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If we stand on the shore and look at the sea,
we see the water, the waves breaking, the foam,

the sound, the air, the winds and the clouds,
the sun and the blue sky, and light.
There is sand and there are rocks.
There are animals and seaweed,

hunger and disease,
and the observer on the beach.

Any other spot in nature has a similar variety of things.
It is always as complicated as that, no matter where it is.

Curiosity demands that we ask questions,
that we try to understand this multitude of aspects as resulting from

the action of a relatively small number of elemental things,
and forces acting in an infinite variety of combinations.

Is the sand other than the rocks?
Is the moon a great rock?

Is the sand perhaps nothing but a great number of very tiny stones?

– Richard P. Feynman
The Feynman Lectures on Physics, p2-1
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Chapter 1

Introduction to
Granular Matter

1.1 Granular Materials

Granular materials are present all around us. Common examples include
sand, rice, powder, coal, cement, seeds, pills, rock avalanches, and on a
much larger scale a collection of icebergs, and the particles that form the
rings of Saturn. Because of this omnipresence, research on granular mate-
rials is relevant for everyday applications, but it also presents intriguing
fundamental challenges [1–4].

The two most basic characteristics of a granular material are that its
constituents must be large enough to not be significantly influenced by
thermal fluctuations, and that the interactions between particles are dis-
sipative. In practice, the lower limit size for the grains is about 1 µm. For
a typical sand grain raised in height by its own radius (0.5 mm), the dif-
ference between the potential and the thermal energy is a startling factor
1013 [1].

Like water, that, depending on temperature and pressure, can be solid
(ice), liquid (water) or gas (vapor), a granular material can also show be-
havior that corresponds to different phases of matter. When you walk on
the beach, the sand behaves like a solid and carries your weight. When
you sit down and take off your shoes, the sand flows out of these as if it
were a liquid. When shaken vigorously, sand behaves like a gas.

A pile of sand behaves like a solid because it is jammed due to the
gravity-induced pressure. The friction between the grains plays an ad-
ditional strengthening role. The stresses in a granular solid are not dis-
tributed uniformly, but are conducted away along so-called force chains [5–
8], which are networks of grains with relatively strong contacts.
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Chapter 1. Introduction to Granular Matter

For making sand show liquid or gas-like properties, it has to be forced
externally to drive it away from its equilibrium state. This can be done for
example by tilting or vibrating the system. Surprisingly, a very small dis-
placement of a particle can significantly alter the force chains and weaken
the packing [6].

Despite some similarities between the behavior of granular solids, liq-
uids, and gasses to their molecular counterparts, the granular phases ex-
hibit a range of unique properties [1–4].

An example of a specific property of granular solids is that they dilate
under external shear. This is caused by the shear deformation which dis-
rupts the close-packed arrangement of the grains, forcing them into less
dense arrangements. This mechanism explains the white rings around
footprints made by someone walking on wet sand. The shear flow induced
by a foot widens the voids between the grains. As a result, the water can
drain away, which in turn makes the sand drier and whiter.

Another specific property of granular phases is found in granular liq-
uids. Sand in an hourglass always flows at the same rate, irrespective of
the amount of sand that is left in the upper vessel. In an hourglass filled
with water, the flow slows down as the water level in the upper vessel
(and hence the hydrostatic pressure) decreases. Sand hardly builds up a
hydrostatic pressure in such a container, because the gravitational force is
re-directed towards the sides of the hourglass via the force chains in the
packing [9].

A very counterintuitive property of a granular gas is its tendency to
cluster. An ordinary gas will spread over the entire available space, but
a granular gas does the opposite: it forms clusters [10, 11]. The reason
for this lays in the inelastic collisions between the grains. Once a region
is denser because of a fluctuation, the particles in that region will collide
more, lose more energy and form a dense cluster.

Granular materials are part of a bigger class of materials that exhibit
the jamming transition. This transition, which separates a disordered solid-
like state and a liquid-like phase, is also used to describe colloidal suspen-
sions, emulsions, foams and even elastic networks [12–14].

Early granular research was performed by pioneers such as Coulomb
(who investigated the stability of a granular heap from the point of fric-
tion [15]), Faraday (who studied heaping of the surface of a vibrated pow-
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1.1. Granular Materials

der [16]), Hagen and Janssen (who described saturation of pressure with
depth in silos [9, 17]), Reynolds (who introduced the notion of dilatancy
[18]), and traveler and World War I & II veteran Bagnold, who studied
sand and desert dunes [19], as well as the flow of dense suspensions and
granular materials.

Knowledge about the behavior of grains is very relevant for indus-
trial applications, as many industries rely on the mining, milling, mix-
ing, transporting, and storing of granular materials. It has been estimated
that more than 50% of sales in the world involve products produced us-
ing granular materials at some stage [2, 3]. Major sectors that work with
granular materials include civil engineering, the chemical (fuels and cat-
alysts are often used in the form of grains to maximize the surface area),
mining, pharmaceutical (powders are used to make pills), food, and glass
industry. Estimates say that there are energy losses up to 40% in indus-
trial processes that involve granular media, which are caused by a lack
of knowledge on how to handle them [20]. Another major domain of ap-
plications of granular materials is earth science (geophysics), as our soil
is mostly composed of grains. Examples of granular physics at play are
avalanches, landslides, dune formation, erosion, and earthquakes.

In the 1980’s, physicists got interested in granular media. Fundamen-
tally, an important consequence of the fact that a granular system is ather-
mal and dissipative, is that the system cannot explore phase space, and
therefore is strongly non-equilibrium. In the absence of external forcing,
each metastable configuration of the material will last indefinitely, and no
thermal averaging over nearby configurations occurs. Because each con-
figuration is unique and has its own precise properties, a granular experi-
ment can never be precisely reproduced and results have to be defined in
terms of ensemble averages. Because kBT is effectively zero, traditional
thermodynamic methods are not applicable to granular materials. More-
over, when driven, a wealth of counterintuitive phenomena arises. For
example: vibrations make particles of different sizes separate to different
regions of the system rather than mix them [21]. Since there are no at-
tractive forces between the particles, this separation appears to violate the
principle that entropy is always maximized, which normally favors mix-
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Chapter 1. Introduction to Granular Matter

ing. In a granular material, the influence of (thermodynamic) entropy is
small compared to dominant dynamical effects.

Granular systems offer a relatively simple possibility to study dissipa-
tive systems far from equilibrium. Noble Prize winner De Gennes origi-
nally used sandpile avalanches as a macroscopic picture for the motion of
flux lines in a type-II superconductor [22]. Slow relaxations that are found
in vibrated sandpiles show behavior that is similar to the slow relaxation
found in glasses, spin glasses and flux lattices [1]. Nonlinear dynamical
phenomena are observed, which are useful to understand the breakdown
phenomena in semiconductors, stick-slip friction on a microscopic, and
earth-quake dynamics on a macroscopic scale [1].

1.2 Examples

In this section I will describe some examples of granular research that
focuses on every day applications.

1.2.1 Grain Silo

A very concrete and relevant example of granular physics at work is the
grain silo. The silo illustrates clearly what can go wrong if - because of a
lack of understanding of granular physics - a granular material is handled
as if it were a regular solid or liquid. When building a silo, the forces that
will work on the bottom and side walls of the silo have to be estimated to
determine how strong the walls need to be.

Naively, you could expect most of the weight of the particles to be
carried by the bottom of the silo, so the sidewalls can be made thin. As
explained in the previous section, in a granular system, a significant part
of the forces is carried to the side walls [9, 17]. So in fact, a thin wall will
not suffice. This effect is even enhanced by the fact that these forces are not
distributed homogenously over the entire side wall. At the points where
the force chains of particles that carry most of the weight hit the wall, the
force that the wall has to sustain is significantly higher than the force that
corresponds to a homogenous estimate. Unfortunately, many silos are still
built with walls that are too thin – they will rupture and cause the entire
silo to collapse [4].

4
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Another significant complication that occurs in silos is clogging of the
grains. Two important questions are how to minimize the probability of
clogging, and how to make the grains unjam in case it clogs nonetheless.
Going into the silo to unclog the grains by hand is extremely dangerous;
no less than 25 deaths a year in grain silos are reported in the United States
alone [23]. This clearly shows the relevance of understanding how to deal
with granular materials.

1.2.2 Brazil Nut Effect

A granular effect that is widely known is the Brazil Nut Effect (or: Muesli
Effect). This effect describes the phenomenon that in a jar of muesli or
nuts, the biggest nuts always raise to the surface. The origin of this ef-
fect is not trivial to describe, as there are three physical mechanisms that
cause the segregation of the big and the small particles [24]. The simplest
mechanism is that when the system is agitated, the small particles can fill
small voids at the bottom of the system while bigger particles cannot. As
a result, small particles migrate downwards and big ones upwards. Sur-
prisingly, the air pressure also plays a role, as the rearrangement of nuts
requires air flow. The practical implications of this effect on transporting
and storing granular materials are immense.

Another manifestation of this effect is the observation that in a bag of
potato chips, the biggest chips are at the top of the bag. A good method
to get the chips out uniformly mixed is by opening the package on the
bottom [25].

1.2.3 Quicksand

A question that often arises when discussing granular materials is “can
one drown in quicksand?” The simple answer to this question is “no”;
the density of quicksand is twice as high as the density of a human, so
according to Archimedes’ law, a person in quicksand will only sink up to
their waist [26].

The complex answer to the question is: “that depends on the defini-
tion of quicksand”. Actual quicksand is a relatively dense mixture of clay,
sand, and water, in which a person cannot drown. On the contrary, re-
search has been done on so-called dry quicksand [27], which consists of
a lose packing of 40 µm grains and air. By blowing air through the pack-
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Chapter 1. Introduction to Granular Matter

ing, a packing fraction of 41% can be reached. Taking a material density
of sand (quartz) of 2.65 kg/l, this results in a density of 1.09 kg/l. This
is remarkably close to the density of the human body, which is around
1.06 kg/l. This leads to the conclusion that it would be possible to drown
in this system. In the desert, similar packings may evolve from the sed-
imentation of very fine sand after it has been blown into the air by the
wind.

1.2.4 Soft Robotic Gripper

A recent and very nice application of granular physics is the soft robotic
gripper [28, 29]. A bag, filled with grains (e.g. coffee powder), is gently
placed on an object. As air is pumped out off the bag, the grains jam,
become rigid, and the bag will grab on to the object. A soft robotic gripper
has been produced which can grab almost any object without breaking it;
examples include an egg, a drinking glass, or a pen. By pumping air back
into the bag, the gripper releases the object. By creating an overpressure,
the object can be ejected. Via this mechanism the robotic gripper is able to
play darts [30]. The gripper is simple, cheap, firm, and able to work with
fragile objects. Because of its simplicity and reliability, the gripper could
be very suitable for use in outer space [31].

In order to jam and unjam the packing with as little air as possible, the
coffee powder can be replaced by 3D printed particles whose shape has
been optimized using evolutionary algorithms [32].

1.2.5 Shear Thinning and Thickening

Physicists in general often describe a fluid or viscous material in terms
of viscosity. Granular materials, similar to materials such as ketchup and
blood, become less viscous when they are sheared. This kind of material
behavior is called shear thinning. An everyday example of such a material
is modern paint. When modern paints are applied, the shear created by
the brush or roller will allow them to thin and wet out the surface evenly.
Once applied, the paint regains its higher viscosity which avoids drips and
runs.

Water belongs to a different class of materials called Newtonian fluids.
For these types of matter, the viscosity is independent of the flow rate.

6



1.3. Shear and Vibration

A third and perhaps most intriguing class are the shear thickening ma-
terials which become stiffer when sheared. The best known example is
cornstarch. When gently stirred, it behaves like a liquid, but if smacked
on with a hammer, it becomes rock hard [33]. Similarly, one can run over
a big bath of cornstarch, but when walking gently, one sinks in. Two pos-
sible applications of shear thickening materials are a speed bump that is
soft when you drive slowly, but hard when you drive too fast [34], and a
bulletproof vest that is comfortable to wear because it only becomes stiff
when hit by a fast bullet [35].

1.3 Shear and Vibration

An unperturbed granular material is rigid because of friction and gravity-
induced pressure. To make the material yield and flow, it has to be forced
externally [1, 2, 36–43]. The best known scenario that leads to granular
flow is exerting a shear stress that is large enough to overcome the friction.
This can for instance be done by simply tilting a layer of sand [1, 2].

Another possibility to let a granular material yield, is to first make it
lose its rigidity using mechanical agitations. These agitations itself do not
have to induce flow [38, 44–49]. To actually make the system flow, an
additional stress is exerted, and the resulting flow rate then depends on
both the amount of agitation and the stress [38, 44, 47, 50]. The idea that
both the stress and the amount of agitations determine the flow rate, lies
at the basis of numerous models for slowly flowing disordered materials
[51–54].

A well-known method to agitate a granular system is by using vibra-
tions. Experiments where the role of vibrations were studied include: (i)
an experiment where the maximum angle of a stable granular slope was
found to decrease with the amount of vibrations [41, 55], (ii) an experi-
ment where granular flow on an inclined plane was induced using vibra-
tions [39, 40], and (iii) a study that reported how grains flow out of a silo
more easily when vibrated [56].

In many experiments it is found that even a tiny amount of agitations
significantly weakens the system. This is caused by the fact that the force
chains in the packing can already be disturbed by a small displacement
of a particle [6]. This was for instance shown in experiments where piezo
crystals are used to induce tiny rearrangements in the material [43, 57,

7



Chapter 1. Introduction to Granular Matter

58]. Similarly, a system can also be weakened using tiny shear-induced
agitations [59].

Once a system is flowing, it is agitated by the flow itself, even far away
from the flowing region [38, 44, 60–63]. Agitations therefore play a crucial
role in non-local granular rheology models [37, 64–67]. They may even,
among other things, explain the large extension of shear bands in split-
bottom granular flows [68–70].

Chapter 2-5 of this thesis will be devoted to experiments where we
shear a weakly vibrated granular packing. Even though we use a low peak
acceleration for the vibrations, and always stay below 1 g, we find that the
vibrations significantly influence the flow properties of the system.

1.4 This Thesis

This thesis starts with an introduction to the flow of weakly vibrated gran-
ular media in chapter 2, which describes the results found in prior work
using the same experimental setup [13, 71]. In chapter 3, we study to
which extent the frictional description of granular materials is still valid
in the case of weak vibrations. We do this by altering the pressure, which
affects the frictional contacts. When the acceleration approaches 1 g, we
find that the system loses its pressure dependence and behaves more like
a liquid. In chapter 4, we focus on the transition between slow flows -
which are enabled by the vibrations - and fast inertial flows. For a certain
amount of vibrations, the regimes of slow and fast flow start to merge. We
investigate the resemblance between this point and a second-order criti-
cal point, and investigate the scaling of several flow properties with the
distance to the potential granular critical point. In chapter 5, we show
the presence and importance of anisotropy, which is built into the system
when it is sheared in a certain direction. We find that the anisotropy varies
with flow rate and vibration intensity, where the anisotropy is directly re-
lated to the required shear stress.

In chapter 6, we change focus and look at the flow of rod-shaped aniso-
tropic particles (without vibrations). We find that the fact that the parti-
cles now have an orientation, causes a strong convection, which results in
a heap of particles that arises from the surface of the packing.

8



Chapter 2

Introduction to Flow of
Weakly Vibrated Granular

Media

A large part of this thesis will be devoted to flow of weakly vibrated gran-
ular media. In this chapter we will introduce the subject, describe the
setup, and show the prior results1 that were obtained before the work that
is reported in chapter 3-5 of this thesis.

2.1 Introduction

In the absence of external forcing, a collection of granular particles jams
into a metastable configuration under the influence of gravity-induced
pressure and friction. To make the system flow, a shear stress larger than
the so-called yield stress has to be imposed, large enough to overcome the
friction between the grains. When imposing a stress below the yield stress,
the material will not exhibit a steady flow, although typically there will be
rearrangements at the micro-scale. For a stress above the yield stress, the
material loses its rigidity and will typically start to flow fast. Surprisingly,
creating a slow granular flow is not easy or perhaps even possible in a
stress-controlled experiment [71].

Flow experiments can also be performed in rate-controlled geometries.
In these experiments, slow flows are unstable and the stress appears to be
independent of the flow rate (for slow enough flows). This is believed to be
due to the rate-independence of the microscopic friction law.

1J. Dijksman, G. Wortel, L. van Dellen, O. Dauchot, and M. van Hecke, Jamming,
Yielding and Rheology of Weakly Vibrated Granular Media, Phys. Rev. Lett. 107, 108303
(2011) [71]
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Chapter 2. Introduction to Flow of Weakly Vibrated Granular Media

Granular flow in general is induced by imposing either a stress or a
strain (rate). In the traditional inclined plane geometry [72, 73], the stress
is controlled by changing the tilt angle with respect to gravity. Because
of the yield stress, strain-controlled experiments are typically used when
studying slow flows [13].

Granular systems can be compared to thermal systems such as glasses
[74, 75]. The simple case without external forcing then corresponds to
the zero temperature case. Glasses are typically studied in the more in-
teresting case of finite temperature; equivalently, we will study granular
materials subject to weak vibrations. We keep the peak acceleration of
our vibrations below the gravity acceleration, which means the particles
do not fly around as they do in a granular gas, but essentially stay at their
relative positions.

During the upward part of the oscillation, gravity is effectively de-
creased, which makes it easier to make the particles flow. In the experi-
ments, a new, stable, slow, granular flow regime is found where the stress
is now dependent on the flow rate [13, 71]. This regime, where a granu-
lar material can flow slowly under the influence of vibrations, is utilized
by many people every morning while gently pouring cereal in a breakfast
bowl.

2.2 Setup and Protocol

Split-Bottom Cell – We probe the rheology of weakly vibrated granular
flows in a modified split-bottom cell, as shown in Fig. 2.1. The split-
bottom cell consists of an acrylic container with an inner radius r0 of
7.0 cm and a height H of 5.5 cm. The rotating inner disk that drives the
flow has a radius rs of 4 cm and thickness 5 mm. The gap between the
container and the disk is about 0.3 mm so no particles can get underneath
the disk. To ensure a no-slip boundary condition, the top surface of the
disk is made rough by gluing glass particles with diameter of 2 mm to it.

The flow structure in the split-bottom cell depends crucially on the rel-
ative filling height H0/rs [76]. For low filling heights, the particles above
the inner disk corotate with it, whereas the particles close to the outer wall
remain stationary. The only location where there is shear between the co-
moving and the stationary grains, is above the split in the bottom. For
higher filling heights, the part of the system that corotates decreases with
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Figure 2.1: Left: Sketch of the vibrated split-bottom setup in which the rotation
of a disk of radius rs is used to probe the rheology of agitated granular media. The
crucial experimental parameters are the relative filling height, H0/rs, vibration
strength, Γ , the torque, T , and the rotation rate, Ω . Right: Schematic 3D drawing
of the setup including the bearings and the shaker. Figure adapted from [13].

the vertical coordinate z (trumpet flow), and the shear zone widens. Ad-
ditionally, there is shear between horizontal layers (precession [77]), and
the particles at the surface rotate with a lower angular velocity compared
to the particles near the bottom. For very high filling heights, the particles
at the surface no longer flow, and all the flow is located in a “dome” below
the surface.

At slow driving rates, because of symmetry, the experiments can also
be performed by rotating the side wall and outer bottom disk, keeping the
inner bottom disk stationary.

The split-bottom flow geometry has been studied extensively and pro-
duces wide shear zones, and smooth, robust, and well-controlled granular
flows [38, 46, 76–85].
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Chapter 2. Introduction to Flow of Weakly Vibrated Granular Media

Particles and Conditions – The container is filled with particles (black
soda-lime glass beads, Sigmund Lindner 4504-007-L), a polydisperse mix-
ture with a diameter between 1 and 1.3 mm, and a bulk density ρ of
1.7×103 kg/m3, up to a filling height H0. To ensure good reproducibil-
ity, we use the total mass of the particles to control H0. We use black
coated beads because those are easier to image than transparent ones.

All experiments are carried out under ambient temperature, pressure,
and relative humidity. We have verified that our experiments are insensi-
tive to relative humidities ranging from 6% to 55%. After several months
of use, the black coating of the particles visibly deteriorates, and the rheo-
logical behavior becomes more sensitive to humidity. We therefore renew
our particles on a trimonthly basis, and have found that our experiments
reproduce well over the course of several years.

