longer time scale fluctuations beyond the
scope of this analysis. For even larger ∆t, the curve drops because the
magnitude of the fluctuations in l is limited and cannot grow indefinitely
as it does for a diffusive system.

To obtain σ2
c and τc , we fit σ2

∆θ with Eq. 4.10 and overplot the fit in red.
As a result of the long time scale fluctuations and the finite measuring
time, the fit is not always good for large ∆t . However, as we shall see
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Figure 4.19: The rescaled distributions (∆θ − 〈∆θ〉)/σ∆θ and σ2
∆θ/∆t as function of ∆t

for slow flow (Γ ∗ = 0.09, T ∗ = −0.033 (a-b)), intermediate flow (Γ ∗ = 0.09, T ∗ = −0.0044

(c-d)) and fast flow (Γ ∗ = 0.09, T ∗ = 0.15 (e-f)). The data in (f) does initially start to
flatten, but never reaches its plateau and then bends up again. The resulting shape cannot
precisely be fitted with Eq. 4.10. However, reasonable values for σ2

c and τc can still be
extracted.

in Sec. 4.5.6, the region where the fit is good, is large enough to extract
proper values for σ2

c and τc .

4.5.5 Locating the Critical Point

Before we can proceed to the scaling of the time scale and magnitude of
the fluctuations with Γ ∗, we have to identify Γc . Finding the critical point
is more difficult in stress-controlled than in rate-control experiments. In
rate control, we simply plot χ−1 and determine the zero crossing, but in
stress control, this is much harder to determine since we cannot measure
the “negative slope” parts of the flow curves. In addition, we have very
few data points around the inflection point, because a small increase in T
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Figure 4.20: (a) The flow curve for Γ = 0.65 and a fit with Eq. 4.2. (b) The slope at the in-
flection point, χ−1 , as a function of Γ . We fit the data to obtain Γc and find Γc=0.64±0.03.

results in a large increase in Ω near the critical point – the grids of data
points in torque or rate control are different.

In Fig. 4.20(a), we show the flow curve, measured in T -control, for
Γ = 0.65. In red, we add a fit with Eq. 4.2 to obtain a value for χ−1 .
We do this for all Γ , and plot all the values of χ−1 vs Γ in Fig. 4.20(b)
(measuring flow curves in stress control will be discussed in more detail
in App. 4.A.2). We want to compute where this relation crosses zero. For
certain Γ , there is so little data around the inflection point that the fit
yields an unrealistic (typically negative) value for χ−1 . We decide to not
take these points into account and draw them in red (×). Using the rest of
the data (indicated by black (+)), we find Γc = 0.64± 0.03.

As an alternative method, we can look at the fluctuation data to deter-
mine Γc . As explained in Sec. 4.5.1, the ω(t) signal is bistable in the hys-
teretic regime. This means that here, a pdf of ω(t) will be multi-humped.
Γc is then the smallest value of Γ for which we do not observe this bistable
behavior. In Fig. 4.21(a) we show the distributions for Γ = 0.65 and 10 in-
creasing values of T . For low T , P is nearly Gaussian and as T increases, a
new local maximum develops at large ω. Moreover, as T crosses through
Ti, the center makes a big jump towards an ω that corresponds to fast flow.
P now again takes a Gaussian shape.

To decide if a certain P (ω) is multi-humped, we want to identify its
local maxima. We do this as follows: for slow flow, we find the maximum
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Figure 4.21: (a) Distributions P (ω) for Γ = 0.65 and varying T . P goes from monostable
slow flow (red) via bistable (purple) to monostable fast slow (blue). The + and � symbols
indicate the local minima and maxima of P . The black dashed line at 0.2 rps represents
the separation between slow and fast flow. (b) Identification of the bistable (red) and
monostable (blue) points in T,Γ -space. The size of the dot represents H (see Eq. 4.20).

of the curve (we call this s+) for ω < 0.1 rps, for fast flow, we take f+ for
ω > 0.25 rps. For intermediate flow rate, we identify the minimum i− for
0.1 rps≤ ω ≤ 0.25 rps. We now say P (ω) is bistable if s+ > i− and f+ > i−,
and both s+ and f+ > 0.1 (to eliminate hits where in a low, noisy tail, a
local maximum, by accident, is larger than the center dip). To quantify the
bistability of P (ω), we define:

H = min

(
s+

i−
,
f+

i−

)
− 1 ; (4.20)

for monostable curves, we define H ≡ 0. In Fig. 4.21(b) we show our
data set 2 in (T,Γ )-space where a blue or a red point respectively indi-
cates a monostable or bistable state. The size of the data point represents
H . There is a clear blob of large red points for Γ ≤ 0.65 which suggests
Γc ≈ 0.65. However, for larger Γ , there are still some bistable points, but
the corresponding H is very low. This means that close to the Widom line,
the fluctuations can be large for Γ >Γc , but the pdf is just broad and does
not indicate significant bistable behavior.

