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Chapter 3

Vibration Dominated Flow in
Weakly Vibrated Granular

Media

In this chapter we describe the rheology of weakly vibrated granular flows
as function of flow rate, vibration strength and pressure, by performing
experiments in a vertically vibrated split-bottom shear cell1. For slow
flows, we establish the existence of a novel vibration dominated granular
flow regime, where the driving stresses smoothly vanish as the driving rate
is diminished. We distinguish three qualitatively different vibration dom-
inated rheologies within this slow flow regime, most strikingly a regime
where the shear stresses are no longer proportional to the pressure.

3.1 Introduction

In chapter 2 we described how the rheology of weakly vibrated granular
media reveals a variety of qualitatively different flow regimes. First, for
large flow rates, inertial effects dominate, and the effect of vibrations is
small. Second, for intermediate flow rates, we cross over to a regime sim-
ilar to the well-known quasi-static flows that have been studied at length
in the absence of vibrations [71, 76–79, 94]. Third, for even slower flows,
we enter a regime where the vibrations lead to completely new rheological
behavior.

The focus of this chapter is on these vibration dominated flows. By prob-
ing the equilibration times of the stresses and the variation of the steady
state stresses with filling height, we find evidence for three qualitatively

1G. Wortel, J. Dijksman, and M. van Hecke, Rheology of weakly vibrated media,
Phys. Rev. E 89, 012202 (2014) [81]
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Chapter 3. Vibration Dominated Flow in Weakly Vibrated Granular Media

different regimes. For slow enough flows, vibration effects increasingly
dominate the physics, leading to compaction of the material for weak vi-
brations, and to fluidization of the material for vibrational accelerations
approaching gravity. Most strikingly, in the latter regime, we see a break-
down of the proportionality of shear stresses and pressure, a highly un-
usual phenomenon in granular flows.

The outline of this chapter is as follows. In Sec. 3.2 we describe the
measurement protocols used in the current and previous study [71]. In
Sec. 3.3 we describe the main phenomenology of a complete set of ex-
periments probing T (Γ ,Ω , h). In Sec. 3.4.1 we introduce the canonical
perspectives on granular rheology, including a model for the stresses in
split-bottom flows by Unger et al. [95]. In Sec. 3.4.2 we use this model
to extract effective friction coefficients from our data, as well as exploring
the quality of the fit between the data and this model. In Sec. 3.4.3 we
provide strong evidence for the existence of a pressure-independent flow
regime though measurements of the flow structure.

3.2 Protocol

In this section we discuss our measurement protocols, and show how we
ensure that we measure steady values for the rheology.

Our experiments focus on the rheological curves which relate the driv-
ing torque T and the driving rate Ω . Our main focus is on experiments
where we fix the driving rate in the range from 10−4 to 1 rps, and probe
the torque. We perform these experiments for a range of vibration ampli-
tudes Γ = 0, 0.2, 0.5, 0.7, 0.83, 0.95 and 1, and moreover use seven different
filling heights (h = 0.19, 0.25, 0.31, 0.38, 0.44, 0.50 and 0.56). Varying h al-
lows us to probe the role of the confining pressure for the rheology.

Each experiment starts with switching on the vibrations, after which
we allow the shaker feedback loop 30 s to settle to the required value of Γ .
We proceed by applying an amount of preshear to the granular material,
in order to obtain similar starting conditions for each experiment. Unless
noted otherwise, the protocol consists of the following steps: (i) 2 s of
1 rps rotation clockwise; (ii) 4 s of 1 rps rotation counter-clockwise; (iii)
2 s of 1 rps rotation clockwise. (iv) 5 s without imposed stress or shear.
(v) start of actual measurement. The rotation in the experiments is in the
clockwise direction to minimize anisotropy effects [96].
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3.2. Protocol
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Figure 3.1: The torque as function of deflection angle θ for Ω = 10−4 rps, Γ = 0.7,
and h = 0.31, but different waiting time tw between the preshear and the actual
measurement.