Rheometer – To drive the rotation of the bottom disk and to measure the
flow properties of the system, we use a rheometer (Anton Paar DSR 301),
which can be used both in stress control (imposing a torque T and measur-
ing the resulting rotation rate Ω ) and in rate control (impose Ω , measure
T ). The native mode of the rheometer is stress control. Therefore, rate-
controlled experiments require a feedback loop to adjust the torque such
that the desired Ω is reached. The characteristic time of this feedback loop
can be altered using the so-called csr-value of the rheometer.

The rheometer can apply a maximum torque of 200 mNm and a maxi-
mum rate of 1.66 rps. For comparison, at our maximum filling height, the
yield torque is around 33 mNm.

We work with the rheometer using commercial Anton Paar software.
This software limits the sample rate to approximately 100 Hz. To acquire
data faster, the two analogue output ports are used to read out the torque,
rotation rate, or disk deflection angle θ at a time resolution of 15 kHz.

Vibrations – We shake the system with a sinusoidal oscillationA sin(2πft),
with a fixed f of 63 Hz, using an electromagnetic shaker (VTS systems
VG100). The amount of vibrations is characterized by the dimension-
less parameter Γ = A(2πf)2/g, where g is the gravitational acceleration.
To set Γ , we use a feedback loop built around an accelerometer (Dytran
3120A), and a lock-in amplifier (SRS SR830 DSP), which is executed by
software which is developed using LabVIEW. By time-averaging, Γ can be
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controlled very accurately with an error in Γ of around 10−3 [13].

Coupling – To protect the rheometer against the vibrations, we mount a
flexure in the driving axis which is soft (1.4 × 102 N/m) in the vertical
direction, but stiff (0.6 Nm/rad) in the rotational direction. The driving
axis is fixed with air-bearings (see Fig. 2.1(b)). We avoid using bearings
that have mechanical contact with the axis, as that would significantly
contribute to the torque. Because the air-bearings can never be perfectly
aligned, there is a T -offset of about 25 µNm.

Imaging – We image the surface of the system using a mirror and a Foculus
FO114B camera. This allows us to extract the surface flow using particle
image velocimetry.

Filling Height – As explained above, in the absence of vibrations, the phe-
nomenology of the flow is determined by the dimensionless filling height
h ≡ H0/rs [76]. In our experiments, we stay in the low filling height
regime (h ≤ 0.6), where the shear bands are mainly vertical, and all grains
above the disk corotate along with it. We have found that in all, but one,
flow regimes, the flow profiles observed at the free surface are insensitive
to the magnitude of vibrations. For the exception - which is for slow flow
and strong vibrations - see Sec. 3.4.3.

Crystallization – In our experiments, there never is crystallization of the
particles. The main reason for this is our particle polydispersity. More-
over, even for monodisperse particles, crystallization does not occur at all
shaking frequencies and amplitudes [86].

Protocol – In order to obtain reproducible starting conditions, we subject
the packing to a preshear before each experiment. The protocol consists
of the following amounts of shear: (i) 10 s of 1 rps clockwise; (ii) 20 s of
1 rps counterclockwise; (iii) 10 s of 1 rps clockwise. After this preshear,
we wait 10 s before starting the experiment in the clockwise direction.
During the preshear and the wait time, the system is already subjected to
vibrations. After the wait time, we start the experiment where we either
measure Ω(T ) (stress control), or T (Ω) (rate control).
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Chapter 2. Introduction to Flow of Weakly Vibrated Granular Media

2.3 Phenomenology

This section describes the previous results that were published in Ref. [71].
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Figure 2.2: The flow curves that were measured in rate control for 0 ≤ Γ ≤ 1 [71]. The
T -axis is rescaled with the dynamic yield torque Td.

2.3.1 Γ = 0

In Fig. 2.2, we show T (Ω) flow curves that are measured in rate control for
0 ≤ Γ ≤ 1 [71], where the torque is rescaled by the dynamic yield torque
Td (here, as in Ref. [71], Td is defined as the plateau value of T for low Ω
and Γ = 0). On top, there is the flow curve for Γ = 0. It is not perfectly
rate-independent but has a negative slope that leads to a dip of roughly 10%
of the yield torque [87]. The implications of the negative slope are signifi-
cant: when comparing the situation to pushing a broken car, the negative
slope says that if you want the car to go faster, you should push less. The
region of the flow curve that has a negative slope, is the regime that is
unstable and unaccessible in torque-controlled experiments [87–89]. For
Ω & 0.1 rps, the inertial regime is reached and the slope becomes posi-
tive [90].

The shape of the Γ = 0 flow curve qualitatively matches the behavior
that is observed when tilting a layer of sand. The sand will make the (hys-
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teretic) transition from no flow to fast flow when the static yield stress is
reached. If the tilt angle is then decreased again, the sand will keep flow-
ing. Only once the torque corresponding to the dip of the flow curve is
reached, the sand stops flowing. If the flow curve would have been per-
fectly flat, it would have been possible to let sand flow arbitrarily slowly
during this decrease of the tilt angle.

We do not exactly know what physically causes the negative slope. It
could be related to the rejuvenation of friction, as results similar to this
non-monotonic relation between stress and velocity are also found in fric-
tion experiments [87, 91, 92]. Alternatively, the negative slope could be
the result of shear-induced self-fluidization. In this picture, the system is
more fluidized for higher Ω . So, in a certain flow regime, a lower T is re-
quired to reach a faster, yet more fluidized, flow. We will discuss this idea
in more detail in App. 4.A.3.

2.3.2 Γ > 0

The flow curves for Γ > 0 (also plotted in Fig. 2.2) do drop to low T for
low Ω , suggesting that the yield torque disappears when switching on the
vibrations. This is hard to say with certainty for our data range, but we
have never observed indications for flattening of the flow curves for low
Ω . For Γ . 0.8, the curve still has a regime with negative slope. This
means that there are now two stable flow regimes, one for slow and one
for fast flow. In between, there is an unstable range in Ω . The size of this
regime decreases with increasing Γ , and for Γ & 0.8, the flow curves are
monotonic.

The curves can also be considered from the point of view of Ω . For fast
Ω , T varies little with Γ as the fast inertial flow [93] dominates over the
vibrations. The flow at intermediate flow rates is similar to the quasi-static
flow regime that was thoroughly studied in the absence of vibrations [77–
79, 94]. Besides these known flow regimes [6], the new regime is the one
for low Ω , where the vibrations now play a significant role.

2.3.3 Simplest Model

The simplest possible model to describe our system would be to describe
the flow behavior in terms of friction where the friction coefficient µ de-
pends on Γ . For Γ = 1, the friction would vanish, and assuming µ varies
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Chapter 2. Introduction to Flow of Weakly Vibrated Granular Media

linearly with Γ , the system would yield (or: makes the transition towards
fast flow) for T ∼ (1 − Γ ). We see that this simple model does not agree
with our data. First, the yield stress seems to disappear completely for any
finite Γ < 1, and we do observe slow but stable flow for T/Ty + Γ < 1. In
addition, the transition to fast flow is significantly above T/Ty + Γ = 1.

Figure 2.3: (a) Finite Γ hysteresis loops for Γ = 0.1, 0.3, 0.5. (b) Several hysteresis loops
for Γ = 0.5, with the rheological data from Γ = 0.5 from Fig. 2.2 overplotted in black.
Image from [71].

2.3.4 Hysteretic Transition

The next step is to probe whether the negative slope regime of the flow
curves for Γ > 0 leads to hysteresis in torque-controlled experiments [71].
To do so, T/Td is slowly ramped up and down between 0.8 and 1.1, i.e.,
through the bistable regime. Fig. 2.3(a) illustrates the resulting hystere-
sis loops. Ramping upwards, a sudden jump is observed from the slow,
mechanically agitated flow branch to the rapid, inertial branch. Ramping
back down makes the flow rate jump back to the slow flow branch – there
is considerable hysteresis between the stresses where these jumps happen.
For smaller Γ , the gap between slow and rapid flow rates increases, con-
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sistent with the flow curves shown in Fig. 2.2. In Fig. 2.3(b) the direct
connection between the negative slope of the T (Ω) curve and the hystere-
sis observed in the Ω(T ) curves is strengthened further for the example
of Γ = 0.5. Several torque-controlled hysteretic data sets are combined
with the appropriate flow curve. It can be seen that, while the precise lo-
cation of individual hysteresis loops fluctuates, the characteristic torques
remain confined to an interval which coincides well with the minimum
and maximum of the T (Ω) curve. We conclude that for Γ > 0, hysteresis
and negatively sloped flow curves are directly related.
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Chapter 3

Vibration Dominated Flow in
Weakly Vibrated Granular

Media

In this chapter we describe the rheology of weakly vibrated granular flows
as function of flow rate, vibration strength and pressure, by performing
experiments in a vertically vibrated split-bottom shear cell1. For slow
flows, we establish the existence of a novel vibration dominated granular
flow regime, where the driving stresses smoothly vanish as the driving rate
is diminished. We distinguish three qualitatively different vibration dom-
inated rheologies within this slow flow regime, most strikingly a regime
where the shear stresses are no longer proportional to the pressure.

3.1 Introduction

In chapter 2 we described how the rheology of weakly vibrated granular
media reveals a variety of qualitatively different flow regimes. First, for
large flow rates, inertial effects dominate, and the effect of vibrations is
small. Second, for intermediate flow rates, we cross over to a regime sim-
ilar to the well-known quasi-static flows that have been studied at length
in the absence of vibrations [71, 76–79, 94]. Third, for even slower flows,
we enter a regime where the vibrations lead to completely new rheological
behavior.

The focus of this chapter is on these vibration dominated flows. By prob-
ing the equilibration times of the stresses and the variation of the steady
state stresses with filling height, we find evidence for three qualitatively

1G. Wortel, J. Dijksman, and M. van Hecke, Rheology of weakly vibrated media,
Phys. Rev. E 89, 012202 (2014) [81]
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Chapter 3. Vibration Dominated Flow in Weakly Vibrated Granular Media

different regimes. For slow enough flows, vibration effects increasingly
dominate the physics, leading to compaction of the material for weak vi-
brations, and to fluidization of the material for vibrational accelerations
approaching gravity. Most strikingly, in the latter regime, we see a break-
down of the proportionality of shear stresses and pressure, a highly un-
usual phenomenon in granular flows.

The outline of this chapter is as follows. In Sec. 3.2 we describe the
measurement protocols used in the current and previous study [71]. In
Sec. 3.3 we describe the main phenomenology of a complete set of ex-
periments probing T (Γ ,Ω , h). In Sec. 3.4.1 we introduce the canonical
perspectives on granular rheology, including a model for the stresses in
split-bottom flows by Unger et al. [95]. In Sec. 3.4.2 we use this model
to extract effective friction coefficients from our data, as well as exploring
the quality of the fit between the data and this model. In Sec. 3.4.3 we
provide strong evidence for the existence of a pressure-independent flow
regime though measurements of the flow structure.

3.2 Protocol

In this section we discuss our measurement protocols, and show how we
ensure that we measure steady values for the rheology.

Our experiments focus on the rheological curves which relate the driv-
ing torque T and the driving rate Ω . Our main focus is on experiments
where we fix the driving rate in the range from 10−4 to 1 rps, and probe
the torque. We perform these experiments for a range of vibration ampli-
tudes Γ = 0, 0.2, 0.5, 0.7, 0.83, 0.95 and 1, and moreover use seven different
filling heights (h = 0.19, 0.25, 0.31, 0.38, 0.44, 0.50 and 0.56). Varying h al-
lows us to probe the role of the confining pressure for the rheology.

Each experiment starts with switching on the vibrations, after which
we allow the shaker feedback loop 30 s to settle to the required value of Γ .
We proceed by applying an amount of preshear to the granular material,
in order to obtain similar starting conditions for each experiment. Unless
noted otherwise, the protocol consists of the following steps: (i) 2 s of
1 rps rotation clockwise; (ii) 4 s of 1 rps rotation counter-clockwise; (iii)
2 s of 1 rps rotation clockwise. (iv) 5 s without imposed stress or shear.
(v) start of actual measurement. The rotation in the experiments is in the
clockwise direction to minimize anisotropy effects [96].
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Figure 3.1: The torque as function of deflection angle θ for Ω = 10−4 rps, Γ = 0.7,
and h = 0.31, but different waiting time tw between the preshear and the actual
measurement.

Vibrations lead to compaction of granular media, although this process
is very slow for Γ < 1 [58], whereas flow typically leads to dilatation [18].
Additionally, anisotropy in the fabric of the granular media needs a finite
amount of strain to build up, but may be relaxed by vibrations [47, 96].
For both density and anisotropy, vibrations and flow are in competition,
and as we are interested in steady state flow properties, we need to ask:
what is the minimum time or strain necessary to get into a steady state
flow regime?

We have probed the relaxation of our flows to a steady state by start-
ing the flow from a denser or less densely packed state as follows: before
each experiment, we perform preshear as described above. After preshear,
during stage (iv), we stop the shear and vibrate the material for a waiting
period tw, during which the granular packing density increases by com-
paction, and then start the actual measurements. By varying the tw, we
thus manipulate the packing fraction at the start of the flow. By measur-
ing the torque as function of time we capture the evolution of the torque
to its steady state value. As we expect this equilibration to be slowest for
small Ω we perform this test at the smallest Ω (10−4 rps) that we explore
in our experiments. The results of this test are shown in Fig. 3.1, where
we plot T as function of the total angle of rotation of the bottom disk θ.
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Figure 3.2: Flow curves for different averaging times ta. Below Ω ≈ 0.5 ×
10−3 rps, the torque increases with the waiting time. The measurements are for
Γ = 0.6 and h = 0.56.

This figure shows that for small tw, T grows monotonically before reach-
ing steady state, whereas for large tw, the torque peaks at values larger
than the steady state value. This is consistent with a simple picture where
the longer the waiting time, the denser the grains are packed at the start
of the experiment, and the larger the torque needed to cause flow.

For all waiting times, the torque reaches its steady state value for θ <
0.1 rad, corresponding to a measurement time of 150 s at 10−4 rps. We
claim that this represents the longest equilibration time necessary to reach
a steady state flow situation, as all our experiments are carried out for
Ω ≥ 10−4 rps. Moreover, in many experiments our data is acquired in a
so-called strain rate sweep, where the rotation rate is varied by a small
amount so that equilibration will be faster. In all cases, an equilibration
strain or time of θ > 0.1 rad, or 150 s, will be sufficient to obtain steady
state flow curves. We choose 180 s for all the experiments described in this
chapter. Additional data that supports the claim that, also for lower Γ , a
new steady state is reached within θ < 0.1 rad, can be found in Ref. [13].

To independently verify that equilibration times of 180 s are long enough,
we perform a strain rate sweep at fixed Γ = 0.6. We sweep the flow rate
from fast to slow rates, and then compare flow curves obtained for differ-
ent times ta per step, as shown in Fig. 3.2. While for small values of Ω
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Figure 3.3: Selected flow curves for fixed filling height and varying Γ . In all
cases, T decreases monotonically with Γ – its dependence on Ω is more complex.
The selected filling heights are h = 0.19 (a), h = 0.38 (b), h = 0.56 (c).

and ta, the torque shows a variation with ta, for all the flow rates probed
here we note that the data for ta = 180 s and 1800 s are indistinguishable,
showing that for ta ≥ 180 s the obtained values of T are steady state val-
ues. As a final additional test, we have also inspected T (t) to confirm we
reach steady state [13].

3.3 Phenomenology

We now turn our attention to the rheological curves T (Ω). As shown in
the T (Ω) curves in Fig. 3.3, the flows in our system exhibit a rich rheology.
There are two simple trends we see illustrated in these curves: increas-
ing the filling height always increases T , whereas increasing the vibration
strength always decreases T . The role of the flow rate is not as simple,
with the torque often being a non-monotonic function of the disk rate Ω–
moreover, the details of the rheological curves depend on both the vibra-
tion strength Γ and filling height h. We note here that the sign of ∂T/∂Ω
has a crucial rheological implication: flows for which ∂T/∂Ω > 0 can also
be accessed in experiments where the torque is fixed, whereas flows for
which ∂T/∂Ω < 0 are unstable in torque-controlled experiments. As we
discussed in [71], this range of unstable flows leads to hysteretic switch-
ing between two different flow regimes when the torque is varied, and is
deeply connected to the yielding behavior of granular media observed for
Γ = 0.
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Here we focus on rate-controlled experiments, and as a first step in
characterizing these curves, we plot the boundaries between the regions
where ∂T/∂Ω is positive and negative for three values of h in Fig. 3.4.
Roughly speaking, we can distinguish three regimes.

Inertial flows — For Ω & 0.3 rps, ∂T/∂Ω > 0; the flow curves show an
increasing T for increasing Ω . This increase corresponds to the onset of
the inertial regime [93]. To estimate the inertial number I = γ̇d/

√
P/ρ at

Ω = 0.3 rps, we have to choose a characteristic pressure and strain rate
scale, as both γ̇ and P vary throughout the system. Taking P as the hy-
drostatic pressure at 0.5H , and γ̇ corresponding to a shear band of three
particles wide, we get I = 0.09 for h = 0.38 and Ω = 0.3 rps. Considering
that the inertial regime typically starts at I = 0.1 [90], there is good agree-
ment between the onset of increasing T (Ω) and the onset of the inertial
regime. In the remainder of the chapter we will focus on slower flows.

Unstable flows — For intermediate flow rates, T (Ω) has a negative slope
for small Γ – for Γ → 0, this regime extends to arbitrarily small flow rates,
although there the flow curves become essentially flat. Despite the unsta-
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Figure 3.4: The boundaries between the regions where the flow curves have a
positive and a negative slope for h = 0.19 (�), h = 0.38 (∗) and h = 0.56 (+). For
Γ = 0 and Ω < 0.3 rps, the flow curve always has a negative slope. The region
extends to Γ > 0, and it extends to higher Γ for lower h.
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ble character of the global rheology, and in contrast to unstable flows in
e.g. micelles [61], we do not see any changes in the shear bands as we move
in and out of this unstable regime. As the variation of the stress with flow
rate is not very large, this regime can also be referred to as quasi-static.

Vibration dominated flows — Both the unstable/quasi-static and inertial
regime have been studied in great detail already [36, 37, 66, 90, 94, 97],
as they also arise in the absence of vibrations. Hence, in the remainder of
the chapter we will focus on the new vibration dominated regime of slow,
stable flows that arises for Γ > 0 and Ω < 10−2 rps.

One striking qualitative feature of this regime we already want to point
out is the pronounced ”kink” in the flow curves that can be seen for 10−2 <
Ω [rps] < 10−3 in Fig. 3.3. In Fig. 3.3(b) we explicitly mark such a kink.
The kinks coincide with the flow rates where ta needs to be sufficiently
large for T to equilibrate (see Fig. 3.2). We suggest that at sufficiently low
Ω , compaction effects become significant, leading to an increase of T with
time, and a ”kink” in the flow curves.

3.4 Vibration Dominated Flows

We will now turn our attention to the increase of T with h, which allows
us to probe the underlying mechanisms that govern the rheology of vi-
bration dominated flows. The canonical starting point of descriptions of
non-vibrated slow granular flows is that the shear stresses τ are propor-
tional to the pressure P [66, 94, 97], and the ratio of τ and P is an effective
friction coefficient, µ. For inertial flows, a description where µ becomes
rate dependent (through the inertial number) has been shown to capture
much of the phenomenology [36, 37, 90], and for slow, non-vibrated flows,
this Mohr-Coulomb picture combined with a non-local rheology captures
the essentials of steady, slow granular flow [68–70].

By varying the filling height h, we can modify the pressure P and
probe its role for the rheology in the different regimes. Here, we do not
measure P , but assume it to be hydrostatic. Clear predictions for T (h)
exist from a well-studied rheological model for the driving torques in a
split-bottom geometry [95]. In addition, this model provides clues to the
flow’s spatial structure and how it depends on friction and other factors.
In this section, we describe how our experiments allow us to build on these

25



Chapter 3. Vibration Dominated Flow in Weakly Vibrated Granular Media

basic ingredients to identify two qualitatively different regimes in vibra-
tion dominated flows. We find a frictional regime in which P ∼ τ , yet
with µ(Ω) a rate-dependent friction for Ω & 10−3 rps or Γ . 0.8. For even
slower, more strongly vibrated flows, both the rheology and the location
of the shear band presents strong evidence for a regime where T becomes
independent of P .