The methods of Fig. 4.20 and Fig. 4.21 result in a similar value for
Γc . The large fluctuations at the Widom line make it difficult to be very

68



4.5. Fluctuations

precise, but we estimate Γc = 0.65 ± 0.01 and Tc = 31.6 ± 0.1 mNm.
This value for Γc differs significantly (30%) from the one that was found
for the rate-controlled measurements in Sec. 4.4. This is surprising and
shows that, at least around Γc , rate and stress control experiments are not
simply physically equivalent. We believe that the reason for this lies in
the nature of the fluctuations, which are different in rate- (because of the
feedback loop of the rheometer) and in stress-controlled experiments.

4.5.6 Scaling of Fluctuations

We want to study the scaling of the magnitude and time scale of the fluc-
tuations with the distance to the critical point. Before we can do this, we
need to carefully define which quantities we will consider exactly for the
scaling.

10-2 10-1 100 101

Ωτa [rev]

10-2

10-1

100

101

Ω
τ c

 [r
ev

]

-0.10 -0.05 0.00 0.05 0.10
 T*(Γ) [-]

10-2

10-1

100

101

Ω
τ a

 [r
ev

]

10-1

σω/Ω [-]

10-1

σ c
/Ω

 [-
]

Ω [rps]

0 0.5 1

-0.10 -0.05 0.00 0.05 0.10
 T*(Γ) [-]

10-1

σ ω
/Ω

 [-
]

(a)

(c)

(b)

(d)

Figure 4.22: (a) The relation between τaΩ (from the autocorrelation) and τcΩ (from the
crossover from ballistic to diffusive in σ2

∆θ(∆t)) is linear. (b) τaΩ as function of T ∗, color
coded by Γ , where red indicates a Γ close to Γc . (c) The good correspondence between
σω/Ω and σc/Ω . (d) σω/Ω as function of T ∗.
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We have determined two different time scales: τa, from the autocor-
relation function, and τc from the crossover from ballistic to diffusive in
σ2

∆θ(∆t). Of course, there is another time scale in our system, which is
Ω . To correct our time scales for this overall time scale Ω , we will con-
sider the scaling of the characteristic strain τaΩ . In Fig. 4.22(a), we show
a scatterplot of τaΩ vs τcΩ . It shows that there is a great proportionality
between τa and τc, and hence the two different methods we used to extract
a time scale from the data.

In Fig. 4.22(b) we show τaΩ as a function of Γ ∗ and T ∗. We find that
these curves have similar shape and there is a systematic trend that τcΩ
increases when approaching the critical point either in the Γ or in the T
direction. This is similar to critical phenomena, for which the time scale
diverges towards the critical point.

To characterize the magnitude of the fluctuations we also have two op-
tions. First, we take the derivative of θ(t), ω(t), and take its variance σ2

ω

as a measure for the fluctuations. Alternatively, from fitting σ2
∆θ(∆t) with

Eq. 4.10, we get a fluctuation magnitude σ2
c . To get a dimensionless mag-

nitude, we will consider σω/Ω . In Fig. 4.22(c) we plot σc/Ω vs σω/Ω and
see a nearly perfect correspondence. This means that we are confident that
we have extracted a proper magnitude of the fluctuations. In (d), we show
σω/Ω as a function of T ∗ and Γ ∗. In this case, very clearly, σω/Ω increases
towards the critical point both in the T and Γ ∗ direction. Since the data
peaks at T ∗ = 0 for all Γ , this data is very suitable to determine the scaling
of σω/Ω with Γ ∗.

To test the scaling relations (Eq. 4.11, 4.12), we want to investigate how
τaΩ and σω/Ω scale with Γ ∗. As explained in Sec. 4.3, we take the values
of τaΩ and σω/Ω at the inflection point for each Γ . There is however the
complication that in T -controlled experiments, we do not have much data
close to the inflection point – see Fig. 4.20(a). To account for this problem,
we want to estimate what the value of σω/Ω would be precisely at Ti. We
do this by finding the maximum of σω/Ω(T ) by performing a fit. We find
that the best way to find the maximum is by plotting σω/Ω(l). In this
representation, we find that we can fit the data for all Γ using a Gaussian
as functional form:

σω/Ω = a+ b · exp

(
−(l − li)2

d

)
. (4.21)
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Figure 4.23: To estimate the value of σω/Ω exactly at the inflection point, we fit σω/Ω(l)

with Eq. 4.21. The three examples presented here are for Γ ∗ = 0.019 (black •), 0.097 (red
+) and 0.18 (blue ×).