Vibrations lead to compaction of granular media, although this process
is very slow for Γ < 1 [58], whereas flow typically leads to dilatation [18].
Additionally, anisotropy in the fabric of the granular media needs a finite
amount of strain to build up, but may be relaxed by vibrations [47, 96].
For both density and anisotropy, vibrations and flow are in competition,
and as we are interested in steady state flow properties, we need to ask:
what is the minimum time or strain necessary to get into a steady state
flow regime?

We have probed the relaxation of our flows to a steady state by start-
ing the flow from a denser or less densely packed state as follows: before
each experiment, we perform preshear as described above. After preshear,
during stage (iv), we stop the shear and vibrate the material for a waiting
period tw, during which the granular packing density increases by com-
paction, and then start the actual measurements. By varying the tw, we
thus manipulate the packing fraction at the start of the flow. By measur-
ing the torque as function of time we capture the evolution of the torque
to its steady state value. As we expect this equilibration to be slowest for
small Ω we perform this test at the smallest Ω (10−4 rps) that we explore
in our experiments. The results of this test are shown in Fig. 3.1, where
we plot T as function of the total angle of rotation of the bottom disk θ.
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Chapter 3. Vibration Dominated Flow in Weakly Vibrated Granular Media

10-4 10-3 10-2 10-1 100

Ω [rps]

15

20

25

30

35

T
 [m

N
m

]

   ta=1800s
   ta=180s
   ta=18s
   ta=1.8s

Figure 3.2: Flow curves for different averaging times ta. Below Ω ≈ 0.5 ×
10−3 rps, the torque increases with the waiting time. The measurements are for
Γ = 0.6 and h = 0.56.

This figure shows that for small tw, T grows monotonically before reach-
ing steady state, whereas for large tw, the torque peaks at values larger
than the steady state value. This is consistent with a simple picture where
the longer the waiting time, the denser the grains are packed at the start
of the experiment, and the larger the torque needed to cause flow.

For all waiting times, the torque reaches its steady state value for θ <
0.1 rad, corresponding to a measurement time of 150 s at 10−4 rps. We
claim that this represents the longest equilibration time necessary to reach
a steady state flow situation, as all our experiments are carried out for
Ω ≥ 10−4 rps. Moreover, in many experiments our data is acquired in a
so-called strain rate sweep, where the rotation rate is varied by a small
amount so that equilibration will be faster. In all cases, an equilibration
strain or time of θ > 0.1 rad, or 150 s, will be sufficient to obtain steady
state flow curves. We choose 180 s for all the experiments described in this
chapter. Additional data that supports the claim that, also for lower Γ , a
new steady state is reached within θ < 0.1 rad, can be found in Ref. [13].

To independently verify that equilibration times of 180 s are long enough,
we perform a strain rate sweep at fixed Γ = 0.6. We sweep the flow rate
from fast to slow rates, and then compare flow curves obtained for differ-
ent times ta per step, as shown in Fig. 3.2. While for small values of Ω
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Figure 3.3: Selected flow curves for fixed filling height and varying Γ . In all
cases, T decreases monotonically with Γ – its dependence on Ω is more complex.
The selected filling heights are h = 0.19 (a), h = 0.38 (b), h = 0.56 (c).

and ta, the torque shows a variation with ta, for all the flow rates probed
here we note that the data for ta = 180 s and 1800 s are indistinguishable,
showing that for ta ≥ 180 s the obtained values of T are steady state val-
ues. As a final additional test, we have also inspected T (t) to confirm we
reach steady state [13].