3.4.1 Torque Minimization Model

To interpret the observed filling height dependence of the shear stresses,
we start from a simple frictional model due to Unger et al., which was
developed to describe the three-dimensional shape of the shear zones in
the split-bottom geometry, but which also makes a precise prediction for
the driving torque as function of filling height for purely frictional flows
[76, 77, 95]. This model is based on the following three ingredients. First,
think of the shear zones as localized along a narrow sheet r(z) (corre-
sponding to the center of the shear zones [76–79]). Second, assume that
the stress tensor is collinear with the strain rate tensor [66] and propor-
tional to the hydrostatic pressure. Third, assume that the sheet shape r(z)
minimizes the driving torque2:

T̃ [r(z)] = 2πgρµ

∫ H

0
(H − z) r2

√
1 + (dr/dz)2 dz , (3.1)

where g denotes the gravitational acceleration, and ρ the bulk density
(1.7×103 kg/m3) of the granular material. Minimizing T̃ for a given h
determines the shear sheet r(z), from which the torque can be determined
as function of h. As expected, we can write this torque as T̃ (h) = µT̃f (h),
where T̃f is a universal function of h. Note that for shallow filling heights,
the torque is approximately proportional to the product of pressure and
the extension of the shear band, so that T̃f (h) is quadratic in h for h� 1.

In contrast to the original split-bottom cell for which Eq. (3.1) was de-
veloped, in our system the driving disk is slightly elevated with respect
to the bottom. This is done in order to avoid observing spurious torque
fluctuations that we associate with the diverging strain rate in the origi-
nal split-bottom setup. We have found that the torques occasionally show

2Note that whereas we characterize the filling height with the dimensionless h, we
write the frictional model in terms of H , which is the common notation.
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    s:
5 mm

6 mm

H
P=ρg(H-z)

z=0

z=-s

Figure 3.5: Schematic side view of the split-bottom setup. A cylinder of height
6 mm is placed underneath the disk, which has a thickness s of 5 mm and a
radius rs of 40 mm. The gray area represents the volume occupied by the grains;
the dark gray region indicates the volume of particles corotating with the disk
in the trumpet regime. The hydrostatic pressure P acts on the interface between
the corotating and ‘static’ volume of particles as indicated. The side of the disk is
also exposed to particles and, although smooth, contributes to dissipation during
rotation as discussed in the text.

strong fluctuations in this case, presumable due to individual particle be-
ing trapped just above the split – moreover, these fluctuations depend on
the precise roughness near the split, thus leading to a dependence of the
average T on such experimental details. To avoid this, we make sure that
the strain rate field is smooth at the grain level and have elevated the driv-
ing disk by 6 mm – see Fig. 3.5. The side of the disk is smooth, and par-
ticles immediately next to the disk hardly move, creating a static bottom
layer flush with the disk. Hence, the boundary conditions are essentially
the same as for the ordinary split-bottom disk, and the elevation does not
affect the overall flow field for h ≡ H/rs larger than about 0.1. The ele-
vation does ensue that the torques are insensitive to experimental details
and do not show the aforementioned spurious fluctuations.

The elevated disk does lead to a µ-dependent addition in the experi-
mental torque signal T , due to slip between the side of the disk and the
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Figure 3.6: Selected flow curves for fixed Γ and varying h. In all cases, T grows
monotonically with h. The selected values of Γ are: (a) Γ = 0, (b) Γ = 0.7 and (c)
Γ = 1.

stationary particles next to it. This drag term can be estimated as:

Tdrag(H) = 2πr2
sµρg

∫ s

0
(H + z)dz , (3.2)

where s is the disk thickness (5 mm), and µ is the effective friction coeffi-
cient for sliding of the disk past the particles, for which we use the same
effective friction coefficient as for the granular flow. The contribution of
Tdrag to the torque varies with H and is proportional to µ, so that we can
write Tdrag = µTd, where Td can be deduced from Eq. (3.2).

We conclude that the measured torque T is composed of two contribu-
tions:

T = T̃ (H) + Tdrag = µ
[
T̃f (H) + Td

]
= µTf , (3.3)

so that, we can extract T (h) from our flow curves, and check whether the
flow appears frictional, and if so, determine µ [80] and T̃ (h).

Γ =0

In Fig. 3.6(a) we show flow curves for Γ = 0 and a range of h. Clearly,
the torque only weakly varies with Ω and we expect the stresses to be
frictional. For each fixed Ω , we extract T (h) from our data and fit it to
µTf (Eq. (3.3)), as shown in the inset of Fig. 3.7. We find that this fit is
excellent, which implies that the stresses are frictional, and which allows
us to extract µ(Ω). As shown in Fig. 3.7, µ(Ω) is almost flat, and has the
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Figure 3.7: µ(Ω) as obtained from the fit with the frictional model. The inset
shows one example of the fit for Ω = 8.5 × 10−4 rps. The upper curve (+) shows
the raw data T , the bottom curve (�) is the raw data minus the correction term, T̃
– which goes through the origin. The fit matches the data very well resulting in a
χ2 of 2.0×10−3 for the upper curve (see Eq. 3.4).

same shape as the flow curves. We stress here that µ(Ω) together with the
frictional model predicts the stresses for all values of h, thus representing
all the flow curves taken at different h. We note that our values for µ
are comparable to those found previously in a standard split-bottom cell
using the same particles [76].

3.4.2 Frictional Model for Γ > 0

In Fig. 3.6(b) and Fig. 3.6(c) we show examples of flow curves for a range of
h and Γ > 0. We will now use T (h,Γ > 0) to test if the basic assumptions
for the Unger model break down in the vibration dominated regime. We
will find two flow regimes with the distinguishing features T ∼ µ(Ω)P
and T � µP . We describe here how we can distinguish these regimes in
the rheological data.

From Fig. 3.6(b-c) we see that that the flow curves for Γ > 0 all show
significant rate dependence. Even so, we attempt to fit Unger’s model to
the rheological data. We thus fit T (h,Ω) to try to obtain a µ(Ω). If this rate
dependence were captured by an effective friction coefficient that depends
only on Ω , with T (h,Ω) = µ(Ω)Tf (h), the rate dependence would lead to
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Figure 3.8: (a) The effective friction coefficient µ(Γ ,Ω) as found by fitting the
data with Eq. 3.3. Instead of plotting an arbitrary, h-dependent, T , we now assign
a dimensionless µ to each combination of Ω and Γ . As expected, the curves have
similar shape as the traditional T (Ω) flow curves, indicating that µ decreases with
increasing Γ and decreasing Ω . (b) The χ2 of the fits, as defined in Eq. 3.4. There
are two clear regions where the fit does not correspond well to the data.

a good fit of our data to the frictional model. To quantify the deviations
between the data and fits to the frictional model, we calculate the best
estimate of µ and the corresponding χ2 as follows. For each fixed Ω and
Γ , we have measured the torque for seven values of h, and then determine:

χ2 := 〈(µTf (h)− T (h))2〉/σ2
T (h) , (3.4)

where χ2 is a standard measure to quantify the quality of a fit, and σ2
T (h)

is the variance of T (h). We apply this procedure for each value of Ω and
Γ , and show the result for µ and χ2 of these calculations in Fig. 3.8. For
Ω > 0.3 rps - the inertial regime - the fit works very well and results in a
weakly rate-dependent µ, just as for Γ = 0. In addition, we find a large
region for Γ ≤ 0.83 and Ω < 0.5× 10−3 where the fit also works well, but
this time with a more strongly rate-dependent effective fiction µ(Ω). This
tells us that even in this rate-dependent, vibration dominated regime, a
frictional prediction is perfectly capable of describing the flow.

We do however observe two distinct regimes where χ2 is large, indicat-
ing a poor fit. First, there is a significant peak in χ2 around Ω = 10−2 rps
for Γ ≥ 0.7. Second, for Γ ≥ 0.95 and Ω < 10−3 rps, χ2 also is substan-
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Figure 3.9: The boundary of χ2 = 0.1, where we interpolate χ2(Γ ) to find the
location of the boundary. The two distinct regions where the data does not agree
with Tf (H) (i and ii) can clearly be seen. In the next sections we will see what
causes the deviations from the frictional model in these two regimes.

tial. The two regimes are also clearly visible in Fig. 3.9 where we plot the
boundary between a good fit (χ2 < 0.1) and a bad fit as a function of Ω .

The underlying physics in the two regimes is different. As we will
show in the next section, the first peak is associated with a broad crossover
regime between rate-dependent and rate-independent flows – a direct con-
sequence of the flow profiles in the split-bottom geometry. The second
peak we associate with a flow regime in which the rheology becomes pres-
sure independent, as shown in Sec. 3.4.3.

Onset of Rate Dependence

The peak in χ2 around Ω = 10−2 rps is consistent with the onset of rate
dependence below Ω = 10−2 rps as per the following reasoning. First,
both our raw data for T as well as the best fits for µ show that rate depen-
dence sets in rather abruptly for Ω < 0.1 rps, and that rate dependence is
strongest for large Γ , consistent with the location and strength of the peak
in χ2. Crucially, this onset of rate dependence sets in at different flow rates
for different heights (see Fig. 3.6), so that at a given Ω , the data for T (h)
mixes rate-independent and rate-dependent flows.

In Fig. 3.10(a) we show examples of T as function of height, that il-
lustrate that when Ω enters this rate-dependent regime, T (h) strongly de-
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Figure 3.10: (a) T (h) for Γ = 0.95 and a range in Ω at the point where the rate
dependence starts. It can be seen that the curve drop for high h, resulting in an
s-shaped T (h) curve rather than an upwards curved Tf one. The black line is
the fit with the frictional model to the top curve. (b) A theoretical prediction of
γ̇/Ω -which decreases with z- in the split-bottom cell [76, 85]. The color is scaled
linearly from high γ̇/Ω (dark) to low γ̇/Ω (light).

viates from the quadratic form predicted by Eq. (3.3). To interpret this
deviation, it is important to realize that at a given Ω , the local strain rate

.
γ

spans a wide range of values and has a strong z dependence [76, 85, 95] –
see Fig. 3.10(b). Hence, as the torque T is an integral over the local stress
in different layers in the material, T (Ω) mixes different local rheologies.
More precisely: under the assumption that rate dependence sets in below
a given

.
γ, there is a range of values of Ω for which the lower part of the sys-
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tem (where strain rates are largest) is still rate independent, whereas the
top part of the system (where strain rates are smallest) are already rate
dependent. This is consistent with the ”drop” in the T (h) curves at large h
shown in Fig. 3.10(a) – the deviations from the Unger model emerge first
for large h, for which the range of strain rates is biggest and regime mixing
is thus most pronounced. Our data also shows that once Ω is sufficiently
low, so that all of the material is in a rate-dependent state, T (h,Ω) is close
to µTf (h) so that χ2 drops to low values again, and µ can be replaced with
a rate-dependent µ(Ω). The range of Ω over which this crossover exists
broadens with Γ , since the rate dependence becomes stronger with Γ .

In conclusion, the lowering of the friction coefficient µ and the peak in
χ2 around Ω = 0.01 rps are caused by the onset of rate dependence which
occurs at different Ω for different vertical locations in the flow cell. For
Γ . 0.8, we also observe that once all the material is in the slow, rate-
dependent regime, the fit to the frictional model achieves a low χ2 again,
so that T (h,Ω) ≈ µ(Ω)Tf (h).

3.4.3 Fluidized Region

The growth of χ2 for large Γ and low Ω signals a breakdown of the fric-
tional picture, where shear stresses are proportional to the pressure, as
we will describe in this subsection. To gain deeper insight in the flow
phenomenology in this regime, we plot T (h) for Γ = 1 and a range in Ω
in Fig. 3.11. We see that for all filling heights the stresses drop with Ω ,
and at low Ω , T (h) becomes approximately linear. The standard Unger
model predicts a quadratic dependence of T (h) on h, as mentioned above.
A linear dependence would suggest a pressure-independent rheology, for
which the increase of T with h is due only to increasing surface area on
which the shear stress acts. Note that the large values of χ2 here can-
not be due to the existence of a crossover regime, as presented above for
Ω ≈ 10−2 rps. Evidence for this comes from Fig. 3.6(c), which shows that
both rate dependence of T (Ω) is small, and that there is no strong dif-
ference in the rate dependence for different values of the height in this
regime. First of all, that means that there is little mixing of different rhe-
ologies in the global torque signal; second, the rate dependence is weak,
so even if there were some mixing, it would not produce a strong h depen-
dence.
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Figure 3.11: T (h) curves for Γ = 1 and Ω < 10−3 rps. Towards lower Ω , the
curves lose their curvature and become straight lines.

It it perhaps not surprising that new phenomena occur around the spe-
cial value Γ = 1. For Γ ≈ 1, the grains lose contact during part of the
vibration cycle – the precise value of Γ where this happens depends on
details [98, 99]. As a result, the confining pressure becomes zero during
part of the cycle, and as most slip can be expected to occur when the nor-
mal grain forces are absent, the flows may become pressure independent,
as in a viscous liquid.

Rate Dependent Flow Structure

Additional evidence for the loss of pressure dependence for high Γ and
low Ω comes from measurements of the flow structure. From finite el-
ement calculations on the flow structure of a viscous liquid in the split-
bottom geometry, it is known that the shear band is much closer to the cen-
ter of the cell than for frictional flow [80]. As such, a pressure-independent
rheology for the granular flows in this regime can be expected to be accom-
panied by similar changes in the flow structure.

To test this, we measured the velocity profiles ω(r) at the surface of our
system for a range in Γ and Ω using particle image velocimetry [76–79].
In Fig. 3.12(a) we show examples of ω(r), showing a broadening and shift
of the shear zones when Ω enters the pressure-independent regime. We
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Figure 3.12: (a) ω(r) for Ω = 10−1 rps, Γ = 0.2 (×), Ω = 10−3 rps, Γ = 1 (+), Ω =
10−4 rps, Γ = 1 (�). In red, we add the fit with ω(r) = 1/2− 1/2 erf[(r − rc)/W ].
(b) The center of the shear band at the surface rc as a function of Γ for h = 0.47
and Ω as indicated. For low Ω , rc clearly decreases.

fit the velocity profiles with ω(r) = 1/2 − 1/2 erf[(r − rc)/W ], where rc is
the center of the shear band at the free surface [79].

In Fig. 3.12(b), we plot rc for Ω ranging from 10−1 to 10−4 rps and
a range in Γ . Clearly, the location of the shear band is mostly indepen-
dent of Ω and Γ , including most of the rate-dependent regime. However,
in the regime where we observed the pressure-independent rheology, we
observe significant deviations in the flow profiles. The deviations show a
trend towards a shear band moving inwards – consistent with the idea of
a pressure-independent regime.

Moreover, we can modify the Unger model to test which rheological
scenario is most compatible with the observed shift in the shear band.
Throughout, we assume that the torque minimization principle is robust.
The frictional torque model assumes σ(z) ∼ 1 − z/H , in which the shear
stress, being proportional to the hydrostatic pressure, goes to zero at the
surface. We can replace this model with σ(z) ∼ 1 − (1 − α1)z/H , in
which the shear stress reaches a final value when approaching the free
surface – see Fig. 3.13(a). The extreme case α1 = 1 represents a pressure-
independent rheology. We compute the location of the shear band at the
free surface as a function of model parameter α1. The results are shown
in Fig. 3.13(b). We find that for larger α1, the location of the shear band
at the free surface moves inwards. Thus, the closer the model resembles
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Figure 3.13: The center of the shear band at the surface, rc, can be found using
the method by Unger for given z-dependent stress σ(z). In (a), we plot σ(z) for
case σ(z) ∼ 1− (1−α1)z/H where σ is still finite at z = H , in contrast to the fric-
tional description where σ(H) = 0. The resulting rc is shown in (b), we recover
an inwards moving shear band as we observe in experiments. In (c) we plot σ(z)
for σ = (1− z/H) +α2 sin[2πz/(2H)], where P and µ respectively vanish and de-
crease towards the surface, corresponding the a strain rate-dependent frictional
picture, as we show in (d), this predicts an outwards moving shear band, contrary
to what we observe.

a Newtonian rheology, the more the shear band moves towards the cen-
ter. This can be understood intuitively as follows: the penalty for having a
shear band at large radius at the surface is zero in the pressure-dependent
model, because the shear stress goes to zero at the free surface. Once a
finite amount of shear stress is present in the shear band at the surface,
torque minimization will move the shear band inwards precisely as we
observe in the experiments at Ω < 10−3 rps, Γ > 0.9.

Conversely, for a frictional, rate-dependent rheology, the shear stress
closer to the surface is lower than that of a simple frictional model. We
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model this with a σ(z) that can be captured with:

σ = (1− z/H) + α2 sin[2πz/(2H)] , (3.5)

as shown in Fig. 3.13(c). The torque penalty for having a shear band at
finite r is thus reduced, and the model predicts indeed an increase of the
shear band radius at the free surface (Fig. 3.13(d)), contrary to what we ob-
serve. We thus conclude that our observation of the inward displacement
of the shear band location at Ω < 10−3 rps, Γ > 0.9 is consistent with the
granular flow obtaining a rheology which becomes pressure independent.

3.5 Conclusion

To summarize, we probe the rheology of weakly vibrated granular me-
dia and find several different flow regimes. First, for Ω > 0.3 rps, our
data shows the well-known inertial flow regime. In the absence of vibra-
tions, lower flow rates lead to an essentially rate-independent, quasi-static,
regime, where the variation of the torque is small, and where T (h) is well
fitted using Eq. (3.3), implying that the shear stresses are proportional to
the pressure here. For Γ = 0, this regime covers all Ω < 0.1 rps, whereas
the range of flow rates where this rate-independent regime resides shrinks
in the presence of vibrations, and almost vanishes for Γ = 1. For Ω below
the rate-independent regime and Γ > 0, we have described three vibra-
tion dominated regimes. For two of these regimes, our data shows that the
shear stresses are still proportional to the normal stresses, but now via
rate-dependent µ(Ω). For the slowest of these two regimes, we see a slow
densification, leading to a kink in the flow curves. Finally, for Γ close to
one, the vibrations affect the rheology of the granular medium so signif-
icantly, that the shear stresses are no longer proportional to the normal
stresses, signifying a complete departure of the frictional nature that is a
hallmark of all other types of slow granular flows.
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Chapter 4

A Nontrivial Critical Point
in Granular Flows

4.1 Introduction

In this chapter we investigate the transition between slow and fast gran-
ular flows in the weakly vibrated split-bottom geometry. As we have seen
in chapter 2, this transition is hysteretic in stress-controlled experiments
at low vibration strength Γ .

To see how the transition develops with increasing Γ , we show a col-
lection of flow curves in Fig. 4.1. The red curves on top correspond to low
Γ , and the negative slope part around Ω = 0.1 rps reflects the hysteretic
regime. With increasing Γ , the magnitude of the hysteresis decreases. For
Γc ≈ 0.43, the flow curve no longer has a negatively sloped part, but in-
stead contains an essentially flat part. At this plateau, there is a large
range in Ω that corresponds to a very narrow range in torque around the
critical torque Tc. For Γ > Γc , the flow curves are monotonic.

In this chapter we will explore the idea that (Γc , Tc) is similar to a
second-order critical point. If we identify the flow curves with the vari-
ation of an order parameter (log(Ω )) as a function of two control param-
eters (T , Γ ), then these curves are analogous to the well-known (P, V )
curves for the gas-liquid transition, which are given by the van der Waals
equation [100]. Water can be turned into vapor via a first order phase tran-
sition by decreasing the pressure P at low temperatures. Here, the order
parameter which distinguishes the fluid phase from the gaseous phase is
the volume V . At a certain higher temperature Tc, the transition becomes
continuous at the second-order critical point (Tc, Pc). To make our anal-
ogy concrete, we associate the temperature with the vibration amplitude
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Figure 4.1: Examples of flow curves for different Γ . In the crossover between the curves
with a negative slope part (red) and the monotonic ones (blue), there is a curve for Γ ≈
0.43 with an essentially horizontal plateau.

Vibrheology Gas-Liquid Ising Model
Vibration Γ Temperature T Temperature T
Torque T Inv. Pressure P−1 Inv. Magnetic Field H−1

Flow rate Ω Volume V Inv. Magnetization M−1

Table 4.1: Comparison of the control and order parameters between our system, the
gas-liquid transition, and the Ising model.

Γ , the inverse pressure with the torque T and the inverse volume with the
rotation rate Ω 1. At low Γ , there is a discontinuous transition from slow
to fast flow as T is increased. By choosing the correct combination (Tc, Γc),
our flow transition becomes continuous. In Table 4.1, we summarize the
mapping between our system and the gas-liquid transition, as well as the
comparison to the Ising model [101, 102]. At this point, this is a purely an
analogy.