In Fig. 4.23 we show that this works well for Γ ∗ = 0.019, 0.097 and 0.18.
The value of the maximum is then simply extracted from the fit as a + b.
We note that we found this fit function empirically and have no reason to
believe that Eq. 4.21 is an actual scaling function.

In Fig. 4.24 we show the peak values of τaΩ (a) and σω/Ω (b) at the
inflection point as a function of Γ ∗. We combine the data of data set 1
(black) and data set 2 (yellow) to cover a larger range in Γ ∗. We see that
both τaΩ and σω/Ω depend on Γ ∗ via a power-law, and want to extract
the corresponding critical exponents. Note that, as we now look at the
standard deviation σω rather than the variance, we also have to take the
square root of Eq. 4.11, which means we now obtain a value for the critical
exponent γ/2.

The values of the exponents strongly depend on the value of Γc . Be-
cause of the error bar on Γc , we decide to neglect the data with Γ ∗ < 0.05
(indicated by the dotted line in Fig. 4.24). We fit the data with a power-
law (plotted in red) and find ν = 0.94 ± 0.47 (mean field: ν = 1/2) and
γ/2 = 0.47± 0.22 (mean field: γ/2 = 1/2).

For γ, our data is consistent with the mean field value γ = 1, both for
the slope at the inflection point of the flow curve and the magnitude of the
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Figure 4.24: τaΩ (a) and σω/Ω (b) as found using the fit with Eq. 4.21 as a function of
Γ ∗. The black data is for data set 1, the yellow data for data set 2. We fit the data with a
power-law (plotted in red) and find ν = 0.94± 0.47 and γ/2 = 0.47± 0.22.

fluctuations. This supports our picture (Eq. 4.1) that the fluctuations for
certain T and Γ are closely related to the local slope of the flow curve. If
the T (Ω) flow curve is flatter, the corresponding fluctuations are larger.

The exponent ν, corresponding to the time scale, deviates from the
mean field value (even though the mean field value of 1/2 is just within
the error bar). We interpret this as an indication that the mean field de-
scription is not capable of governing the details of the fluctuation mea-
surements. The value we find for ν is larger than its mean field equivalent,
which means τaΩ decreases faster with Γ ∗ than it does in a mean field sys-
tem. The deviation in the value for ν suggests that the slow and the fast
flowing branches are, compared to a mean field system, relatively stable
close to Γc . This is a useful observation towards precisely understanding
the two flowing states.

The second step in investigating the scaling of τaΩ and σω/Ω is to con-
sider their complete scaling with Γ ∗ and T ∗, rather than only approaching
the critical point via the inflection points of the flow curves. To achieve
this we try to find a scaling function of the form [112]:

Ωτa or σω/Ω =
1

Γ ∗∆
F

(
T ∗γ

Γ ∗

)
, (4.22)
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however, due to a limited amount of data (very close to the critical point),
uncertainty in the value of Γc , and an asymmetry between slow and fast
flow (even though the scaling could in principle be different on both sides
of the transition), we are unable to find such a scaling relation.

Conclusion – In this section we have shown that we can extract robust
values for the magnitude and time scale of the fluctuations in the stress-
controlled experiments. The scaling of the magnitude agrees with the
scaling of the slope at the inflection point of the flow curves and the corre-
sponding mean field exponent. The exponent that we find for the scaling
of the time scale is larger than its mean field equivalent. This suggests
that the average quantities in our system do agree with a mean field de-
scription, whereas the fluctuations show deviations. This, in turn, is a
reflection of the differences between the slow and fast flowing states in
our system and the states in mean field systems.
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4.A Appendix

4.A.1 Collective Behavior

A fundamental property of a second-order critical point is collective be-
havior of the particles, which arises in the correlation length ξ. We have
searched for this in two different ways.

First, we have studied the location and width (and their fluctuations)
of the shear band, as well as the precession of the core for varying T and Γ .
We found that the flow structure is actually very robust, with an only ex-
ception for the moving shear band for high Γ and small Ω (see Sec. 3.4.3),
which we believe is not related to our critical point.