3.3 Phenomenology

We now turn our attention to the rheological curves T (Ω). As shown in
the T (Ω) curves in Fig. 3.3, the flows in our system exhibit a rich rheology.
There are two simple trends we see illustrated in these curves: increas-
ing the filling height always increases T , whereas increasing the vibration
strength always decreases T . The role of the flow rate is not as simple,
with the torque often being a non-monotonic function of the disk rate Ω–
moreover, the details of the rheological curves depend on both the vibra-
tion strength Γ and filling height h. We note here that the sign of ∂T/∂Ω
has a crucial rheological implication: flows for which ∂T/∂Ω > 0 can also
be accessed in experiments where the torque is fixed, whereas flows for
which ∂T/∂Ω < 0 are unstable in torque-controlled experiments. As we
discussed in [71], this range of unstable flows leads to hysteretic switch-
ing between two different flow regimes when the torque is varied, and is
deeply connected to the yielding behavior of granular media observed for
Γ = 0.
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Chapter 3. Vibration Dominated Flow in Weakly Vibrated Granular Media

Here we focus on rate-controlled experiments, and as a first step in
characterizing these curves, we plot the boundaries between the regions
where ∂T/∂Ω is positive and negative for three values of h in Fig. 3.4.
Roughly speaking, we can distinguish three regimes.

Inertial flows — For Ω & 0.3 rps, ∂T/∂Ω > 0; the flow curves show an
increasing T for increasing Ω . This increase corresponds to the onset of
the inertial regime [93]. To estimate the inertial number I = γ̇d/

√
P/ρ at

Ω = 0.3 rps, we have to choose a characteristic pressure and strain rate
scale, as both γ̇ and P vary throughout the system. Taking P as the hy-
drostatic pressure at 0.5H , and γ̇ corresponding to a shear band of three
particles wide, we get I = 0.09 for h = 0.38 and Ω = 0.3 rps. Considering
that the inertial regime typically starts at I = 0.1 [90], there is good agree-
ment between the onset of increasing T (Ω) and the onset of the inertial
regime. In the remainder of the chapter we will focus on slower flows.

Unstable flows — For intermediate flow rates, T (Ω) has a negative slope
for small Γ – for Γ → 0, this regime extends to arbitrarily small flow rates,
although there the flow curves become essentially flat. Despite the unsta-
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Figure 3.4: The boundaries between the regions where the flow curves have a
positive and a negative slope for h = 0.19 (�), h = 0.38 (∗) and h = 0.56 (+). For
Γ = 0 and Ω < 0.3 rps, the flow curve always has a negative slope. The region
extends to Γ > 0, and it extends to higher Γ for lower h.
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3.4. Vibration Dominated Flows

ble character of the global rheology, and in contrast to unstable flows in
e.g. micelles [61], we do not see any changes in the shear bands as we move
in and out of this unstable regime. As the variation of the stress with flow
rate is not very large, this regime can also be referred to as quasi-static.

Vibration dominated flows — Both the unstable/quasi-static and inertial
regime have been studied in great detail already [36, 37, 66, 90, 94, 97],
as they also arise in the absence of vibrations. Hence, in the remainder of
the chapter we will focus on the new vibration dominated regime of slow,
stable flows that arises for Γ > 0 and Ω < 10−2 rps.

One striking qualitative feature of this regime we already want to point
out is the pronounced ”kink” in the flow curves that can be seen for 10−2 <
Ω [rps] < 10−3 in Fig. 3.3. In Fig. 3.3(b) we explicitly mark such a kink.
The kinks coincide with the flow rates where ta needs to be sufficiently
large for T to equilibrate (see Fig. 3.2). We suggest that at sufficiently low
Ω , compaction effects become significant, leading to an increase of T with
time, and a ”kink” in the flow curves.

3.4 Vibration Dominated Flows

We will now turn our attention to the increase of T with h, which allows
us to probe the underlying mechanisms that govern the rheology of vi-
bration dominated flows. The canonical starting point of descriptions of
non-vibrated slow granular flows is that the shear stresses τ are propor-
tional to the pressure P [66, 94, 97], and the ratio of τ and P is an effective
friction coefficient, µ. For inertial flows, a description where µ becomes
rate dependent (through the inertial number) has been shown to capture
much of the phenomenology [36, 37, 90], and for slow, non-vibrated flows,
this Mohr-Coulomb picture combined with a non-local rheology captures
the essentials of steady, slow granular flow [68–70].