1We denote the rotation rate with Ω if it concerns a control parameter or a time aver-
aged value and with ω if it is a time-dependent order parameter.
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Figure 4.2: Three ω(t) signals for Γ just above Γc for T < Tc (Γ = 0.71, T = 30.1 mNm,
red), T ≈ Tc (Γ = 0.71, T = 31.0 mNm, pink) and T > Tc (Γ = 0.71, T = 31.6 mNm,
blue). The fluctuations are largest for the data set closest to the critical point.

To explore if the analogy to a critical point in our system is more than
just a superficial coincidence, we will perform several experiments, both
in rate and stress control.

First, we measure the flow curves T (Ω) in rate control. We study in
detail how the shape of the flow curves changes as we vary Γ . We will
consider: (a) the scaling of the distance between the local minimum and
maximum of the flow curves for Γ < Γc , that decreases when approaching
Γc , and (b) the scaling of the slope at the inflection point, which goes to
zero when approaching Γc either from above or below. We will find that
the shape of the flow curves can very well be described using a mean field
picture [103, 104], and the critical exponents we extract from the data are
equal to the mean field values within error bars.

Second, in stress control we study the fluctuations in ω(t). If we impose
Γ ∗ ≡ (Γ−Γc)/Γc ≈ 0 and T ∗ ≡ (T−Tc)/Tc ≈ 0 - which corresponds to the
plateau in Fig. 4.1 - we expect to see large fluctuations in ω. Moving away
from the critical point, the flow curve gets steeper and we expect smaller
fluctuations in ω. Indeed, we will provide evidence for such a variation of
the fluctuations.
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In general, the packing can be thought of to possess an effective vis-
cosity η, so that ω = T/η(T ). T is constant in experiments where we probe
the fluctuations in the flow rate, but the packing (and thus η) continuously
fluctuate. At the flat part of the flow curve, a tiny increase in T then leads
to a large increase in ω, which in turn corresponds to a large change in
η. If the flow curve is steep, a change in ω requires a large change in T .
Based on this reasoning, we expect the magnitude of the fluctuations σ to
be related to the slope of the flow curve via:

σ ∼ 1

∂T/∂Ω
. (4.1)

For each Γ , we thus expect the fluctuations to be maximal at the inflec-
tion point (Ωi ,Ti ) of the flow curve, where the slope is smallest. We have
explored Eq. 4.1 in detail and found that, indeed, the fluctuations increase
monotonically as the slope of T (Ω) gets flatter, but the prefactor depends
on Γ and is different for the slow and fast flowing branch [105].

In Fig. 4.2, we show three ω(t) curves for Γ just above Γc and T < Ti,
T ≈ Ti and T > Ti. We see that the fluctuations are non-monotonic in T
and are largest around Ti. We will find that, in general, the fluctuations
increase if the critical point is approached either by changing T or Γ ; the
corresponding critical exponent matches the mean field value.

Third, we study the characteristic time scale of the ω(t) signals via
their autocorrelation function. Whereas the lower curve in Fig. 4.2 fluc-
tuates rapidly with a time scale significantly below 1 s, there is a longer
time scale in the critical curve. We will find that the time scale increases
if the critical point is approached either by changing T or Γ . Even though
a precise single time scale is hard to identify, we conclude that the critical
exponent for the divergence of the characteristic time scale deviates from
the mean field value.

The outline of this chapter is as follows: in Sec. 4.2 we will explain
in more detail how we perform the experiments, and in Sec. 4.3 we will
explicitly introduce the scaling relations and exponents that we test in
our system. In Sec. 4.4 we discuss the scaling of the flow curves, and in
Sec. 4.5 we consider the magnitude and time scale of the fluctuations that
are measured in stress control. We finish with an appendix, where we
suggest a simple heuristic model to describe the flow in App. 4.A.3.
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4.2. Setup and Protocol

4.2 Setup and Protocol

To perform the measurements, we have developed an extended version of
the setup that was introduced in Sec. 2.2. Our geometry has the compli-
cation that, because of the flexure, the angle θ of the disk that drives the
system is not necessarily the same as the angle measured by the rheometer.
In the case of experiments at constant Ω , we are not significantly hindered
by this problem as we measure flow in steady state, where the deflection of
the flexure also reaches a steady state value. For stress-controlled fluctua-
tion measurements, the deflection of the flexure will vary, and the motion
above and below the flexure will definitely not be the same. To circumvent
this, we extended the setup by mounting an optical encoder just below the
flexure - see Fig. 4.3 - which is thus rigidly connected to the disk.

Figure 4.3: A photo of the
shear cell with the new angular
encoder.

In most encoders there is mechanical con-
tact between the sensor and the rotating
axis which results in a torque similar to the
torques we want to measure. We therefore
have specifically chosen an encoder in which
there is no contact between these two parts.

The encoder (Heidenhain ERO 1285 -
2500) consists of a glass disk with 2500 en-
graved lines which is mounted on the axis of
the system. Above the disk - attached to the
cell itself and not to the axis - there is an LED
and below the disk there are sensors that de-
tect how much light shines through the disk.
If there is a line between LED and detector,
the sensor measures a lower light intensity.
The light intensity is turned into a voltage,
which is the raw output of the device.

The disadvantage of a non-contact en-
coder is that it has to be mounted very accu-
rately. The distance between the sensor and
the engraved disk is crucial and has to be
0.2±0.03 mm and may not vary much over
a full rotation of the disk. To achieve this, we had to realign the entire
setup and renew the driving axis. The aligning is done by reading out the
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Chapter 4. A Nontrivial Critical Point in Granular Flows

raw sine signal of the encoder and by adjusting the alignment such that
amplitude of the signal does not vary with θ.

In case of a constant rotation rate, the output of the encoder has the
shape of a sine wave with constant frequency. We use an interpolator
(Heidenhain IBV 101) which extracts from each sine wave a series of 10
block pulses. This increases our resolution by a factor 10. There are two
channels that measure the light through different spots of the disk, which
is required to determine the direction of the rotation. We connect the two
pulse signals we obtain from the interpolator to the counter ports on the
DAQ I/O card, which can count pulses with frequencies up to 80 MHz.
From the two pulse trains, θ can be calculated via a standard method
called “quadrature encoding” [106], which as a bonus gives an additional
factor 4 in resolution (resulting in 2500×10×4 = 105 pulses per rotation).
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Figure 4.4: Comparison between ω measured by the rheometer (black) and the encoder
(red). In (a), we control Ω at 5 different values, each for 10 s, in (b) we control T , also at
5 values, for 10 s. The encoder signal resolves more fluctuations because it measures the
disk’s angle at much higher temporal resolution. For the encoder signal we measure the
position of the disk using a temporal resolution of 63 Hz and obtain ω by taking a three-
point derivative. The good correspondence between the red and black data shows that the
encoder works well in the Ω range where we will measure.

The accuracy of an encoder depends on how constant the distance be-
tween the engraved lines on the disk is. An estimate for the accuracy is
10% of the grading, which in our case leads to 0.25 mrad [107]. How
strongly this affects the error on the rotation rate, varies with ω and the
time resolution used in the experiment. To ensure that the encoder is ca-
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4.2. Setup and Protocol

pable of probing ω in the full range where we will measure, we perform
test experiments at both constant T and constant Ω that cover the two
relevant decades in ω. We compare the output of the encoder with the
numbers that are found by the rheometer and see that they correspond
well – see Fig 4.4.

When reading out the encoder at 1 kHz, we observe a significant 63 Hz
signal caused by the shaking at this frequency. Filtering out this signal is
not trivial, since it is distributed over a frequency band around 63 Hz with
a width of the order of 1 Hz, as well as over the higher harmonics. We
therefore decide to read out the encoder stroboscopically with a sample
rate of 63 Hz, where we use the sync output of the function generator that
is used to control the shaker as a trigger to read out θ (it triggers on the
moment the sine goes through the equilibrium from negative to positive).
This way, we always measure θ in the same position of the cycle, thereby
suppressing the spurious signal caused by the shaker.

4.2.1 Protocol

Filling Height – As shown in Fig. 3.3, the value of Γc depends on the rel-
ative filling height h ≡ H/rs. The reason for this Γ dependence stems
from the details of the flow structure, as explained in Sec. 3.4.2. For low
h, we have observed that Γc becomes close to 1, which makes the range of
monotonic flow curves we can study inconveniently small. Therefore, we
choose a relatively high filling height, h = 0.6, which, as we know from
exploratory stress-controlled experiments, results in Γc ≈ 0.65.

Control parameters – We perform two different types of measurements.
First, we measure flow curves T (Ω) in rate control to study the scaling

of the shape of the flow curves around the critical point. To study the
scaling of the flow curves, we measure a set of flow curves for 0.3 ≤ Γ ≤
0.7 with ∆Γ = 0.01 and Ω =1.0, 0.63, 0.40, 0.25, 0.16, 0.1,..., 0.001 rps
in 16 logarithmic steps. We average each point for 180 s, which is long
enough to reach the steady state – see Sec. 3.2.

Second, we measure θ(t) in a stress-controlled experiment to probe
the fluctuations in its derivative ω, for a range of torques and vibration
amplitudes which form a grid in (T,Γ )-space. If we want data that is
suitable to accurately determine the scaling of the fluctuations with Γ ∗,
we have to be certain that the grid is closely centered around the critical
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Chapter 4. A Nontrivial Critical Point in Granular Flows

point. From test measurements in stress control we know that Γc ≈ 0.65
and Tc ≈ 30.5 mNm. We have taken two data sets. In data set 1, we choose
our 20x20 grid with T going from 28.9 mNm to 31.75 mNm in steps of
∆T = 0.15 mNm and Γ going from 0.65 to 0.935 with ∆Γ = 0.015. In data
set 2, where we focus on what happens around the inflection points of the
flow curves, we take Γ from 0.62 to 0.77 with ∆Γ = 0.01, but different T
values for each Γ around Ti. From exploratory measurements, we estimate
that Ti [mNm] ≈ 34.64 − 5.16Γ and we choose the ten T -values such that
they surround Ti with ∆T = 0.1 mNm. In both data sets, we measure
40 min per (T,Γ ) for good statistics and to be able to extract time scales
up to a few minutes.

4.3 Theoretical Framework

By comparing the transition from slow to fast flow to the liquid-gas and
the Ising ordered-disordered transitions, as shown in the mapping in Ta-
ble 4.1, we obtain several predictions for the scaling behavior and values
for the critical mean field exponents [108, 109].

Parameters – In this section we summarize the many parameters that we
will use throughout this chapter. We denote the rotation rate by Ω if it
concerns a control parameter or a time averaged value, and by ω if it is
a time-dependent order parameter. When looking at scaling relations,
we will quantify the flow rate with l ≡ log10(Ω/1 rps). Throughout this
chapter we will see several examples that imply that l is the natural coor-
dinate. For example, many properties of the system (for instance Eq. 4.2)
scale with l via a power-law relation whereas the scaling in Ω would take
a more complex form.

For each Γ , the flow curve has an inflection point (Ti, li). At the critical
Γc , this is the critical point (Tc, lc). We define the reduced Γ ∗ ≡ (Γ−Γc)/Γc

and T ∗ ≡ (T − Ti)/Ti, both of which are zero at the critical point (at the
critical point, Ti = Tc and T ∗ ≡ (T − Tc)/Tc).

Flow Curves – To examine the shape of the flow curves, we wish to deter-
mine their inflection points (Ti, li), as well as the slope at these inflection
points χ−1 ≡ ∂Ti/∂li and the distance between the local minimum and
maximum, ∆l, for Γ ∗ < 0. To obtain accurate values for Ti, li, χ−1 and ∆l,
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we do not wish to calculate numerical derivatives from our experimen-
tal data, but rather use simple polynomial fits. From the raw T (l)-curves
that are shown in Fig. 4.5(a), we see that the shape of the flow curves
around their inflection points is reminiscent of a third order polynomial,
where the linear part dominates the inflection point and controls the slope
around li. We therefore will fit the flow curves around the inflection point
with:

T = a(l − li)3 + χ−1(l − li) + Ti . (4.2)

In the next section we will show that this fit is capable of fitting the flow
curves in the region around the inflection point given by −1.6 < l < 0.

The susceptibility χ of a system describes its response to an applied
field and diverges at the critical point. However, since we consider T (l),
the slopes at our inflection points vanish towards the critical point, which
is why we denote this slope as χ−1.

Based on what we can measure for our system, we can test the follow-
ing three scaling relations:

T ∗ ∼ l∗δ , (4.3)

χ−1 ∼ |Γ ∗|γ , (4.4)

∆l ∼ |Γ ∗|β . (4.5)

The mean field values of these exponents are:

δ = 3 , (4.6)

γ = 1 , (4.7)

β = 1/2 . (4.8)

Note that we do not measure the value of δ, but based on the shape
of the flow curves and mean field prediction, we have set it to δ = 3.
The fact that fit of the data to Eq. 4.2 works well justifies this assump-
tion. As ∆l is found by identifying the zero crossings of the derivative of
a(l− li)3 +χ−1(l− li), ∆l and χ−1 are related. This results in the constraint
γ = 2β. Hence, from the flow curves we can extract a single exponent (ei-
ther γ or β); the determination of the other is then a consistency check.

Fluctuations – As diverging fluctuations are an important hallmark of
critical behavior, we want to study the fluctuations in the velocity of the
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flow. However, we measure the disk angle θ and we cannot a priori know
that we are allowed to calculate a velocity for our fluctuating disk; for fluc-
tuating systems such as a random walker, the velocity is not even defined.

Of course, because of the inertia of our driving disk, the velocity can-
not grow arbitrarily large, and extremely rapid velocity fluctuations are
suppressed. To get an idea of the relevant scales, we note that the moment
of inertia of our disk and corotating grains ≈ 0.3 g m2. Even if we sud-
denly subject the disk to the typical driving torque of 30 mNm, we expect
its rate to vary with 0.3 rps in 1/63 s. As the effective torque fluctuations
are typically much smaller, we do not expect rate differences of the order
of 0.1 rps between two consecutive data points. Therefore, we expect a
smooth θ(t) that we can differentiate.

We will use two different methods to extract values for the magnitude
σ2 and characteristic time scale τ of ω(t).

First, we will show further evidence that we indeed probe θ(t) fast
enough to evaluate its derivative ω, and then calculate its variance σ2

ω

as a measure for the magnitude of the fluctuations. The characteristic
time scale τa is obtained from the autocorrelation function of l (which is
log10(ω/1 rps)).

Second, we interpret the motion of our disk as the path of a massive
random walker, whose behavior is given by an overall drift plus a noise η.
To capture the effect of inertia, the noise η is not delta-correlated, but we
assume it has an exponential correlation:

〈η(t′)η(t′′)〉 = σ2
c exp(−|t′′ − t′|/τc) , (4.9)

where σ2
c is the magnitude and τc the time scale of the fluctuations. For a

random walker with drift, the quantity to look at is σ2
∆θ as a function of

∆t . For a system with noise as in Eq. 4.9, this is given by [110]:

σ2
∆θ = 2σ2

c τc[∆t− τc(1− e−∆t/τc)] . (4.10)

For small ∆t , this reduces to σ2
c∆t2, i.e., ballistic motion due to the cor-

related nature of η. In this regime, ω is well-defined. For large ∆t , σ2
∆θ

approaches 2σ2
cτc∆t , i.e. diffusive behavior (where σ2

cτc is the diffusion
constant D). We stress that, in this model, the complete behavior of σ2

∆θ is
governed by two parameters: σ2

c and τc .
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In Sec. 4.5.6 we will show that the analyses via ω(t) and σ2
∆θ produce

similar results for σ2 and τ ; both the fluctuation magnitudes and correla-
tion times are consistent between both methods.

The scaling relations we will test for the fluctuations are:

σ2 ∼ Γ ∗−γ , (4.11)

τ ∼ Γ ∗−ν . (4.12)

The mean field values of these exponents are:

γ = 1 , (4.13)

ν = 1/2 , (4.14)

where γ is the same as in Eq. 4.4. Of course, we measure the fluctuations
as a function of both Γ ∗ and T ∗, so if we want to look at the scaling only
as a function of Γ ∗, we have to decide for which T to select τ and σ2. Since
the critical point is the inflection of the curve for Γ ∗ = 0, we will take τ
and σ2 at the inflection point for each Γ ∗.

In conclusion, we can determine two independent scaling exponents
of our data; ν, which characterizes the divergence of the characteristic
time scale; and γ = 2β, which can be obtained from the magnitude of the
fluctuations, and from the steady state flow curves.

4.4 Flow Curves

In this section we will fit the flow curves with a cubic polynomial and
demonstrate that the fit accurately describes the data. We will use the fit
parameters thus obtained to determine Γc and to discuss how the flow
curves vary with Γ . We then extract values for the inverse slope at the
inflection point, χ, and the distance between the local minimum and max-
imum of the flow curve, ∆l, and finally determine their scaling with Γ ∗.

Fit – To determine the shape of the flow curves T (l), we fit the flow curves
with a cubic polynomial (Eq. 4.2):

T = a(l − li)3 + χ−1(l − li) + Ti .
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Figure 4.5: (a) The flow curves measured in rate control. The color indicates Γ from
0.3 (blue) to 0.7 (red). The dotted lines indicate the region of the curves we fit. (b) Using
the fit to Eq. 4.2, we collapse the flow curves onto the master curves (plotted in black)
T − Ti = li + 1/2(l − li)3 ± 3/2(l − li), using the horizontal scale factor b =

√
|χ−1/3a|

and the vertical scale factor c =
√
|4(χ−1)3/27a|. Note that for Γ ∗ very close to 0, b and c

become very small, which magnifies the small deviation between the fit and the data (see
purple outliers for Γ ≈ 0.46).

From the raw data, shown in Fig. 4.5(a), it can be seen that it is not possible
to fit the flow curve over the full range of l with a cubic polynomial in l, as
Eq. 4.2 is symmetric around (li, Ti), whereas the data is not. We find that
the fit corresponds well to the data for all Γ if we limit the fitting range to
−1.6 < l < 0 (we have verified that there is no strong dependence of the
fit parameters on the choice of these boundaries).

To demonstrate that the fit accurately describes the data in this range,
we collapse the flow curves using the fit parameters. To achieve a collapse,
we plot (l − li)/b on the horizontal axis and (T − Ti)/c on the vertical
axis. This way, the inflection point is shifted to the origin, and b and c
are chosen such that the local maximum for Γ ∗ < 0 rescales to (-1,1).
The actual values b =

√
|χ−1/3a| and c =

√
|4(χ−1)3/27a| are found by

solving a simple quadratic equation derived from Eq. 4.2. We show that
the rescaled data nicely collapses onto two branches in Fig. 4.5(b). The
master curves, T − Ti = li + 1/2(l − li)3 ± 3/2(l − li) are added in black.

The dependence of the four fit parameters of Eq. 4.2 on Γ is shown in
Fig. 4.6. In (a), we plot χ−1, which sets the slope at the inflection point, as
function of the actual Γ . The curve is close to linear and its zero crossing
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Figure 4.6: The four parameters of the fit with Eq. 4.2 as a function of Γ . χ−1 (a) is
linear in Γ and crosses χ−1 = 0 at Γc . We determine Γc and γ by fitting this data (the fit is
overplotted in red); the dashed line indicates Γc i.e. Γ ∗ = 0. li (b) and Ti (c) vary linearly
with Γ ∗. a (plotted in (d)) is constant, especially around Γ ∗ = 0.

defines Γc . We use this data to determine Γc as well as the exponent γ
(which is the scaling exponent of the slope at the inflection point as a
function of Γ ∗) by fitting the data with: χ−1 = α · sgn(Γ − Γc)|Γ − Γc |γ .
Doing so, we find γ = 1.07± 0.27, and Γc = 0.460± 0.012. The red dashed
line in Fig. 4.6(a) represents Γc , i.e., Γ ∗ = 0.

The rotation rate at the inflection point, li, increases linearly with Γ ∗

(Fig. 4.6(b)). The corresponding Ti, that decreases linearly with Γ ∗, is plot-
ted in Fig. 4.6(c). These scalings offer insight into the underlying mech-
anisms of the transition from slow to fast flow, and will be discussed in
App. 4.A.3. The global cubic shape of the flow curve is set by the fit pa-
rameter a. In Fig. 4.6(d) we plot a(Γ ∗), which, especially around Γ ∗ = 0, is
essentially constant. This agrees with the observation that, away from the
inflection point, the flow curves exhibit a very similar shape (Fig. 4.5(a)).