Second, we have looked at so-called kymographs of pictures of the sur-
face of the system. For this, we identify a circular path on the surface that
the particles follow. We then make a 2D picture where each horizontal
line corresponds to the same image line, but a different moment in time.
This way, the trajectories of all the particles on the identified path are vi-
sualized. We took kymographs close and far from the critical point in
(T,Γ )-space, but found no significant differences.

Of course, our system is relatively small (the shear band is only a few
particle wide), the particles are incompressible, and we can only observe
what happens at the surface. Therefore, not only is it physically hard to
imagine a certain blob of particles moving at a different speed than the
adjacent blobs, even if it does happen, it would be hard to observe [113].

4.A.2 T -Control Flow Curves

In Sec. 4.4 we discussed flow curves that were measured in Ω-control. To
look at the transition between slow and fast flow from a different perspec-
tive, we measure an additional set of flow curves in T -control and plot
them on a double linear scale.

The data is presented in Fig. 4.25. In (a), we first plot the Ω(T ) flow
curves in the usual logarithmic Ω-axis representation, and see that they
are of similar shape as the curves that are measured in rate control (note
that the T and Ω axis are interchanged compared to our usual Ω-control
plots such as Fig. 4.1). The main difference is the absence of the negative
slope, which is replaced by a discontinuous jump in the data for Γ < Γc .
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Figure 4.25: Flow curves measured in T -control plotted on log-lin (a) and lin-lin (b-d),
where (c-d) are zoom ins of (b). The curves are bounded by Ω = 1.66 rps which is the
maximum rotation rate of the rheometer. The different flow regimes that we can identify
using this representation are discussed in App. 4.A.3.

The curves are bounded by Ω = 1.66 rps, which is the maximum rotation
rate of the rheometer.

In panels (b-d) we plot the data in a lin-lin representation. In (b), we
see the fast flow regime where Ω grows linearly with T . The curves are par-
allel to each other, which indicates that the flow rate is mostly determined
by the stress, where the vibrations are just a small correction. In (c-d), we
zoom in to the slow flow regime. For very small T , Ω(T ) seems linear, and
above a certain “kink”, it increases exponentially. In App. 4.A.3 we will
use these observations as ingredients towards finding a simple model to
describe the flow of weakly vibrated granular media.
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4.A.3 Towards a Simple Model

We want to see if we can introduce a simple heuristic model similar to
those of Bocquet et al. [114–116], Kamrin et al. [68–70], and Kuwano et
al. [87] to describe the transition from slow to fast flow. The key ingredient
of this model is that we consider the granular system from the point of
fluidity, which is a result of both the vibration and the flow itself.

In flow curves such as the ones in Fig. 4.25, we can identify four dif-
ferent regimes. (i) For finite Γ and very low Ω , Ω(T ) is linear. We in-
terpret this by saying that the vibrations fluidize the grains to become a
very viscous liquid-like material where stable, slow flow is possible. (ii)
For faster rates, Ω(T ) becomes curved upwards, where a higher flow rate
requires a relatively small increase in T . This is, we believe, due to self-
fluidization caused by the flow itself. The flow makes the system more
fluid, so at similar T , it can now flow faster. (iii) For Γ ∗ < 0, there is a
jump in stress-controlled, and a negative slope in rate-controlled exper-
iments. This is perhaps the hardest regime to understand. Apparently,
there is a Γ -dependent “yield” torque above which the system jumps to
the inertial regime. In rate control, we can access these “forbidden” speeds
that correspond to the jump. However, we know that there is no constant
T which leads to an Ω in this regime, so T has to fluctuate. Here, the flu-
idity picture offers an explanation for the negative slope. In the case of a
relative slow, forbidden, Ω , the rheometer often has to impose a large T
to rebreak the contacts to allow for a forbidden rate. For a relatively fast,
but forbidden, Ω , the system is very fluid, so the fluctuations to large T
(to sustain the flow) can be smaller. For Γ ∗ > 0, regime (iii) does not exist,
and the self-fluidizing regime (ii) is directly connected to the inertial flow
branch. (iv) In the inertial regime [90], Ω(T ) is linear, but the relation
does not cross the origin. We explain this as follows: the T splits into two
contributions, one to completely break the contacts and one to sustain the
fast flow. In this regime, T (Ω) still depends on Γ . We believe this is be-
cause, at higher Γ , a smaller portion of T is required to break the contacts,
so more T is left to reach a higher flow rate.

We hope to concretize this concept either by finding analytic expres-
sions for T (Ω ,Γ ) and Ω(T,Γ ), or by developing an iterative simulation
that, for each time step, compares T with the current fluidity, and adapts
the rate accordingly.
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