By varying the filling height h, we can modify the pressure P and
probe its role for the rheology in the different regimes. Here, we do not
measure P , but assume it to be hydrostatic. Clear predictions for T (h)
exist from a well-studied rheological model for the driving torques in a
split-bottom geometry [95]. In addition, this model provides clues to the
flow’s spatial structure and how it depends on friction and other factors.
In this section, we describe how our experiments allow us to build on these
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Chapter 3. Vibration Dominated Flow in Weakly Vibrated Granular Media

basic ingredients to identify two qualitatively different regimes in vibra-
tion dominated flows. We find a frictional regime in which P ∼ τ , yet
with µ(Ω) a rate-dependent friction for Ω & 10−3 rps or Γ . 0.8. For even
slower, more strongly vibrated flows, both the rheology and the location
of the shear band presents strong evidence for a regime where T becomes
independent of P .

3.4.1 Torque Minimization Model

To interpret the observed filling height dependence of the shear stresses,
we start from a simple frictional model due to Unger et al., which was
developed to describe the three-dimensional shape of the shear zones in
the split-bottom geometry, but which also makes a precise prediction for
the driving torque as function of filling height for purely frictional flows
[76, 77, 95]. This model is based on the following three ingredients. First,
think of the shear zones as localized along a narrow sheet r(z) (corre-
sponding to the center of the shear zones [76–79]). Second, assume that
the stress tensor is collinear with the strain rate tensor [66] and propor-
tional to the hydrostatic pressure. Third, assume that the sheet shape r(z)
minimizes the driving torque2:

T̃ [r(z)] = 2πgρµ

∫ H

0
(H − z) r2

√
1 + (dr/dz)2 dz , (3.1)

where g denotes the gravitational acceleration, and ρ the bulk density
(1.7×103 kg/m3) of the granular material. Minimizing T̃ for a given h
determines the shear sheet r(z), from which the torque can be determined
as function of h. As expected, we can write this torque as T̃ (h) = µT̃f (h),
where T̃f is a universal function of h. Note that for shallow filling heights,
the torque is approximately proportional to the product of pressure and
the extension of the shear band, so that T̃f (h) is quadratic in h for h� 1.

In contrast to the original split-bottom cell for which Eq. (3.1) was de-
veloped, in our system the driving disk is slightly elevated with respect
to the bottom. This is done in order to avoid observing spurious torque
fluctuations that we associate with the diverging strain rate in the origi-
nal split-bottom setup. We have found that the torques occasionally show

2Note that whereas we characterize the filling height with the dimensionless h, we
write the frictional model in terms of H , which is the common notation.
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    s:
5 mm

6 mm

H
P=ρg(H-z)

z=0

z=-s

Figure 3.5: Schematic side view of the split-bottom setup. A cylinder of height
6 mm is placed underneath the disk, which has a thickness s of 5 mm and a
radius rs of 40 mm. The gray area represents the volume occupied by the grains;
the dark gray region indicates the volume of particles corotating with the disk
in the trumpet regime. The hydrostatic pressure P acts on the interface between
the corotating and ‘static’ volume of particles as indicated. The side of the disk is
also exposed to particles and, although smooth, contributes to dissipation during
rotation as discussed in the text.

strong fluctuations in this case, presumable due to individual particle be-
ing trapped just above the split – moreover, these fluctuations depend on
the precise roughness near the split, thus leading to a dependence of the
average T on such experimental details. To avoid this, we make sure that
the strain rate field is smooth at the grain level and have elevated the driv-
ing disk by 6 mm – see Fig. 3.5. The side of the disk is smooth, and par-
ticles immediately next to the disk hardly move, creating a static bottom
layer flush with the disk. Hence, the boundary conditions are essentially
the same as for the ordinary split-bottom disk, and the elevation does not
affect the overall flow field for h ≡ H/rs larger than about 0.1. The ele-
vation does ensue that the torques are insensitive to experimental details
and do not show the aforementioned spurious fluctuations.