51



Chapter 4. A Nontrivial Critical Point in Granular Flows

0.01 0.10
Γ*

10-1

100

χ-1

0.01 0.10
-Γ*

10-1

100

-χ
-1

0.1
Γ*

10-1

100

χ-1

0.01 0.10
-Γ*

10-1

100

∆l

(a)

(c)

(b)

(d)

Figure 4.7: The scaling of χ−1 and ∆l with Γ ∗. (a) Susceptibility for rate control Γ ∗ > 0,
(b) for Γ ∗ < 0, (c) for stress control. In (a-c), the red lines are linear fits. (d) ∆l for rate
control. Here, the red line is a square root fit.

Susceptibility χ – The susceptibility χ is defined as the inverse slope of
T (l) at the inflection point, and is expected to diverge as Γ ∗ → 0. In
Fig. 4.7(a), we plot χ−1 (actual slope; inverse susceptibility) versus Γ ∗ for
Γ ∗ > 0, and in Fig. 4.7(b) we plot χ−1 for Γ ∗ < 0, both measured in
rate control. In both cases, the scaling is close to linear as can be seen
from the linear fits added in red. The prefactors for (a), 6.02±0.21 and
(b), 6.16±0.25, are equal within error bars. In Fig. 4.6(a), we found an
exponent γ = 1.07 ± 0.27 for the full range in Γ ∗. Here, we show that
an exponent 1 (which is the mean field value) also matches the data well.
The very nice linear relation between Γ ∗ and χ−1 indicates that our data
agrees with a mean field description of the system.

We can also obtain χ−1 from the stress-controlled measurements that
we use to study the fluctuations. The 400 measurements from data set 1
are performed as 40 torque ramps at constant Γ ∗. From these 40 ramps,
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we can extract 40 flow curves and extract χ−1. The result is shown in
Fig. 4.7(c) and tells us that also in stress-controlled experiments, χ−1 grows
linearly with Γ ∗. We note however that in this case, the prefactor is 2.32±
0.19, which is different than in Fig. 4.7(a-b). As we shall see in Sec. 4.5,
the flow curves measured in T control are not exactly the same as the
curves measured in Ω control. One possible explanation is that constant
T and constant Ω measurements sample different ensembles, and 〈ω(T )〉
and Ω(〈T 〉) need not coincide.

Rate Difference ∆l – In Fig. 4.7(d), we plot ∆l - which is extracted from
the fit to the flow curve via ∆l =

√
−4χ−1/3a - as a function of Γ ∗. In red,

we add a fit with a power-law with exponent 1/2 (the mean value for β).
We find that this fit accurately matches the data. As explained above, we
have the constraint γ = 2β. The fact that this is indeed true for the data,
supports our claim that the steady state flow curves can be described us-
ing a mean field picture.

Conclusion – In this section we have seen that that the mean field descrip-
tion works well to describe the shape of the flow curves. The scaling of χ−1

and ∆l agrees with mean field scaling exponents γ = 1 and β = 1/2.

4.5 Fluctuations

In this section we will discuss the magnitude and time scale of the fluctu-
ations in the ω(t) signals, which are measured in experiments at fixed Γ
and T .

As explained in Sec. 4.3, the fluctuations will be analyzed using two
different methods. In Sec. 4.5.2- 4.5.3, we will show that we measure θ(t)
at high enough temporal resolution so that we can evaluate its derivative
ω(t). Using ω(t), we then calculate the fluctuation magnitude σ2

ω and time
scale τa from the autocorrelation function of l(t). In Sec. 4.5.4, we ap-
proach the problem from a statistical point of view by studying the evo-
lution of σ2

∆θ as function of time. Using Eq. 4.10, we obtain magnitude σ2
c

and time scale τc . In Sec. 4.5.5 we discuss how to locate the critical point
in stress-controlled experiments, and in Sec. 4.5.6 we show the scaling of
σ2
ω and τa with Γ ∗.
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Figure 4.8: The slow and fast flow regime, separated by a hysteretic regime (Γ ∗<0) and
the Widom/Frenkel line (Γ ∗>0) [111], in (T,Γ )-space.

4.5.1 Phenomenology

Before we study the velocity signals in detail, we identify the different
regimes in (T,Γ )-space in Fig. 4.8. For Γ < Γc , we plot the values of T
at the local minima and maxima of the flow curves. In between these two
boundaries, the system is hysteretic. This means that if we do experiments
in torque control in this regime, the flow is bistable and fluctuations may
cause ω to be jumping back and forth between the slow and fast flowing
branch. At Γc , these boundaries come together. For Γ > Γc , we plot a line
which connects the torque values at the inflection point. This line - which
is called Widom or Frenkel line [111] - signifies the smooth crossover be-
tween the slow and the fast flow, and it is here where we expect the fluctua-
tions to peak for each Γ . While studying the behavior close to the Widom
line, we will also identify several fundamental differences between the
slow and the fast flowing regime. This suggests that the transition that we
study is between two flowing, but very different, states.

A natural question to ask is what happens when the fluctuation exper-
iments are performed in rate control. You could expect very large fluc-
tuations in T for flow in the negative slope regime, since there is no con-
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Figure 4.9: ω(t) for Γ just above Γc and T < Ti (a-b), T ≈ Ti (c-d), T > Ti (e-f). The
vertical scale is equal for all panels to visualize that the fluctuations are the largest for
T ≈ Ti; b,d,f zoom in on shorter time scales. The fluctuations are much smaller for fast
flow than for slow flow, but are maximal at the inflection point (Widom line).

stant T for which there is stable flow in this regime. Around the critical
point the fluctuations could be small, since a small change in T results
in a significantly different Ω . However, we found that these experiments
cannot be performed in our setup. The problem is that the native mode of
the rheometer is stress control, and rate-controlled experiments require
a feedback system. The characteristic time of the feedback loop, the so-
called csr-value, completely dominates the size of the fluctuations, and
there is no clear relation between the amplitude of the fluctuations and
the distance to the critical point.

4.5.2 Determination of the Velocity

In this section we study the raw signal, θ(t), and its derivative ω(t), to
demonstrate that we probe θ(t) at a high enough temporal resolution to be
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Figure 4.10: ω(t) calculated for four different values of ∆t as indicated in the legend.
(a) ω(t) for (Γ ∗ = 0.060, T ∗ = −0.032) (b) ω(t) for (Γ ∗ = 0.060, T ∗ = 0.0032). For ∆t =

1/63 s, 2/63 s and 6/63 s, the signal looks roughly the same, only the fluctuations become
smaller for longer averaging. For ∆t = 1 s, which is longer than the τ corresponding to
(a), the dominated features of the curve completely disappeared, in (b) τ ≈ 1 s, and the
slow fluctuations are still present in the green signal.

allowed to take a derivative. In Fig. 4.9 we plot ω(t) (a three-point deriva-
tive of θ(t) with ∆t = 1/63 s) for slow, intermediate and fast flow. Again
it can be seen that the fluctuations are largest at intermediate flow rate.
In panels (c,d,f) we show a magnification of the data which clearly shows
the individual data points (in (a,c,e) we only plot each 500th point). On
this scale, the signal appears smooth which means that θ does not corre-
spond to purely delta-correlated diffusive behavior; rather, θ is sufficiently
smooth on short time scales so that ω(t) is well-defined.

As an additional check to see if we extract a proper velocity, we calcu-
late the three-point derivative of θ(t) for different ∆t and show the results
in Fig. 4.10. For ∆t = 1/63 s, 2/63 s and 6/63 s, the signal looks quite
similar. For ∆t =1 s (which we will show to be longer than the correla-
tion time τ that corresponds to (a)), the dominant fluctuations are strongly
suppressed. On the contrary, for the data in (b), for which we will show
that τ ≈ 1 s, the dominant slow features of the curve are still visible in the
curve for ∆t = 1 s.
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Figure 4.11: Autocorrelation functions Rl for the data in Fig. 4.9. For small ∆t , the
curves can be fitted with a stretched exponential. The black (•) curve is for slow flow
and has a short time scale, the red (+) curve corresponds to large fluctuations and has the
longest time scale. The blue (×) curve is for fast flow and also has a high τ . For large ∆t ,
the curves take the shape of a power-law where the fast flow has the highest exponent.

4.5.3 Autocorrelation

Now that we have established that we have a well-defined l(t), we will ex-
tract the characteristic time τa from its autocorrelation function Rl(∆t).
In principle, it would also be possible to directly calculate the autocorre-
lation function of θ(t). The reason that we do not do this, is that long time
fluctuations in the signal will dominate the autocorrelation function and
result in an ∞ time scale. If we first differentiate to get l(t), we can see
both the fast time scale (in the initial exponential decay) and the longer
time scale (in the tail of the correlation function). The autocorrelation
function is defined as:

Rl(∆t) =

N−∆t−1∑
k=0

(lk − l̄)(lk+∆t − l̄)

N−1∑
k=0

(lk − l̄)2

, (4.15)

where N is the number of data points in l(t) after the removal of a tran-
sient. We removed a 4 min transient from each data set, which even for
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Figure 4.12: (a) The autocorrelation function Rl for (Γ ∗ = 0.19, T ∗ = −0.024) fitted
with the five different fit functions that are indicated in (b). (b) The distributions χ2 for
the five fits. Clearly, the fit with Eq. 4.16 is the best.

the slowest runs corresponds to a strain of 7 rotations – enough to be sure
that the system has reached a steady state.

In Fig. 4.11 we show Rl (∆t) for the slow, intermediate, and fast flow
curves shown in Fig. 4.9. The curves have significantly different and com-
plex shapes and cannot easily be collapsed or fitted with a standard expo-
nential decay fitting function. In this section we will carefully investigate
in what way best to extract a time scale from these correlation functions.

We will start by finding a fitting function for Rl. The data in Fig. 4.11
suggests that the autocorrelations are stretched exponentials for small ∆t ,
crossing over to power-laws for larger ∆t . This is illustrated in Fig. 4.12.
In (a), we show fits to Rl for a slow flow run (Γ ∗ = 0.060, T ∗ = −0.0032).
Attempts to fit the data with an exponentially decaying function (pur-
ple) and stretched exponential (blue) fail for large ∆t, where Rl decreases
more slowly. We will therefore use a fit that is a linear combination of
two functional forms, one for ∆t < τa and another for ∆t > τa . We start
with a three-parameter fit that combines stretched exponential decay and
a power-law (in cyan):

R(∆t) =
s(τa)

e
(∆t/τa)

η + [1− s(τa)]e−(∆t/τa)ζ , (4.16)
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where ζ is the stretching exponent, and η is the slope of the power-law
for large ∆t . s(τa) is a logistic function that governs the crossover from
stretched exponential to power-law, with its center around τa:

s(τa) =
1

1 + eλ(log10(τa/∆t))
, (4.17)

where s ≈ 0 for ∆t < τa, s ≈ 1 for ∆t > τa, and λ determines the width
of the crossover. We find that the crossover in our data is sharp and verify
that the fit does not significantly depend on λ as long as λ & 50 (we pick
λ = 100).

In Fig. 4.12(a), we compare this three-parameter fit with a two-para-
meter combination of a simple exponential decay and a power-law (Eq. 4.16
with ζ = 1, plotted in red):

R(∆t) =
s(τa)

e
(∆t/τa)

η + [1− s(τa)]e−∆t/τa , (4.18)

and a two-parameter combination of a simple and a stretched exponential
(pink):

R(∆t) = s(τa)× e−(∆t/τa)ζ + [1− s(τa)]e−∆t/τa . (4.19)

In Fig. 4.12(a) we see that only the fit with Eq. 4.16 is capable of grasp-
ing all the features of the data. We verify if this is the case for all the runs
by plotting the distributions of the quality of the fits, χ2, for the five dif-
ferent functional forms that are shown in Fig. 4.12(a) in Fig. 4.12(b). The
high peak at low χ2 in the cyan curve shows that the fit with Eq. 4.18 is
clearly superior. This is not surprising as it is the one with the most fit
parameters. However, Fig. 4.12 shows that the three-parameter fit is sig-
nificantly better than the two-parameter fits, suggesting that we need three
fit parameters to describe the complex shape of Rl.

To see how Rl varies throughout our parameter space, we plot the val-
ues of τa , ζ and η as a function of Ω and Γ in Fig. 4.13. Even though T is
the control parameter, we plot as a function of Ω so that we can compare
τa to the duration of one revolution 1/Ω .

In Fig. 4.13(a), we see that, for each Γ , τa initially increases with Ω
and reaches a peak for Ω ≈ 0.2 rps. For large Ω , τa decreases but does
not drop back very much, and approaches Ω−1 for large Ω – this suggests
that in this regime, correlations due to the periodicity of the system start
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Figure 4.13: The fit parameters of the autocorrelation function. (a) the time scale τa as a
function of Ω , color coded by Γ (red corresponds to low Γ ). The black line indicates τa =

1/Ω . (b) The T for which the time scale is longest T (max τa) is the torque at the inflection
point Ti. Ti is found using a fit with Eq. 4.2. (c) The stretching exponent ζ. The (*) and
(+) symbols reflect slow and fast flow. (d) The power-law slope η of the autocorrelation for
long ∆t .

to dominate. Nevertheless, the data shows a clear peak, which is largest
for Γ ∗ ≈ 0.

The dependence of ζ (Fig. 4.13(c)) is more complex. For slow and
fast flow, ζ ≈ 1, whereas in the intermediate range, ζ varies between
1.5 and 0.5. Surprisingly, the region where ζ varies most dramatically,
Ω ≈ 0.07 rps, is significantly below Ωi (as indicated by the plot symbols).

The dependence of η (Fig. 4.13(d)) is noisy but there is a trend that η
is lower for slow flow. In Fig. 4.13(b) we plot the T at which the time scale
peaks versus the inflection torque Ti and see that, as expected, the time
scale peaks at the inflection point.

We will now investigate the behavior of τa for large Ω , where τa ≈ Ω−1.
In Fig. 4.14, we test if a concomitant periodicity is visible in the raw data
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for a fast flow run. In (a), we plot ω as a function of θ but find that it is
hard to see which frequencies are present in the signal. Therefore, we plot
the power spectrum (PS) as a function of frequency of ω(θ) in θ space (fr)
in (b). We see that PS ∼ f−2

r , which corresponds to normal Brownian
noise. Nevertheless, zooming in on the spectrum around fr = 1, we find
that there is a 1 rev periodicity in the data (inset).
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Figure 4.14: (a) ω as a function of θ. For this run, τa = 1.24 s whereas Ω−1 = 1.53 s.
(b) The power spectrum (PS) of ω(θ) scales as PS ∼ f−2

r , which corresponds to normal
Brownian noise. In the inset, we show the spectrum around fr = 1, which shows that
there is a 1 rev periodicity in the system.
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Figure 4.15: All the autocorrelation functions Rl for data set 2. In (a), we show the
uncorrected data. In (b), we show Rl where the 1 rev component in filtered out before
calculating the correlation function. In both cases, there is a (blue) cluster of fast flowing
curves with a τa ≈ Ω−1.
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Figure 4.16: Scatter plots of τa vs η (a), τa vs ζ (c) and η vs ζ (e). The color of the data
points indicates l (yellow: l < li, green: l ≈ li, blue: l > li), the symbol size indicates Γ

where a larger blob corresponds to a higher Γ . The local blobs show how Rl is system-
atically different for flow, intermediate and fast flows. These blobs are also visible in the
distributions of τa (b), η (d) and ζ (f).

We want to investigate whether filtering out the Ω−1 component from
l(t) significantly changes the signal; this might make the results for slow
and fast flow more comparable. In Fig. 4.15 we show all the correlation
functions for data set 2 for both the unfiltered (a) and the filtered (b) case.
We find that although the filtering affects Rl, in both panels of the figure
there is a cluster of (blue) curves for fast flow with a time scale of approxi-
mately Ω−1. This suggests that the behavior of τa ∼ Ω−1 is not only caused
by a spurious Ω−1 component in the spectrum.

To further investigate qualitative differences between slow and fast
flows, we study the results of the fit with Eq. 4.16 in more detail in Fig. 4.16.
The scatter plots of τa vs η (a), τa vs ζ (c) and η vs ζ (e) show several blobs,
which we believe to correspond to physically different flow regimes. In (a),
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Figure 4.17: A scatter plot of τa vs
∫

∆tRl for data set 2 shows a good correspondence.
The correlation is not perfect, which is caused by the complex shape of Rl. This can be
seen from the size of symbols that represent η (larger symbols are larger η). A large η
results in a large area under the curve and a relatively large

∫
∆tRl.

there are two clear blobs, one at low τa for slow flow and one at high τa for
fast flow. In (c), we see a systematic relation between τa and ζ, and a large
blob arises for fast flow at ζ ≈ 1. Panel (e) shows that slow, intermediate,
and fast flow are well separated with different ζ, whereas within one flow
regime, there is a large spread in η. The different regimes arise as peaks
in the distributions of τa (b) and ζ (f). The blobs in Fig. 4.16 suggest that
the dominant fluctuations in the slow (quasi-static) and fast flow (inertial)
regime might be caused by different physical phenomena.

Because of the three-parameter form of our fit, and the complex vari-
ation and dependencies of the fit parameters, doubt might arise on the
values found for τa. We therefore extract a time scale from Rl without
having to fit, by evaluating its integral over time. Due to long time fluc-
tuations in Rl, the integral over Rl does not converge to zero but rather
slowly fluctuates around zero, which makes the integral of Rl for ∆t→∞
ill-defined. To get a well-defined value for

∫
∆tRl, we stop integrating

once Rl ≤ 10−2 – this leads to robust estimates for
∫

∆tRl, not strongly
dependent on the value of the cut-off.

In Fig. 4.17 we show a scatter plot of τa vs
∫

∆tRl which shows a good
correspondence. Nevertheless, systematic deviations can be seen: for ex-
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ample, large values of η (large symbols) lead to
∫

∆tRl > τa.

Conclusion – In this section we have shown that we can fit the autocor-
relation function Rl with Eq. 4.16 and obtain τa. The fit parameters sys-
temically vary with T and Γ . Not only do we see that τa increases towards
the critical point, but we also find that the fits are systematically different
for flow rates above and below the critical point, suggesting qualitative
differences between fast and slow flows. The correspondence between τa
and

∫
∆tRl indicates that we have extracted a robust time scale from l(t).

4.5.4 Statistics of ∆θ

In this section we will analyze the data by looking at the statistics of ∆θ.
This way, we avoid having to calculate the instantaneous velocity of the
probe, but instead, look at the fluctuations in ∆θ around the overall drift
〈θ〉 = Ω∆t. By fitting σ2

∆θ(∆t) to Eq. 4.10:

σ2
∆θ = 2σ2

c τc[∆t− τc(1− e−∆t/τc)] ,

we get values for the magnitude σ2
c and time scale τc of the fluctuations,

independent of those obtained from l.
We calculate ∆θ via ∆θ = θ(t + ∆t)− θ(t) for ∆t = ceil(10n/5)/63,

with n = 0, 1, .., 23 (as before, we always remove a 4 min. transient).
In Fig. 4.18 we show distributions of ∆θ for slow and fast flows and

different ∆t. It is clearly visible that the center of the distributions moves
to larger ∆θ for larger ∆t, which is an indication that the fluctuations do
not dominate the overall drift of the signal.

In Fig. 4.19 we show the rescaled distributions (∆θ−〈∆θ〉)/σ∆θ, where
σ∆θ =

√
〈(∆θ − 〈∆θ〉)2〉, for slow (a), intermediate (c), and fast (e) flows.

We find that these rescaled pdf’s for different ∆t collapse reasonably well;
hence their variation with ∆t can be captured by σ∆θ. The pdf’s typically
are asymmetric and have the shape of skewed Gaussians. There is a trend
that for slow flow, the pdf is positively skewed whereas for fast flow, it is
negatively skewed. We suggest that this originates from the fact that the
flow curve becomes flatter towards the inflection point. We expect that
fluctuations in ω can be larger where the flow curve is flatter. This leads
to an asymmetry in P (∆θ). Note that for fast flows, the inflection point
is so far away that the pdf becomes symmetric and Gaussian – see e.g.
Fig. 4.19(e).
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Figure 4.18: The distributions of ∆θ for examples of slow flow (a) and fast flow (b) for
∆t = 1/63, 2/63, 4/63, 10/63 s. The center of the distributions move to larger ∆θ for
larger ∆t, which indicates that the fluctuations do not dominate the signal and that a clear
average l can be extracted. The precise shape of the distributions depends on the distance
to the critical point and will be discussed below.