The elevated disk does lead to a µ-dependent addition in the experi-
mental torque signal T , due to slip between the side of the disk and the
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Figure 3.6: Selected flow curves for fixed Γ and varying h. In all cases, T grows
monotonically with h. The selected values of Γ are: (a) Γ = 0, (b) Γ = 0.7 and (c)
Γ = 1.

stationary particles next to it. This drag term can be estimated as:

Tdrag(H) = 2πr2
sµρg

∫ s

0
(H + z)dz , (3.2)

where s is the disk thickness (5 mm), and µ is the effective friction coeffi-
cient for sliding of the disk past the particles, for which we use the same
effective friction coefficient as for the granular flow. The contribution of
Tdrag to the torque varies with H and is proportional to µ, so that we can
write Tdrag = µTd, where Td can be deduced from Eq. (3.2).

We conclude that the measured torque T is composed of two contribu-
tions:

T = T̃ (H) + Tdrag = µ
[
T̃f (H) + Td

]
= µTf , (3.3)

so that, we can extract T (h) from our flow curves, and check whether the
flow appears frictional, and if so, determine µ [80] and T̃ (h).

Γ =0

In Fig. 3.6(a) we show flow curves for Γ = 0 and a range of h. Clearly,
the torque only weakly varies with Ω and we expect the stresses to be
frictional. For each fixed Ω , we extract T (h) from our data and fit it to
µTf (Eq. (3.3)), as shown in the inset of Fig. 3.7. We find that this fit is
excellent, which implies that the stresses are frictional, and which allows
us to extract µ(Ω). As shown in Fig. 3.7, µ(Ω) is almost flat, and has the
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Figure 3.7: µ(Ω) as obtained from the fit with the frictional model. The inset
shows one example of the fit for Ω = 8.5 × 10−4 rps. The upper curve (+) shows
the raw data T , the bottom curve (�) is the raw data minus the correction term, T̃
– which goes through the origin. The fit matches the data very well resulting in a
χ2 of 2.0×10−3 for the upper curve (see Eq. 3.4).

same shape as the flow curves. We stress here that µ(Ω) together with the
frictional model predicts the stresses for all values of h, thus representing
all the flow curves taken at different h. We note that our values for µ
are comparable to those found previously in a standard split-bottom cell
using the same particles [76].

3.4.2 Frictional Model for Γ > 0

In Fig. 3.6(b) and Fig. 3.6(c) we show examples of flow curves for a range of
h and Γ > 0. We will now use T (h,Γ > 0) to test if the basic assumptions
for the Unger model break down in the vibration dominated regime. We
will find two flow regimes with the distinguishing features T ∼ µ(Ω)P
and T � µP . We describe here how we can distinguish these regimes in
the rheological data.

From Fig. 3.6(b-c) we see that that the flow curves for Γ > 0 all show
significant rate dependence. Even so, we attempt to fit Unger’s model to
the rheological data. We thus fit T (h,Ω) to try to obtain a µ(Ω). If this rate
dependence were captured by an effective friction coefficient that depends
only on Ω , with T (h,Ω) = µ(Ω)Tf (h), the rate dependence would lead to
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Figure 3.8: (a) The effective friction coefficient µ(Γ ,Ω) as found by fitting the
data with Eq. 3.3. Instead of plotting an arbitrary, h-dependent, T , we now assign
a dimensionless µ to each combination of Ω and Γ . As expected, the curves have
similar shape as the traditional T (Ω) flow curves, indicating that µ decreases with
increasing Γ and decreasing Ω . (b) The χ2 of the fits, as defined in Eq. 3.4. There
are two clear regions where the fit does not correspond well to the data.

a good fit of our data to the frictional model. To quantify the deviations
between the data and fits to the frictional model, we calculate the best
estimate of µ and the corresponding χ2 as follows. For each fixed Ω and
Γ , we have measured the torque for seven values of h, and then determine:

χ2 := 〈(µTf (h)− T (h))2〉/σ2
T (h) , (3.4)

where χ2 is a standard measure to quantify the quality of a fit, and σ2
T (h)

is the variance of T (h). We apply this procedure for each value of Ω and
Γ , and show the result for µ and χ2 of these calculations in Fig. 3.8. For
Ω > 0.3 rps - the inertial regime - the fit works very well and results in a
weakly rate-dependent µ, just as for Γ = 0. In addition, we find a large
region for Γ ≤ 0.83 and Ω < 0.5× 10−3 where the fit also works well, but
this time with a more strongly rate-dependent effective fiction µ(Ω). This
tells us that even in this rate-dependent, vibration dominated regime, a
frictional prediction is perfectly capable of describing the flow.

We do however observe two distinct regimes where χ2 is large, indicat-
ing a poor fit. First, there is a significant peak in χ2 around Ω = 10−2 rps
for Γ ≥ 0.7. Second, for Γ ≥ 0.95 and Ω < 10−3 rps, χ2 also is substan-
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Figure 3.9: The boundary of χ2 = 0.1, where we interpolate χ2(Γ ) to find the
location of the boundary. The two distinct regions where the data does not agree
with Tf (H) (i and ii) can clearly be seen. In the next sections we will see what
causes the deviations from the frictional model in these two regimes.

tial. The two regimes are also clearly visible in Fig. 3.9 where we plot the
boundary between a good fit (χ2 < 0.1) and a bad fit as a function of Ω .

The underlying physics in the two regimes is different. As we will
show in the next section, the first peak is associated with a broad crossover
regime between rate-dependent and rate-independent flows – a direct con-
sequence of the flow profiles in the split-bottom geometry. The second
peak we associate with a flow regime in which the rheology becomes pres-
sure independent, as shown in Sec. 3.4.3.

Onset of Rate Dependence

The peak in χ2 around Ω = 10−2 rps is consistent with the onset of rate
dependence below Ω = 10−2 rps as per the following reasoning. First,
both our raw data for T as well as the best fits for µ show that rate depen-
dence sets in rather abruptly for Ω < 0.1 rps, and that rate dependence is
strongest for large Γ , consistent with the location and strength of the peak
in χ2. Crucially, this onset of rate dependence sets in at different flow rates
for different heights (see Fig. 3.6), so that at a given Ω , the data for T (h)
mixes rate-independent and rate-dependent flows.

In Fig. 3.10(a) we show examples of T as function of height, that il-
lustrate that when Ω enters this rate-dependent regime, T (h) strongly de-

31



Chapter 3. Vibration Dominated Flow in Weakly Vibrated Granular Media

0.2 0.3 0.4 0.5
h

0

10

20

30

0

T
 [m

N
m

]

Ω [rps]
  0.10
  0.077
  0.060
  0.046
  0.036
  0.029
  0.022

(a)

0.0 0.5 1.0 1.5
r/rs

5

10

15

20

z 
[m

m
]

(b)

Figure 3.10: (a) T (h) for Γ = 0.95 and a range in Ω at the point where the rate
dependence starts. It can be seen that the curve drop for high h, resulting in an
s-shaped T (h) curve rather than an upwards curved Tf one. The black line is
the fit with the frictional model to the top curve. (b) A theoretical prediction of
γ̇/Ω -which decreases with z- in the split-bottom cell [76, 85]. The color is scaled
linearly from high γ̇/Ω (dark) to low γ̇/Ω (light).

viates from the quadratic form predicted by Eq. (3.3). To interpret this
deviation, it is important to realize that at a given Ω , the local strain rate

.
γ

spans a wide range of values and has a strong z dependence [76, 85, 95] –
see Fig. 3.10(b). Hence, as the torque T is an integral over the local stress
in different layers in the material, T (Ω) mixes different local rheologies.
More precisely: under the assumption that rate dependence sets in below
a given

.
γ, there is a range of values of Ω for which the lower part of the sys-
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tem (where strain rates are largest) is still rate independent, whereas the
top part of the system (where strain rates are smallest) are already rate
dependent. This is consistent with the ”drop” in the T (h) curves at large h
shown in Fig. 3.10(a) – the deviations from the Unger model emerge first
for large h, for which the range of strain rates is biggest and regime mixing
is thus most pronounced. Our data also shows that once Ω is sufficiently
low, so that all of the material is in a rate-dependent state, T (h,Ω) is close
to µTf (h) so that χ2 drops to low values again, and µ can be replaced with
a rate-dependent µ(Ω). The range of Ω over which this crossover exists
broadens with Γ , since the rate dependence becomes stronger with Γ .