We proceed our analysis by calculating the variance of ∆θ, σ2
∆θ (equiv-

alent to the mean squared displacement) as a function of ∆t, and plot
σ2

∆θ/∆t as function of ∆t in Fig. 4.19(b,d,f). For ballistic behavior, σ2
∆θ/∆t

grows linearly with ∆t, whereas for a diffusive system, σ2
∆θ/∆t is a con-

stant (we divide by ∆t because it is easier to identify a plateau than a line
with slope 1). In Fig. 4.19, we see both kinds of behavior, and observe bal-
listic behavior for small ∆t and a crossover to a plateau at long times. The
fact that the crossover occurs for ∆t > 1/63 s, agrees with our claim that
we are allowed to differentiate ∆θ on a time scale of 1/63 s to obtain ω.

For most of our data we do not observe a nice plateau, but instead, see
the curve bend up again for ∆t > 100 s (see for example Fig. 4.19(b,f)).
This, we believe, is caused by longer time scale fluctuations beyond the
scope of this analysis. For even larger ∆t, the curve drops because the
magnitude of the fluctuations in l is limited and cannot grow indefinitely
as it does for a diffusive system.

To obtain σ2
c and τc , we fit σ2

∆θ with Eq. 4.10 and overplot the fit in red.
As a result of the long time scale fluctuations and the finite measuring
time, the fit is not always good for large ∆t . However, as we shall see
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Figure 4.19: The rescaled distributions (∆θ − 〈∆θ〉)/σ∆θ and σ2
∆θ/∆t as function of ∆t

for slow flow (Γ ∗ = 0.09, T ∗ = −0.033 (a-b)), intermediate flow (Γ ∗ = 0.09, T ∗ = −0.0044

(c-d)) and fast flow (Γ ∗ = 0.09, T ∗ = 0.15 (e-f)). The data in (f) does initially start to
flatten, but never reaches its plateau and then bends up again. The resulting shape cannot
precisely be fitted with Eq. 4.10. However, reasonable values for σ2

c and τc can still be
extracted.

in Sec. 4.5.6, the region where the fit is good, is large enough to extract
proper values for σ2

c and τc .

4.5.5 Locating the Critical Point

Before we can proceed to the scaling of the time scale and magnitude of
the fluctuations with Γ ∗, we have to identify Γc . Finding the critical point
is more difficult in stress-controlled than in rate-control experiments. In
rate control, we simply plot χ−1 and determine the zero crossing, but in
stress control, this is much harder to determine since we cannot measure
the “negative slope” parts of the flow curves. In addition, we have very
few data points around the inflection point, because a small increase in T
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Figure 4.20: (a) The flow curve for Γ = 0.65 and a fit with Eq. 4.2. (b) The slope at the in-
flection point, χ−1 , as a function of Γ . We fit the data to obtain Γc and find Γc=0.64±0.03.

results in a large increase in Ω near the critical point – the grids of data
points in torque or rate control are different.

In Fig. 4.20(a), we show the flow curve, measured in T -control, for
Γ = 0.65. In red, we add a fit with Eq. 4.2 to obtain a value for χ−1 .
We do this for all Γ , and plot all the values of χ−1 vs Γ in Fig. 4.20(b)
(measuring flow curves in stress control will be discussed in more detail
in App. 4.A.2). We want to compute where this relation crosses zero. For
certain Γ , there is so little data around the inflection point that the fit
yields an unrealistic (typically negative) value for χ−1 . We decide to not
take these points into account and draw them in red (×). Using the rest of
the data (indicated by black (+)), we find Γc = 0.64± 0.03.

As an alternative method, we can look at the fluctuation data to deter-
mine Γc . As explained in Sec. 4.5.1, the ω(t) signal is bistable in the hys-
teretic regime. This means that here, a pdf of ω(t) will be multi-humped.
Γc is then the smallest value of Γ for which we do not observe this bistable
behavior. In Fig. 4.21(a) we show the distributions for Γ = 0.65 and 10 in-
creasing values of T . For low T , P is nearly Gaussian and as T increases, a
new local maximum develops at large ω. Moreover, as T crosses through
Ti, the center makes a big jump towards an ω that corresponds to fast flow.
P now again takes a Gaussian shape.

To decide if a certain P (ω) is multi-humped, we want to identify its
local maxima. We do this as follows: for slow flow, we find the maximum
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Figure 4.21: (a) Distributions P (ω) for Γ = 0.65 and varying T . P goes from monostable
slow flow (red) via bistable (purple) to monostable fast slow (blue). The + and � symbols
indicate the local minima and maxima of P . The black dashed line at 0.2 rps represents
the separation between slow and fast flow. (b) Identification of the bistable (red) and
monostable (blue) points in T,Γ -space. The size of the dot represents H (see Eq. 4.20).

of the curve (we call this s+) for ω < 0.1 rps, for fast flow, we take f+ for
ω > 0.25 rps. For intermediate flow rate, we identify the minimum i− for
0.1 rps≤ ω ≤ 0.25 rps. We now say P (ω) is bistable if s+ > i− and f+ > i−,
and both s+ and f+ > 0.1 (to eliminate hits where in a low, noisy tail, a
local maximum, by accident, is larger than the center dip). To quantify the
bistability of P (ω), we define:

H = min

(
s+

i−
,
f+

i−

)
− 1 ; (4.20)

for monostable curves, we define H ≡ 0. In Fig. 4.21(b) we show our
data set 2 in (T,Γ )-space where a blue or a red point respectively indi-
cates a monostable or bistable state. The size of the data point represents
H . There is a clear blob of large red points for Γ ≤ 0.65 which suggests
Γc ≈ 0.65. However, for larger Γ , there are still some bistable points, but
the corresponding H is very low. This means that close to the Widom line,
the fluctuations can be large for Γ >Γc , but the pdf is just broad and does
not indicate significant bistable behavior.

The methods of Fig. 4.20 and Fig. 4.21 result in a similar value for
Γc . The large fluctuations at the Widom line make it difficult to be very
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precise, but we estimate Γc = 0.65 ± 0.01 and Tc = 31.6 ± 0.1 mNm.
This value for Γc differs significantly (30%) from the one that was found
for the rate-controlled measurements in Sec. 4.4. This is surprising and
shows that, at least around Γc , rate and stress control experiments are not
simply physically equivalent. We believe that the reason for this lies in
the nature of the fluctuations, which are different in rate- (because of the
feedback loop of the rheometer) and in stress-controlled experiments.

4.5.6 Scaling of Fluctuations

We want to study the scaling of the magnitude and time scale of the fluc-
tuations with the distance to the critical point. Before we can do this, we
need to carefully define which quantities we will consider exactly for the
scaling.
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Figure 4.22: (a) The relation between τaΩ (from the autocorrelation) and τcΩ (from the
crossover from ballistic to diffusive in σ2

∆θ(∆t)) is linear. (b) τaΩ as function of T ∗, color
coded by Γ , where red indicates a Γ close to Γc . (c) The good correspondence between
σω/Ω and σc/Ω . (d) σω/Ω as function of T ∗.
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We have determined two different time scales: τa, from the autocor-
relation function, and τc from the crossover from ballistic to diffusive in
σ2

∆θ(∆t). Of course, there is another time scale in our system, which is
Ω . To correct our time scales for this overall time scale Ω , we will con-
sider the scaling of the characteristic strain τaΩ . In Fig. 4.22(a), we show
a scatterplot of τaΩ vs τcΩ . It shows that there is a great proportionality
between τa and τc, and hence the two different methods we used to extract
a time scale from the data.

In Fig. 4.22(b) we show τaΩ as a function of Γ ∗ and T ∗. We find that
these curves have similar shape and there is a systematic trend that τcΩ
increases when approaching the critical point either in the Γ or in the T
direction. This is similar to critical phenomena, for which the time scale
diverges towards the critical point.

To characterize the magnitude of the fluctuations we also have two op-
tions. First, we take the derivative of θ(t), ω(t), and take its variance σ2

ω

as a measure for the fluctuations. Alternatively, from fitting σ2
∆θ(∆t) with

Eq. 4.10, we get a fluctuation magnitude σ2
c . To get a dimensionless mag-

nitude, we will consider σω/Ω . In Fig. 4.22(c) we plot σc/Ω vs σω/Ω and
see a nearly perfect correspondence. This means that we are confident that
we have extracted a proper magnitude of the fluctuations. In (d), we show
σω/Ω as a function of T ∗ and Γ ∗. In this case, very clearly, σω/Ω increases
towards the critical point both in the T and Γ ∗ direction. Since the data
peaks at T ∗ = 0 for all Γ , this data is very suitable to determine the scaling
of σω/Ω with Γ ∗.

To test the scaling relations (Eq. 4.11, 4.12), we want to investigate how
τaΩ and σω/Ω scale with Γ ∗. As explained in Sec. 4.3, we take the values
of τaΩ and σω/Ω at the inflection point for each Γ . There is however the
complication that in T -controlled experiments, we do not have much data
close to the inflection point – see Fig. 4.20(a). To account for this problem,
we want to estimate what the value of σω/Ω would be precisely at Ti. We
do this by finding the maximum of σω/Ω(T ) by performing a fit. We find
that the best way to find the maximum is by plotting σω/Ω(l). In this
representation, we find that we can fit the data for all Γ using a Gaussian
as functional form:

σω/Ω = a+ b · exp

(
−(l − li)2

d

)
. (4.21)
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Figure 4.23: To estimate the value of σω/Ω exactly at the inflection point, we fit σω/Ω(l)

with Eq. 4.21. The three examples presented here are for Γ ∗ = 0.019 (black •), 0.097 (red
+) and 0.18 (blue ×).

In Fig. 4.23 we show that this works well for Γ ∗ = 0.019, 0.097 and 0.18.
The value of the maximum is then simply extracted from the fit as a + b.
We note that we found this fit function empirically and have no reason to
believe that Eq. 4.21 is an actual scaling function.

In Fig. 4.24 we show the peak values of τaΩ (a) and σω/Ω (b) at the
inflection point as a function of Γ ∗. We combine the data of data set 1
(black) and data set 2 (yellow) to cover a larger range in Γ ∗. We see that
both τaΩ and σω/Ω depend on Γ ∗ via a power-law, and want to extract
the corresponding critical exponents. Note that, as we now look at the
standard deviation σω rather than the variance, we also have to take the
square root of Eq. 4.11, which means we now obtain a value for the critical
exponent γ/2.

The values of the exponents strongly depend on the value of Γc . Be-
cause of the error bar on Γc , we decide to neglect the data with Γ ∗ < 0.05
(indicated by the dotted line in Fig. 4.24). We fit the data with a power-
law (plotted in red) and find ν = 0.94 ± 0.47 (mean field: ν = 1/2) and
γ/2 = 0.47± 0.22 (mean field: γ/2 = 1/2).

For γ, our data is consistent with the mean field value γ = 1, both for
the slope at the inflection point of the flow curve and the magnitude of the

71



Chapter 4. A Nontrivial Critical Point in Granular Flows

10-2 10-1 100

Γ*

10-1

100

101

102

τ a
Ω

 [r
ev

]

ν ≈ 0.94

10-2 10-1 100

Γ*

10-1

100

σ ω
/Ω

 [-
]

γ/2 ≈ 0.47

(a) (b)

Figure 4.24: τaΩ (a) and σω/Ω (b) as found using the fit with Eq. 4.21 as a function of
Γ ∗. The black data is for data set 1, the yellow data for data set 2. We fit the data with a
power-law (plotted in red) and find ν = 0.94± 0.47 and γ/2 = 0.47± 0.22.

fluctuations. This supports our picture (Eq. 4.1) that the fluctuations for
certain T and Γ are closely related to the local slope of the flow curve. If
the T (Ω) flow curve is flatter, the corresponding fluctuations are larger.

The exponent ν, corresponding to the time scale, deviates from the
mean field value (even though the mean field value of 1/2 is just within
the error bar). We interpret this as an indication that the mean field de-
scription is not capable of governing the details of the fluctuation mea-
surements. The value we find for ν is larger than its mean field equivalent,
which means τaΩ decreases faster with Γ ∗ than it does in a mean field sys-
tem. The deviation in the value for ν suggests that the slow and the fast
flowing branches are, compared to a mean field system, relatively stable
close to Γc . This is a useful observation towards precisely understanding
the two flowing states.

The second step in investigating the scaling of τaΩ and σω/Ω is to con-
sider their complete scaling with Γ ∗ and T ∗, rather than only approaching
the critical point via the inflection points of the flow curves. To achieve
this we try to find a scaling function of the form [112]:

Ωτa or σω/Ω =
1

Γ ∗∆
F

(
T ∗γ

Γ ∗

)
, (4.22)
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however, due to a limited amount of data (very close to the critical point),
uncertainty in the value of Γc , and an asymmetry between slow and fast
flow (even though the scaling could in principle be different on both sides
of the transition), we are unable to find such a scaling relation.

Conclusion – In this section we have shown that we can extract robust
values for the magnitude and time scale of the fluctuations in the stress-
controlled experiments. The scaling of the magnitude agrees with the
scaling of the slope at the inflection point of the flow curves and the corre-
sponding mean field exponent. The exponent that we find for the scaling
of the time scale is larger than its mean field equivalent. This suggests
that the average quantities in our system do agree with a mean field de-
scription, whereas the fluctuations show deviations. This, in turn, is a
reflection of the differences between the slow and fast flowing states in
our system and the states in mean field systems.
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4.A Appendix

4.A.1 Collective Behavior

A fundamental property of a second-order critical point is collective be-
havior of the particles, which arises in the correlation length ξ. We have
searched for this in two different ways.

First, we have studied the location and width (and their fluctuations)
of the shear band, as well as the precession of the core for varying T and Γ .
We found that the flow structure is actually very robust, with an only ex-
ception for the moving shear band for high Γ and small Ω (see Sec. 3.4.3),
which we believe is not related to our critical point.

Second, we have looked at so-called kymographs of pictures of the sur-
face of the system. For this, we identify a circular path on the surface that
the particles follow. We then make a 2D picture where each horizontal
line corresponds to the same image line, but a different moment in time.
This way, the trajectories of all the particles on the identified path are vi-
sualized. We took kymographs close and far from the critical point in
(T,Γ )-space, but found no significant differences.

Of course, our system is relatively small (the shear band is only a few
particle wide), the particles are incompressible, and we can only observe
what happens at the surface. Therefore, not only is it physically hard to
imagine a certain blob of particles moving at a different speed than the
adjacent blobs, even if it does happen, it would be hard to observe [113].

4.A.2 T -Control Flow Curves

In Sec. 4.4 we discussed flow curves that were measured in Ω-control. To
look at the transition between slow and fast flow from a different perspec-
tive, we measure an additional set of flow curves in T -control and plot
them on a double linear scale.

The data is presented in Fig. 4.25. In (a), we first plot the Ω(T ) flow
curves in the usual logarithmic Ω-axis representation, and see that they
are of similar shape as the curves that are measured in rate control (note
that the T and Ω axis are interchanged compared to our usual Ω-control
plots such as Fig. 4.1). The main difference is the absence of the negative
slope, which is replaced by a discontinuous jump in the data for Γ < Γc .
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Figure 4.25: Flow curves measured in T -control plotted on log-lin (a) and lin-lin (b-d),
where (c-d) are zoom ins of (b). The curves are bounded by Ω = 1.66 rps which is the
maximum rotation rate of the rheometer. The different flow regimes that we can identify
using this representation are discussed in App. 4.A.3.

The curves are bounded by Ω = 1.66 rps, which is the maximum rotation
rate of the rheometer.

In panels (b-d) we plot the data in a lin-lin representation. In (b), we
see the fast flow regime where Ω grows linearly with T . The curves are par-
allel to each other, which indicates that the flow rate is mostly determined
by the stress, where the vibrations are just a small correction. In (c-d), we
zoom in to the slow flow regime. For very small T , Ω(T ) seems linear, and
above a certain “kink”, it increases exponentially. In App. 4.A.3 we will
use these observations as ingredients towards finding a simple model to
describe the flow of weakly vibrated granular media.
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4.A.3 Towards a Simple Model

We want to see if we can introduce a simple heuristic model similar to
those of Bocquet et al. [114–116], Kamrin et al. [68–70], and Kuwano et
al. [87] to describe the transition from slow to fast flow. The key ingredient
of this model is that we consider the granular system from the point of
fluidity, which is a result of both the vibration and the flow itself.

In flow curves such as the ones in Fig. 4.25, we can identify four dif-
ferent regimes. (i) For finite Γ and very low Ω , Ω(T ) is linear. We in-
terpret this by saying that the vibrations fluidize the grains to become a
very viscous liquid-like material where stable, slow flow is possible. (ii)
For faster rates, Ω(T ) becomes curved upwards, where a higher flow rate
requires a relatively small increase in T . This is, we believe, due to self-
fluidization caused by the flow itself. The flow makes the system more
fluid, so at similar T , it can now flow faster. (iii) For Γ ∗ < 0, there is a
jump in stress-controlled, and a negative slope in rate-controlled exper-
iments. This is perhaps the hardest regime to understand. Apparently,
there is a Γ -dependent “yield” torque above which the system jumps to
the inertial regime. In rate control, we can access these “forbidden” speeds
that correspond to the jump. However, we know that there is no constant
T which leads to an Ω in this regime, so T has to fluctuate. Here, the flu-
idity picture offers an explanation for the negative slope. In the case of a
relative slow, forbidden, Ω , the rheometer often has to impose a large T
to rebreak the contacts to allow for a forbidden rate. For a relatively fast,
but forbidden, Ω , the system is very fluid, so the fluctuations to large T
(to sustain the flow) can be smaller. For Γ ∗ > 0, regime (iii) does not exist,
and the self-fluidizing regime (ii) is directly connected to the inertial flow
branch. (iv) In the inertial regime [90], Ω(T ) is linear, but the relation
does not cross the origin. We explain this as follows: the T splits into two
contributions, one to completely break the contacts and one to sustain the
fast flow. In this regime, T (Ω) still depends on Γ . We believe this is be-
cause, at higher Γ , a smaller portion of T is required to break the contacts,
so more T is left to reach a higher flow rate.

We hope to concretize this concept either by finding analytic expres-
sions for T (Ω ,Γ ) and Ω(T,Γ ), or by developing an iterative simulation
that, for each time step, compares T with the current fluidity, and adapts
the rate accordingly.
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Chapter 5

The Role of Anisotropy in
Granular Flow

5.1 Introduction

In this chapter we study the influence of the anisotropy of a granular pack-
ing on its flow and rheology. When a granular system is sheared, the par-
ticles rearrange and form a dilated, anisotropic packing [47, 117–124]. We
believe that the buildup and release of anisotropy influences many granu-
lar experiments, typically during transients and reversals. In this chapter
we will develop a method to measure the anisotropy explicitly.

Figure 5.1: (a) Torque as a function of strain for a flow reversal experiment. When a
fully disordered packing is first sheared, is it isotropic and the required T is low. After a
strain of about a grain diameter, the steady state T is reached. When reversing the flow
direction (bottom curve), the required T initially is very low. (b) The height and density
of the packing. Upon reversal, the packing compacts. Image from [117].
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An example where the anisotropy plays a role is an experiment by the
group of W. Losert, where the flow of a granular material is investigated
in a Taylor-Couette geometry [117]. The emphasis of this work is the re-
sponse of the flow to a reversal of the flow direction. Two main figures
from the paper are shown in Fig. 5.1. In (a), the torque that is required
to shear the system, is plotted as function of the strain. Initially, there is
a short transient where, for very low strain, the torque is very low. After
this stage, when a steady state anisotropy and density have been reached,
the system is in a steady state and T ≈ 4 Nm. When the flow is reversed,
there is a new transient where, initially, T is very low and the packing
compacts (b). After a transient in the strain of around 5 particle diame-
ters, a new steady state is reached. This experiment shows the influence
of the anisotropy of the packing: both the rigidity and the density of the
packing change when the shear is reversed. Similar results are also found
in a frictionless system [118].

Figure 5.2: Using photo elastic
disks, the force chains, directed
opposite to the flow, can be visu-
alized [118].

In general, the anisotropy of the packing
resists shear. This can also be seen in the
force chains that are formed in the direction
counter to the flow [118, 119]. This is visu-
alized in Fig. 5.2, which is made using photo
elastic disks [118]. In the figure, the white
arrow indicates the flow direction; the white
lines through the particles are the visualiza-
tion of the force chains.

In a third example, the rheological curve
T (Ω) of a granular material is measured in
the split-bottom geometry [47]. At the bot-
tom of the container there is a rotating disk
which fluidizes the system [38] (main flow).
Higher up in the system, the flow curves are
measured via the rotation of a vane (secondary flow) connected to a
rheometer for different rates of the bottom disk. It is found that, in the ab-
sence of any main flow, the probe experiences a clear yield stress, whereas
for any finite flow rate, the yield stress disappears and the secondary rhe-
ology takes on the form of a double exponential relation between Ω and
T . This secondary rheology does not only depend on the magnitude of T ,
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but is anisotropic – which is shown by varying the relative orientation of
the probe and main flow [47].