In conclusion, the lowering of the friction coefficient µ and the peak in
χ2 around Ω = 0.01 rps are caused by the onset of rate dependence which
occurs at different Ω for different vertical locations in the flow cell. For
Γ . 0.8, we also observe that once all the material is in the slow, rate-
dependent regime, the fit to the frictional model achieves a low χ2 again,
so that T (h,Ω) ≈ µ(Ω)Tf (h).

3.4.3 Fluidized Region

The growth of χ2 for large Γ and low Ω signals a breakdown of the fric-
tional picture, where shear stresses are proportional to the pressure, as
we will describe in this subsection. To gain deeper insight in the flow
phenomenology in this regime, we plot T (h) for Γ = 1 and a range in Ω
in Fig. 3.11. We see that for all filling heights the stresses drop with Ω ,
and at low Ω , T (h) becomes approximately linear. The standard Unger
model predicts a quadratic dependence of T (h) on h, as mentioned above.
A linear dependence would suggest a pressure-independent rheology, for
which the increase of T with h is due only to increasing surface area on
which the shear stress acts. Note that the large values of χ2 here can-
not be due to the existence of a crossover regime, as presented above for
Ω ≈ 10−2 rps. Evidence for this comes from Fig. 3.6(c), which shows that
both rate dependence of T (Ω) is small, and that there is no strong dif-
ference in the rate dependence for different values of the height in this
regime. First of all, that means that there is little mixing of different rhe-
ologies in the global torque signal; second, the rate dependence is weak,
so even if there were some mixing, it would not produce a strong h depen-
dence.
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Figure 3.11: T (h) curves for Γ = 1 and Ω < 10−3 rps. Towards lower Ω , the
curves lose their curvature and become straight lines.

It it perhaps not surprising that new phenomena occur around the spe-
cial value Γ = 1. For Γ ≈ 1, the grains lose contact during part of the
vibration cycle – the precise value of Γ where this happens depends on
details [98, 99]. As a result, the confining pressure becomes zero during
part of the cycle, and as most slip can be expected to occur when the nor-
mal grain forces are absent, the flows may become pressure independent,
as in a viscous liquid.

Rate Dependent Flow Structure

Additional evidence for the loss of pressure dependence for high Γ and
low Ω comes from measurements of the flow structure. From finite el-
ement calculations on the flow structure of a viscous liquid in the split-
bottom geometry, it is known that the shear band is much closer to the cen-
ter of the cell than for frictional flow [80]. As such, a pressure-independent
rheology for the granular flows in this regime can be expected to be accom-
panied by similar changes in the flow structure.

To test this, we measured the velocity profiles ω(r) at the surface of our
system for a range in Γ and Ω using particle image velocimetry [76–79].
In Fig. 3.12(a) we show examples of ω(r), showing a broadening and shift
of the shear zones when Ω enters the pressure-independent regime. We
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Figure 3.12: (a) ω(r) for Ω = 10−1 rps, Γ = 0.2 (×), Ω = 10−3 rps, Γ = 1 (+), Ω =
10−4 rps, Γ = 1 (�). In red, we add the fit with ω(r) = 1/2− 1/2 erf[(r − rc)/W ].
(b) The center of the shear band at the surface rc as a function of Γ for h = 0.47
and Ω as indicated. For low Ω , rc clearly decreases.

fit the velocity profiles with ω(r) = 1/2 − 1/2 erf[(r − rc)/W ], where rc is
the center of the shear band at the free surface [79].

In Fig. 3.12(b), we plot rc for Ω ranging from 10−1 to 10−4 rps and
a range in Γ . Clearly, the location of the shear band is mostly indepen-
dent of Ω and Γ , including most of the rate-dependent regime. However,
in the regime where we observed the pressure-independent rheology, we
observe significant deviations in the flow profiles. The deviations show a
trend towards a shear band moving inwards – consistent with the idea of
a pressure-independent regime.

Moreover, we can modify the Unger model to test which rheological
scenario is most compatible with the observed shift in the shear band.
Throughout, we assume that the torque minimization principle is robust.
The frictional torque model assumes σ(z) ∼ 1 − z/H , in which the shear
stress, being proportional to the hydrostatic pressure, goes to zero at the
surface. We can replace this model with σ(z) ∼ 1 − (1 − α1)z/H , in
which the shear stress reaches a final value when approaching the free
surface – see Fig. 3.13(a). The extreme case α1 = 1 represents a pressure-
independent rheology. We compute the location of the shear band at the
free surface as a function of model parameter α1. The results are shown
in Fig. 3.13(b). We find that for larger α1, the location of the shear band
at the free surface moves inwards. Thus, the closer the model resembles
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Figure 3.13: The center of the shear band at the surface, rc, can be found using
the method by Unger for given z-dependent stress σ(z). In (a), we plot σ(z) for
case σ(z) ∼ 1− (1−α1)z/H where σ is still finite at z = H , in contrast to the fric-
tional description where σ(H) = 0. The resulting rc is shown in (b), we recover
an inwards moving shear band as we observe in experiments. In (c) we plot σ(z)
for σ = (1− z/H) +α2 sin[2πz/(2H)], where P and µ respectively vanish and de-
crease towards the surface, corresponding the a strain rate-dependent frictional
picture, as we show in (d), this predicts an outwards moving shear band, contrary
to what we observe.

a Newtonian rheology, the more the shear band moves towards the cen-
ter. This can be understood intuitively as follows: the penalty for having a
shear band at large radius at the surface is zero in the pressure-dependent
model, because the shear stress goes to zero at the free surface. Once a
finite amount of shear stress is present in the shear band at the surface,
torque minimization will move the shear band inwards precisely as we
observe in the experiments at Ω < 10−3 rps, Γ > 0.9.

Conversely, for a frictional, rate-dependent rheology, the shear stress
closer to the surface is lower than that of a simple frictional model. We
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model this with a σ(z) that can be captured with:

σ = (1− z/H) + α2 sin[2πz/(2H)] , (3.5)

as shown in Fig. 3.13(c). The torque penalty for having a shear band at
finite r is thus reduced, and the model predicts indeed an increase of the
shear band radius at the free surface (Fig. 3.13(d)), contrary to what we ob-
serve. We thus conclude that our observation of the inward displacement
of the shear band location at Ω < 10−3 rps, Γ > 0.9 is consistent with the
granular flow obtaining a rheology which becomes pressure independent.

3.5 Conclusion

To summarize, we probe the rheology of weakly vibrated granular me-
dia and find several different flow regimes. First, for Ω > 0.3 rps, our
data shows the well-known inertial flow regime. In the absence of vibra-
tions, lower flow rates lead to an essentially rate-independent, quasi-static,
regime, where the variation of the torque is small, and where T (h) is well
fitted using Eq. (3.3), implying that the shear stresses are proportional to
the pressure here. For Γ = 0, this regime covers all Ω < 0.1 rps, whereas
the range of flow rates where this rate-independent regime resides shrinks
in the presence of vibrations, and almost vanishes for Γ = 1. For Ω below
the rate-independent regime and Γ > 0, we have described three vibra-
tion dominated regimes. For two of these regimes, our data shows that the
shear stresses are still proportional to the normal stresses, but now via
rate-dependent µ(Ω). For the slowest of these two regimes, we see a slow
densification, leading to a kink in the flow curves. Finally, for Γ close to
one, the vibrations affect the rheology of the granular medium so signif-
icantly, that the shear stresses are no longer proportional to the normal
stresses, signifying a complete departure of the frictional nature that is a
hallmark of all other types of slow granular flows.
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