We perform our experiments of the anisotropy with the setup that was
introduced in Sec. 2.2. The basic idea is as follows: we prepare a system by
shearing it in rate control until we reach a steady, critical state [125], with
a certain constant torque and anisotropy. When we then just vibrate this
packing, the vibrations will relax the anisotropy, which leads to a small
rotation of the disk in the direction counter to the direction of the initial
shear. We measure this rotation with the rheometer, where a larger ro-
tation means that the packing was more anisotropic. This explicit way to
measure the anisotropy is a beautiful example of what is possible with our
experimental setup that combines shear and vibration.

Anisotropy Density
Flow increase decrease
Vibrations decrease increase

Table 5.1: Flow and vibrations compete in terms of both anisotropy and density.

We study the anisotropy as a function of flow rate Ω and vibration
intensity Γ . Whereas the flow builds anisotropy, the vibrations relax the
packing. This means that there is a competition between the two, which
will eventually lead to a equilibrated value of the anisotropy. Interestingly,
this is very similar to density, which is increased by vibrations [126] and
decreased by flow [18]. The situation is summarized in Table 5.1. When
interpreting the data it is important to be aware of the subtle relation be-
tween shear and vibrations and the possible influence of density changes.

5.2 Protocol

The protocol that we use to measure the anisotropy is shown schemat-
ically in Fig. 5.3. When building the anisotropy, we impose a flow rate
Ωshear and vibration intensity Γshear. When probing the anisotropy we im-
pose T = 0 and Γprobe, where the rotation of the disk is purely caused by
the relaxation of the anisotropic packing. The protocol is complex, which
originates from the fact that we cannot instantly change from building the
anisotropy to measuring it. If we were to abruptly change from finite Ω
to T = 0, the inertia of the disk would cause it to keep rotating, which
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Figure 5.3: A schematic representation of the measurement protocol.

would interfere with measuring the relaxation. In addition, the spring,
that forms the flexure between the disk and the rheometer, is stretched
during the stage when we build the anisotropy. When switching to T = 0,
the spring relaxes, which results in a significant oscillation on the signal.
To circumvent these two complications, the following protocol is devel-
oped:

Preshear (not shown in figure): We start with a preshear that consists of 5 s
shear at 1 rps, followed by 10 s shear with -1 rps and again 5 s at 1 rps.
We conclude with a waiting period of 10 s during which the system is
not sheared. During the entire preshear stage, the vibrations are already
switched on at value Γshear.
Stage 1: This is the stage during which we build the anisotropy into the
system. There are two control parameters: the vibration intensity Γshear

and the constant rotation rate Ωshear. We verify that we reach steady state
flow by measuring T and making sure that it equilibrates. At the slowest
Ωshear that we probe, this takes approximately 1.6× 104 s.
Stage 2: Since we want the disk to be stationary at the beginning of the
measurement of the relaxation, we impose Ω = 0. To freeze the anisotropy,
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we simultaneously switch to Γ = 0. The system is now frozen, with the
anisotropy still present in the packing.
Stage 3: Now that the disk is frozen and the rheometer is at Ω = 0, the
flexure is still stretched. We therefore switch to T = 0 while Γ = 0. The
flexure now relaxes without significantly influencing the frozen packing.
Stage 4: We switch on the vibration (this moment is defined t = 0 s) and
measure the relaxation of the system. We probe at Γprobe = 0.4 and a sam-
ple rate of 5 Hz for 28 s. Since the flexure is relaxed and the rheometer
axis can rotate freely, there is no difference between the deflection of the
axis above and below the flexure (we have verified this with the optical
encoder that measures the position below the disk that we introduced in
Sec. 4.2). This means we can measure the relaxation using the rheometer.

We perform five measurements for each combination of Γshear and
Ωshear (except for the Ω < 10−5 rps, where we measure three times), and
average the results thus obtained.

5.3 Steady State Relaxation

5.3.1 Relaxation Speed

We measure the relaxation for Γshear = 0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8 and Ω =
1, 0.316, 0.1, ..., 10−6 rps, at H/Rs = 0.33 and Γprobe = 0.4. In Fig. 5.4(a)
we present the raw relaxation curves θ(t), where the color represents the
relaxation speed at t=0 s. The relaxation speeds vary over a large range,
but for all data, the relaxation becomes slower over time. Apart from some
exceptions, the curves do not intersect.

To see how the relaxation varies with Ωshear and Γshear, we want to
extract a number for the relaxation speed from the θ(t)-curve using a fit.
From the data in Fig. 5.4(a), we see that the relaxation curves seem to have
a logarithmic shape (this cannot be true for all t, since log(t) → ∞ for
t → ∞, whereas our data does not). We find that we cannot fit the data
using a 1-parameter fit. The reason for this is that not only the overall
relaxation speed, but also the curvature of θ(t) varies per data set. To take
into account both properties of the relaxation curve, we fit the data with:

θ(t) = a · log

(
t+ b

b

)
, (5.1)
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Figure 5.4: (a) The raw θ(t) relaxation curves. The color represents the relaxation speed
at t=0 s. (b) A collapse of the data onto the master curve log[(t + b)/b] (plotted in black)
using Eq. 5.1.

where b is a measure for the curvature (a higher b corresponds to less cur-
vature), and a/b is the slope of the relaxation curve at t = 0. In addition,
the fit function is chosen such that θ = 0 at t = 0. In Fig. 5.4(b), we show
that the fit with Eq. 5.1 works well by using it to collapse the data onto the
master curve log[(t+ b)/b].

To test if we could fit the data with a 1-parameter fit function, we plot
the correlation between the initial slope R = a/b and the curvature b in
Fig. 5.5(a). We see a correlation where, in general, a faster initial relaxation
corresponds to a more curved relaxation curve. However, the relation is
quite scattered, which means that a 1-parameter fit would correspond sig-
nificantly less to the data.

To investigate the quality of the fits, we calculate their standard weight-
ed χ2 [127] and show the results in Fig. 5.5(b). It can be seen that the
logarithmic fit matches the data better for fast relaxations. This is also
visible in the collapse of the raw data in Fig. 5.4(b). Here, the slow (red)
relaxation curves do not collapse perfectly, but lay just above the master
curve for large t. We find that, for low R, the initial relaxation is relatively
fast, but for t > 5 s, the curvature is very low (an example is plotted in
Fig. 5.10(a)). This results in a shape that does not fully match a logarithm.

Hence, the scatter in Fig. 5.5(a) suggests that it is hard to character-
ize the relaxation curve with a single parameter, and the correlation in
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Figure 5.5: (a) A scatter plot of the initial relaxation rate R = a/b versus the inverse
curvature b. There is a clear correlation, however, for low R, the scatter is large. (b) A
scatter plot of the quality of the fit χ2 vs R. There is a trend that the fit is better for faster
relaxations.

Fig. 5.5(b) shows that the fit with Eq. 5.1 systematically works better for
fast relaxations. However, we already know that the relaxation curves
cannot be true logarithms as our data does not go to θ = ∞. More-
over, as shown by the relatively low values of χ2 and the good collapse
in Fig. 5.4(b), the fits do match the data closely. Fig. 5.4 shows that the
general shape of the relaxation curves is robust, and the curves do not in-
tersect. Therefore, we are confident that we can characterize the relaxation
process by the single parameter R - defined as the initial relaxation speed
at t = 0, a/b - as it is a good proxy the the anisotropy of the frozen state.
We have verified that the main results that we report are independent of
the precise choice of order parameter.

5.3.2 Dependence on (Ω , Γ ) and (T ,Γ )

In Fig. 5.6(a) we show R as function of the control parameters Γ and Ω .
The red curve corresponds to the case without vibrations, Γ = 0. We see
that, for this curve, R is essentially independent of Ω . This is what we
expect: at Γ = 0, the flow is rate independent for the range in Ω that we
measure (except for Ω > 0.1 rps). As a result, different values of Ω corre-
spond to the same anisotropy and R; it will only take a different amount
of time to reach the steady state. For Ω > 0.1 rps, R decreases. We be-
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Figure 5.6: (a) The relaxation R as a function of the control parameters Γ and Ω . (b) The
data collapses when we plot R as a function of the steady state T that we measure during
stage 1 where we build the anisotropy.

lieve this is caused by the flow itself, which is so fast, that it fluidizes and
relaxes the packing. Overall, the values of R for Γ = 0 seem surprisingly
low, we will discuss this in Sec. 5.5.1.

For Γ > 0, the situation is more complex. During stage 1, there is a
competition between the flow, that is increasing the anisotropy, while the
vibrations are relaxing it. For low Ω , this results in a monotonic lower-
ing of R with Γ . Surprisingly, for intermediate Ω ≈ 10−2 rps, R is non-
monotonic in Γ – the relaxation is strongest for Γ ≈ 0.4. This means that,
even though the system is relaxing during stage 1, R for Γ = 0.4 is larger
than for Γ = 0. This suggests that more anisotropy can be built into a
weakly vibrated and thus softened packing. There is, however, a second
effect that could play a role in our system; density. Contrary to the ani-
sotropy, flow decreases the density [18], while vibrations increase it [126].
From our current data it is hard to determine whether the stronger relax-
ation is caused by the anisotropy or by the density.

To see how the relaxation is related to T , we plot R as a function of
the steady state T and Γ during stage 1 in Fig. 5.6(b). In this representa-
tion, we find a nice data collapse, especially for the slow flows. When Γ
is increased, the flow rate will be higher for equal T , but because of the
higher vibrations, the anisotropy also relaxes more. The collapse indicates
that, in terms of relaxation, these two effects cancel. In other words: it
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is the T that sets how much anisotropy is built into the system, or even:
it is the anisotropy that determines how much T is required for the flow.
The concept that a stress-dependent back stress is generated in sheared
granular materials, is also known from geophysical kinematic hardening
models [128].

The data collapse in Fig. 5.6(b) also implies that when trying to under-
stand granular flow and searching for a constitutive relation [68–70, 90],
the anisotropy is a relevant factor that should be taken into account.

5.3.3 Conclusion

In this section we studied how anisotropic a packing becomes after shear-
ing at certain Ω and Γ . After a certain strain, a steady state is reached
where the effects of shear (that builds anisotropy) and vibrations (that re-
lease it) balance. We can then measure the anisotropy by probing how fast
the packing relaxes (R) as we impose T = 0 while vibrating.

We find that for Γ = 0, R is constant. For Γ > 0, as expected, R
decreases with decreasing Ω . Surprisingly, for Ω ≈ 0.01 rps, R is non-
monotonic in Γ . This suggests thatR could be determined by two physical
properties of the system, likely the anisotropy and the density.

5.4 Dynamics of Anisotropy

In the previous section we studied the relaxation of sheared packings that
were in steady state; here we will investigate how the anisotropy builds up
by measuring the relaxation of packings that are in a transient state.

We focus on two questions. First, we probe whether the anisotropy
has a unique steady state, by studying its evolution from state 1 to state
2, varying state 1. Second, we investigate how the relaxation curves θ(t)
evolve during the transient between two steady states.

We begin by discussing the transient to a steady state from the pre-
sheared state in Sec. 5.4.1. In Sec. 5.4.2 we discuss the results of experi-
ments with an extended protocol, involving two different stages whose Γ ,
Ω , and duration we vary independently.
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Figure 5.7: (a) Complex relaxation curve where different parts of the system have op-
posite anisotropy. This situation occurs when the last stage of the preshear is opposite to
the flow during the evolution stage. (b) The dependence of R1 on the strain during the
evolution stage.

5.4.1 Relaxing from Preshear to Steady State

The packing that we create with the preshear protocol is well-defined and
reproducible, but already anisotropic. This implies that during the evolu-
tion stage of the protocol of Fig. 5.3 (stage 1), the anisotropy evolves from
an already anisotropic state. Because of the large range of shear rates

.
γ

that are present in split-bottom flow, the local transient time scale can be
expected to vary with location, and the global relaxation time is not eas-
ily guessed. Moreover, the relative direction of preshear and evolution
stage matters. If the last stage of the preshear was in the counterclock-
wise (–) direction, and the evolution stage is in the clockwise (+) direc-
tion, during the transient, different parts of the packing will have oppo-
site anisotropies. An example of the complex, non-monotonic relaxation
curves that result from this is shown in Fig. 5.7(a), where we believe that at
different times, different locations in the system dominate the relaxation
process. Of course, a complex relation curve such as in Fig. 5.7(a) cannot
be fitted with Eq. 5.1. Therefore, we use the alternative R1 to character-
ize the relaxation, which is defined as the angle that the disk rotates back
during the first 28 s.

To probe the duration of the transient, we determine the plateau where
R1 does no longer depend on the amount of shear during the evolution
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stage θshear. In Fig. 5.7(b) we investigate this for Γ = 0.4, Ω = 10−4 rps
and Γ = 0.6, Ω = 10−3 rps. The preshear always consists of three phases,
but we vary in which direction the last phase is. We can either start in
the (+) direction, then do (–) and end in (+) (in Fig. 5.7(b) we label this as
+–+), or the opposite (–+–). The evolution stage is always performed in
the (+) direction. The data in Fig. 5.7(b) shows that, for the –+– preshears,
R1 is negative for small θshear, which indicates that the overall anisotropy
is dominated by the preshear. For θshear & 100 mrad, R1 takes a con-
stant value, independent of whether the preshear was +–+ or –+–. This
shows that the steady state anisotropy has been reached, and that the cor-
responding value of R1 is independent of the direction of preshear. We
note that all steady state data in Sec. 5.3 was taken for θshear ≥ 100 mrad.
The final stage of the preshear, at the fast rate of 1 rps, has been imposed
for a large strain of 3× 105 mrad.

5.4.2 Two Stage Relaxation

In the experiments that were described in Sec. 5.3 and 5.4.1, relaxation
from fast preshear to steady flow was studied. To probe how the mate-
rial’s internal structure evolves with time, we now extend the experimen-
tal protocol such that it contains two consecutive evolution stages during
which we shear the system at fixed Γi and Ωi. In this extended protocol
there are two transients, first from the preshear to stage 1 (with reversal),
then from stage 1 to stage 2 (without reversal). Since we are interested in
the time evolution of the anisotropy, the strain in each stage (measured in
terms of the angle θi) is a crucial control parameter. This results in a total
of six control parameters for the experiment: Ω1, Γ1 and θ1 during stage 1,
and Ω2, Γ2, θ2 during stage 2. The precise protocol is shown in Fig. 5.8.

We will address several questions using the two stage relaxation. First,
by varying the flow in stage 1, we will probe whether the anisotropy of
stage 2 is unique. Second, we will examine how the relaxation curve
evolves during the transient in between steady states.

Results – In Fig. 5.9 we show the main results of the experiments, all for
H/Rs = 0.6 and Γprobe = 0.8. As in the previous section, we measure each
relaxation five times and report the average, where the error bars repre-
sent the standard deviation over the five runs. We note that, once the re-
laxation has been measured, it is impossible to restart the flow and simply
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Figure 5.8: The extended protocol where there are two evolution stages after the pre-
shear. There are two transients, one from the preshear to the first stage, the other from the
first to the second stage. The parameters that characterize a stage are Ωi, Γi, and the total
disk rotation θi.

measure the next data point. Therefore, for each measurement, we have
to start from the beginning (with the preshear). As a consequence, the
measurements performed with the extended protocol are relatively time
consuming. Also note that for small θ1, complex relaxation curves such as
in Fig. 5.7(a) occur, so that we cannot fit all our data with Eq. 5.1. As the
temporal resolution of our data is too low to find the instantaneous relax-
ation rate using a numerical derivative, we will characterize the relaxation
curves by R1; the angle that the disk rotates back during the first 28 s.

In Fig. 5.9(a-b) we show experiments for Γ = 0.7, where the black data
corresponds to Ω1 = 10−2 rps and Ω2 = 10−4 rps, and the red data to
the opposite, i.e. Ω1 = 10−4 rps and Ω2 = 10−2 rps (in Fig. 5.9, all the left
panels correspond to stage 1, and the right panels to stage 2). In Fig. 5.9(a)
the black data shows that for Ω1 = 10−2 rps, the anisotropy monotonically
reaches a plateau value of R1 ≈ 8 mrad. If we then change to the second
stage with Ω2 = 10−4 rps (panel (b), black), we see that the relaxation
monotonically drops to a steady state value of R1 ≈ 4 mrad. This trend is
consistent with the prior results: for lower Ω , the vibrations are relatively
more important, which leads to a less anisotropic packing.
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Figure 5.9: The relaxation R1 for experiments using the extended protocol as shown in
Fig. 5.8. By interchanging the Γ or Ω that is imposed during stage 1 and stage 2, we can
investigate the uniqueness of the steady state values of the anisotropy.

In red, we show the inverse experiment. In Fig. 5.9(a) we find that
the red data (Ω1 = 10−4 rps) equilibrates at R1 ≈ 4 mrad, and for Ω2 =
10−2 rps, the red data in Fig. 5.9(b) evolves to R1 ≈ 8 mrad. Hence, for
these parameters, the asymptotic value of R1 only depends on its current
stage and not on the previous stage; irrespective of the system’s history, at
Γ = 0.7, an Ω of 10−4 rps corresponds to a R1 of 4 mrad, and Ω = 0.01 to
R1 ≈ 8 mrad. We finally note that (with the exceptions for small θ1), all the
relaxations are logarithmic, and the anisotropy changes monotonically.

In (c-d) we keep Ω constant at 10−4 rps, but change Γ between 0.3 and
0.7. Also here the steady state is history-independent and unique, and the
anisotropy evolves monotonically.

In Fig. 5.9(e-f) we illustrate qualitatively different curves that govern
the evolution between Γ = 0.7 and Γ = 0. Several saillant features stand
out. First: for Γ1 = 0, the transient seems longer than in previous data,
but after a strain θ1 ≈ 500 mrad, the system reaches a steady state R1 =
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4 mrad. Second: the steady state R1 is the same for Γ1 = 0.7 and Γ1 = 0
– this is consistent with the observation in Fig. 5.6(a) that at intermediate
flow rates, the anisotropy is non-monotonic in Γ . Third: comparing the
steady state values in (e) and (f), we find that they are consistent: also here,
the steady state value of R1 is unique. Fourth: the behavior of the black
curve in (f) is surprising: if we switch on the vibrations, the relaxation
almost instantly increases from R1 ≈ 4 mrad to R1 ≈ 8 mrad. A possible
explanation for this is that the vibrations compact the packing, and that
a denser packing leads to a higher anisotropy. With increasing θ2, the
packing adapts to its steady state R1 ≈ 4 mrad. Fifth: as shown by the
red curve in (f), the evolution from R1 ≈ 4 mrad (which is the steady
state for Γ = 0.7) to the similar relaxation value R1 ≈ 4 mrad for Γ = 0,
is strongly non-monotonic: R1 does not remain constant at 4 mrad, but
dips to 1 mrad (while T peaks to a maximum) before growing back to
4 mrad. This means that for small strains, the flow first removes anisotropy
from the packing. This suggests that even though Γ = 0.7 and Γ = 0
correspond to the same amount of relaxation, the way the anisotropy is
built into the packing is different between these two cases.

The examples in (e-f) suggest that Γ = 0 is a special case. Even though
the steady state values of the anisotropy are unique, the evolutions show
surprising non-monotonic behavior, indicating that there are different ways
for the packing to be anisotropic.

We proceed by looking at the raw relaxation curves to see how they
change as the system evolves towards a new steady state. In Fig. 5.10 we
show the curves that correspond to the red data in Fig. 5.9(f) for θ2 =
0.40, 24, 628 mrad – as indicated in the legend. The black and red curves
correspond to similarR1, however, the black curves (as emphasized by the
normalized curves in (b)) are slightly more curved. This is consistent with
Fig. 5.5(a) where we found scatter in the relation between the initial slope
and the curvature of the relaxation curve.

The blue curves in Fig. 5.10(a) correspond to the dip in Fig. 5.9(f). For
these curves, the relaxation is significantly slower than for the red and the
black data. This demonstrates that even though it is impossible to grasp
all the precise characteristics of the curve with a single parameter, the dip
in Fig. 5.9(f) is a robust effect which would also have been easily picked
up by the original parameter R.
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Figure 5.10: (a) The relaxation curves for the red data points in Fig. 5.9(f) with
θ2[mrad] = 0.40, 24, 628. The black and the red curves correspond to similar R1, how-
ever, the black data is slightly more curved. The relaxation in the blue data is significantly
slower. (b) The red and black data as in (a), normalized by R1, confirm that the black data
is more curved.

During the evolution between stage 1 and 2, the relaxation curves ap-
pear to be logarithmic – just as for steady states. As a check, we calculate
χ2 for the fits and compare the values to the ones found for the steady state
relaxation in Fig. 5.5(b). We find that the values are consistent, suggesting
that the shape of the relaxation curves during the evolution is the same as
the shape for steady state relaxations.

Finally, we want to verify the robustness of the deviating behavior for
Γ = 0 that was observed in Fig. 5.9(e-f). Therefore, we perform more
experiments, with different Ω1, Γ1, Ω2, and Γ2 (either Γ1 or Γ2 is 0), and
show the results in Fig. 5.11. As we are only interested in the surprising
behavior during stage 2, we take a constant θ1 of 600 mrad (long enough
to reach a steady state), and probe only the relaxation during the second
stage.

The blue and the green curve in Fig. 5.11 represent the case where Γ1 =
0 and Ω1 = 10−4 rps. As we know from Fig. 5.9, the corresponding R1 =
4 mrad. The behavior for these cases is the same as for the black curve
in Fig. 5.9(f); as soon as the vibrations are switched on, the anisotropy
suddenly increases significantly. The fact that the increase is of different

91



Chapter 5. The Role of Anisotropy in Granular Flow

10-1 100 101 102 103 104

θ2 [mrad]

0

2

4

6

8

R
1 

[m
ra

d]

Γ1=0.8, Ω1=10-2 rps

Γ2=0, Ω2=10-4 rpsΓ1=0.8, Ω1=10-4 rps
Γ2=0, Ω2=10-4 rps

Γ1=0, Ω1=10-4 rps

Γ2=0.8, Ω2=10-4 rpsΓ1=0.6, Ω1=10-4 rps
Γ2=0, Ω2=10-4 rps

Γ1=0, Ω1=10-4 rps

Γ2=0.6, Ω2=10-4 rps

Figure 5.11: Additional experiments to investigate the deviating results when either Γ1

or Γ2 is 0. In this case, we only probe the relaxation during stage 2.

size between the green (which goes to Γ2 = 0.6) and the blue curve (Γ2 =
0.8), shows that the increase is Γ -dependent.

The red and the gray curve are for the case where Γ2 = 0. Again, we
see the characteristic significant dip in R1, similar to the dip in the red
curve in Fig. 5.9(f).

For the black curve we change both Γ and Ω . We start from a very
anisotropic packing that we reached with relatively fast flow: Γ1 = 0.8
and Ω1 = 0.01 rps. We then switch to slow flow (10−4 rps) at Γ2 = 0, and
again see a strongly non-monotonic R1(θ2).

Hence, all the curves in Fig. 5.11 are consistent with the behavior that
was observed in Fig. 5.9.

5.5 Conclusion and Discussion

In this chapter we have investigated the anisotropy of packings by probing
how the anisotropy relaxes from the packing as it is weakly vibrated. In
Fig. 5.6(b) we found that the strength of the relaxation is set by the torque
that was imposed during the flow. This observation suggests that the an-
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isotropy is a crucial ingredient towards finding a constitutive relation for
granular flows.

In Fig. 5.9 we found that for each Γ , Ω , there is a unique value of
the anisotropy – independent of the history of the system. The relaxation
curves, both for a steady state and an evolving packing, can be fitted using
a two-parameter logarithmic function. There is a robust trend that this fit
matches the data slightly better for faster relaxations.

From our measurements it is hard to precisely quantify the anisotropy
at a certain point in time. First, the non-monotonic evolution of the an-
isotropy in time in Fig. 5.9 and Fig. 5.11 shows that the relaxation is a
complex quantity, which seems to depend not only on anisotropy, but also
on density. We expect these two effects to be coupled [129], so it requires
great care to separate the influences of the two and to assign a value to
the anisotropy. A second difficulty is the complex flow profile in the split-
bottom geometry. We find that, because of the large range of strain rates
that are present in the system, different parts of the system can corre-
spond to a different value of the anisotropy. The relaxation that we mea-
sure is a collective result of the relaxation of all the different regions. In
Fig. 5.9(a,c,e) it seems that the building of anisotropy from the presheared
state is logarithmic in time. However, because of spatial inhomogeneities,
we cannot claim that this dependence is true for all, especially more sim-
ple, flow geometries. In fact, in simulations it is found that anisotropy
grows exponentially in time [130]. Another consequence of the complex
shape of the relaxation curves is that they cannot precisely be character-
ized using a single parameter. However, the relaxation curves are similar
in size enough to allow us to obtain robust results, independent of the
precise order parameter.

In general, we expected flow to build anisotropy and vibrations to relax
it. In Fig. 5.6(a) this was confirmed for finite Γ and small Ω , which cor-
responds to a significantly slower relaxation. For intermediate flow rates,
Ω ≈ 0.01 rps, the relaxation is non-monotonic in Γ – also suggesting that
the relaxation that we measure is the result of at least two different phys-
ical properties of the system. This physical picture is backed up by the
data in Fig. 5.9 and Fig. 5.11. In these results we found the additional
evidence that equal relaxation does not imply that the precise anisotropic
state of the packing is also the same. Even though the steady state val-
ues of the relaxation are unique and independent of the system’s history,
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we observed surprising behavior during the (non-monotonic) evolutions,
where in some cases vibrations increase the relaxation and flow decreases it.
All the deviating transients involve Γ = 0, either as initial or destination
state. This shows once more that the granular flow in a system with “zero
temperature” differs significantly from the case with weak vibrations.

5.5.1 Outlook

For future experiments, we suggest two modifications to the protocol that
was introduced in Fig. 5.3.

First, the way we switch off the shaker during the freezing stage can
be improved. For the experiments reported in this chapter, we stopped
the shaking abruptly – at an arbitrary phase of the oscillation. However,
this can result in a fast relaxation of the shaker to its equilibrium position,
which might affect the packing. We have performed exploratory measure-
ments where we smoothly damp out the vibrations using a Doepfer A-143-
2 voltage controlled amplifier that gradually decreases the wave ampli-
tude to 0 over a period of ten oscillations. We found that the main results
reported in this chapter, including the torque collapse in Fig. 5.6(b), are
unaffected by this modification of the protocol.

Second, we would modify the way the flexure is relaxed during the
freezing stage. In the reported experiments, we abruptly switch to T = 0,
which we do not expect to alter the frozen packing. However, at Γ = 0,
the flexure is stretched with a torque of the order of the yield torque, and
we cannot be certain that the impact, that the packings endures when we
switch to T = 0, does not affect the packing. In fact, this impact could
explain the surprisingly low values of R for Γ = 0 in Fig. 5.6. To improve
the protocol, the torque can be reduced to zero smoothly. We stress that
the main result of this chapter, the torque collapse in Fig. 5.6(b), is not
sensitive to the way the torque is reduced, as the collapse occurs for low
torque experiments, where the torque in the spring is significantly below
the yielding torque of the frozen packing.
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Chapter 6

Giant Heaping in Sheared
Anisotropic Granular Media

6.1 Introduction

Most work on granular media focusses on simplified circular (2D) or spher-
ical (3D) particles. However, the particles in granular media encountered
in industry and nature usually have more complex, anisotropic shapes.
Gaining insight into the behavior of anisotropic particles is therefore prac-
tically relevant, but it also enlarges the theoretical understanding of gran-
ular materials in general, and leads to novel questions, for example re-
garding ordering. In this chapter, we describe experiments where we shear
granular rods in the split-bottom geometry.

Recently, the interest in granular rods has increased, with most exper-
iments focusing on the role of vibrations. Experiments in 3D on rods in a
vibrated tube show that the rods align to the walls and form a high density
nematic phase [131–134]. Others performed quasi-2D experiments where
similar alignment was found [135]. For low packing fractions, large local
density fluctuations are found due to a competition between alignment
and void formation [136]. Some studies are performed on the flow of rod
systems. Here, the emphasis is on the time evolution of the alignment
of the particles in the shear band [123, 124, 137–139]. A recent review
summarizes the work on granular rod systems [140].

In our flow experiments, we observe strong alignment of the particles
in the shear band. In addition, we observe the formation of a heap that
arises from the center of the system. In Fig. 6.1 we show two photos of the
system – one before, and one after the formation of the heap. The peak
of the heap can reach heights of up to 50% of the filling height, which
makes these surface undulations a very significant effect. The goal of this
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Figure 6.1: (top) The initial flat surface. (bottom) A vermicelli heap that has grown while
we sheared the system.

chapter is to characterize the heaping process and to unravel the physical
mechanism responsible for it.

It is well-known that a densely packed granular material dilates under
shear [18]. It then reaches the so-called critical state with a steady state
void ratio or packing fraction, independent of the initial packing [125]. In
geology, it is known from experiments that materials consisting of elon-
gated particles also expand under shear [121]; a result that is confirmed in
simulations [141]. In both of these cases it is found that shear creates large
voids in the packing, which results in a low packing fraction. A competing
mechanism in sheared rod systems is that the shear can cause alignment of
the particles. This alignment can result in an increased packing fraction,
as observed in rice avalanches [142] and 2D simulations [143]. In gen-
eral, both dilation and compaction are present in a sheared granular rod
system. It then depends on, e.g., the shape of the particles and the flow
geometry which of the two dominates. Recent experiments have shown
that in a split-bottom Couette geometry, for shallow filling heights, the di-
lation dominates, even in the shear band where the particles are strongly
aligned [139].

We note that there is a vast literature on sheared thermal rods. Ki-
netic theory predicts that rods can only align in situations of weak local
diffusion [144]. In polymer simulations [145] and attractive colloid exper-
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Figure 6.2: (a) Traditional rod climbing experiment using a mixture of polyvinyl acetate
and sodium tetraborate [147]. (b) Rodless Weissenberg effect using a HASE polymer [148].

iments [146], it is found that the tendency of rods to move out of the shear
plane strongly depends on the local

.
γ.

The heaping is reminiscent of the so-called Weissenberg effect – see
Fig. 6.2. This effect occurs when a spinning rod is inserted into a poly-
mer solution, which as a result will climb up the rod [149]. A similar
surface deformation has also been observed with a viscoelastic fluid in
the split-bottom geometry [148]. In both cases, the surface deformation
is driven by a net centripetal force, which originates from normal force
differences in the system. As a consequence, the height of the fluid bump

Figure 6.3: A vertical slice through the
split-bottom cell [150]. The velocity vectors
indicate the convection; the red line depicts
the shear band.

depends on the rotation rate of the
rod and goes to zero for slow flows.
We note that, whereas similar heap-
ing is found [151–153] for very
fast granular flows, our measure-
ments are in the rate-independent
regime. We therefore can rule out
rate-dependent effects as the cause
for heaping.

Experiments on the flow of
spherical particles in the split-
bottom geometry have shown the
presence of convection rolls [82, 150,
154, 155] – see Fig 6.3. Similar con-
vection is observed for vibrated sys-

97



Chapter 6. Giant Heaping in Sheared Anisotropic Granular Media

tems [156, 157]. The flow driven convection, which can create either an
upwards or a downwards motion in the core, is very slow with respect to
the main flow, and much slower compared to our heaping. Nevertheless,
as we shall see in this chapter, our heaping process is caused by convec-
tion. The essential difference is that the convection is much stronger in a
system consisting of elongated particles compared to spherical particles.
We believe this to be caused by the misalignment between the particle ori-
entations and streamlines of the flow.

The outline of this chapter is as follows: In Sec. 6.2, we will introduce
the setup and explain how the raw data is processed. In Sec. 6.3, we char-
acterize the heaping phenomenon by carefully describing what we observe
in the experiments. To unravel how the heaps are formed, we perform ex-
periments with a more complex measuring protocol in Sec. 6.4. To see the
motion of the particles below the surface, we performed experiments in
an X-ray CT scanner in collaboration with the groups of T. Börzsönyi and
R. Stannarius; the results are shown in Sec. 6.5. We end with an outlook
where we suggest other interesting experiments concerning anisotropic
particles in App. 6.A.1.

6.2 Setup and Methods

6.2.1 Setup

Split-Bottom Cell – The experiments are carried out in a split-bottom cell
(see Fig. 6.4(a)) with an outer radius of 110 mm, an inner radius Rs of
85 mm and a height of the container of 120 mm. The inner bottom disk
is connect to a SWF 403.559 24 V DC motor, which we use to shear the
system. The rate of the motor is controlled by an external duty-cycle con-
trolled, pulsed DC source. The rotating disk is visible from below the
system, which enables us to measure its rotation rate, which - for constant
settings of the pulse-controlled source - does not significantly depend on
the amount of grains in the system. Rice grains are glued to the entire
inside of the cell to ensure no-slip boundary conditions.

As we shall see later in this chapter, it was crucial for the discovery
of the heaping process that the experiments are performed in the split-
bottom geometry. In a Couette geometry, the shear is very localized and
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Figure 6.4: (a) A schematic of the setup with initial surface (dashed) and steady state
heap (solid). The parameters (that are explained in the text) are indicated. (b) A schematic
image of the imaging part of the setup. (c) Close up of the heap and the deformed line
pattern. (d) The reconstructed surface h̃.

there is no significant heaping. This nicely illustrates, once more, how rich
the flow behavior of the split-bottom geometry is.

To image the surface we use a Foculus FO432B camera which is mounted
horizontally – see Fig. 6.4(b). We obtain images of the surface of the ma-
terial right from above using a mirror. To see surface deformations, we
project straight lines on the surface using an Epson EB-824 projector. For
details, see Sec. 6.2.2.

Particles – Most of the measurements are carried out with long grain
“Surinam Rice” particles. The grains have a long axis of approximately
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Figure 6.5: A picture of the particles that are used for most of the experiment: long grain
“Surinam Rice” (left) and vermicelli (right).

7 ± 1 mm and fairly constant short axes of 2.0 and 1.5 mm – resulting in
an aspect ratio Q ≈ 4. Furthermore, measurements are performed using
“vermicelli” grains with a very constant diameter of 1 mm and length of
14 ± 3 mm, corresponding to an aspect ratio of about Q ≈ 14. Most of the
vermicelli grains are slightly curved. A sample of these particles is shown
in Fig. 6.5.

6.2.2 Methods

In this section we discuss how we measure and reconstruct the particle
surface. In addition, we explain how we use the reconstruction to quan-
tify the shape of the heap.

Protocol – Before each run we stir the system by hand to reach a disor-
dered initial state. We proceed by flattening the surface by gently pushing
on the system using a circular piece of cardboard. We then start the motor
(with a rotation rate of 0.066 rps) and the imaging system, and observe
the heap formation.

Surface Reconstruction – To reconstruct the shape of the surface, a se-
ries of lines is projected onto the surface using the projector, which is
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Figure 6.6: An example of how we project three series of five or six lines. This method
enables us to reach a high spatial resolution without running into tracking limitations.

aimed at the surface under an angle α of 51 ◦ (for the middle line) –
see Fig. 6.4(b-c). The mean distance between the projector and the sur-
face is about 75 cm. The height profile of the surface is recovered from
these lines, which, when seen from above, are deformed when the surface
shape changes. We take pictures from the top and use these to track the
lines using an in-house built IDL-code. To increase the spatial resolution
without running into tracking limitations, we project three series of lines
(within 0.3 s) consecutively, where the locations of the lines are shifted
with respect to each other. The projection of the lines in three series lim-
its our rotation rate to rates below 0.1 Hz; this is not problematic as we
have verified to be in a rate-independent regime, so we can perform the
experiments at low rotation rate.

An example of three series of lines can be seen in Fig. 6.6. The spacing
between the lines in consecutive frames, and thus the horizontal spatial
resolution dy, is 10 mm. In the x direction, parallel to the projected lines,
for symmetry reasons, we also pick dx = 10 mm.

The amount of shear that has been imposed to the system is propor-
tional to the total rotation angle of the bottom disk θ. Because of core
precession [77], this can differ from the rotation observed at the free sur-
face. We chose to use the angle of the bottom disk because it is easier to
measure than the rotation of the surface (which requires PIV) and because
it is kept constant for all the runs. As we shall see in the next section, we
have performed experiments where the rotational direction was changed
during the run. To plot this without the curve overlapping, we will plot
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Figure 6.7: An example of a pdf of h̃(x, y) for a flattened surface for Q = 4 rice particles.

them as a function of |ω|t, where ω is the rotation rate of the inner bottom
disk.

We obtain the local surface height as a function of deflection angle (θ),
h̃(x, y, θ). For a clear distinction between heaps and depressions we define
h(x, y, θ) = h̃(x, y, θ) − h0, where h0 is the filling height, which is defined
as 〈h̃(x, y, θ = 0)〉. In Fig. 6.4(d) we show a color plot that represents the
reconstructed surface (h̃).

To investigate the accuracy of surface reconstruction, we prepare the
system, as described above, usingQ = 4 rice particles up to a filling height
of 42 mm. We perform the surface reconstruction and plot a pdf of h̃(x, y)
in Fig. 6.7. It can be seen that the spread in h is of the order of 2 mm.
We believe that this spread is mostly caused by the rough, grainy surface.
From h̃(x, y), we obtain the actual average filling height h0 = 42.7 mm.

To analyze the orientation of the particles we have an additional fourth
stage in our imaging where we just project light on the surface. From these
images we can find the local orientation of the grains using PIV analysis.

Interpretation – One key parameter to describe the heaps is their height.
Since the maximum value of h is noisy, we define the heap height hm as
the average of the five maximum points of h. Similarly, we define the
lowest depression of the surface hl as the mean over the five lowest points
of h. Finally, we look at the average height 〈h〉. As we shall see in the next
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section, the global heap formation process is robust to such an extent that
the single parameter hm is well capable of characterizing the heap.

The parameters that we use to describe the surface undulation are
summarized in Fig. 6.4(a).

6.3 Phenomenology

Before studying the heap formation in detail we want to globally charac-
terize the growth process.
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Figure 6.8: Evolution of h̃m for three different filling heights. It can be seen that for a
certain θ, h̃m reaches a steady state value h̃M . The time it takes to reach the steady value
decreases with h0. This data is for Q = 4 rice particles.

6.3.1 Growth Evolution

Heap Height hm(θ) – In Fig. 6.8 we plot hm(θ) for three different filling
heights. It can be seen that hm reaches a maximum value hM after typi-
cally a few rotations. Our data suggests that the process quickly reaches
a steady state, in contrast to slow (logarithmic) processes as in the com-
paction of granular material under vibration [126]. The data also illus-
trates that the equilibration time increases with h0/Rs. This can be under-
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Figure 6.9: The surface shape h(R) for h0/Rs = 0.46 and Q = 14 vermicelli particles.

stood by realizing that, for large h0/Rs, the average strain rate and thus
the heap formation is slower.

From visual observations of the heap, we see that, even when the steady
state height has been reached, particles avalanche down the slopes of
the heap. This suggests that the steady state is a dynamical one, where
avalanches that decrease hm and other processes that increase hm pre-
cisely balance.

Heap Profile h(R, θ) – Because of the cylindrical symmetry of the geom-
etry, we transform h(x, y, θ) to polar coordinates to get h(R,φ, θ). In the
case of a rotationally symmetric surface, this can be averaged over φ to get
h(R, θ). This provides a simple alternative way to visualize the develop-
ment of the heaping process.

We show a typical example of its evolution for Q = 14 particles in
Fig. 6.9. We see that in the center of the system (small R), the heap grows
monotonically. In the shear band, at R/Rs ≈ 1, the height evolution is not
monotonic. It seems that the particles first have to align, which requires
dilation, but once aligned, the surface drops to a height even below the
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original level at θ = 0 [158]. Starting from the curve for θ = 6.4 rev, h(R)
maintains it shape, indicating that the system has reached a steady state.

From h(R) we cannot only see whether the system dilates or compacts
for certain R, but we can also calculate the total volume of the granular
medium by evaluating the integral 2π

∫
h̃(R)RdR. As a consistency check,

we calculate the volume (for an unsheared packing), and using the total
mass of the particles, we find an initial density of approximately 670 g/l.
Comparing this to the particle density that we measure to be 1.2×103 g/l,
we find a packing fraction of 58% – very similar to the ones reported in
literature [131, 138].

6.3.2 Aspect Ratio, Shape and Material

We performed exploratory experiments with many different kinds of par-
ticles with varying aspect ratio Q and shape. The heaping occurs very ro-
bustly for elongated particles with high enoughQ > 3 – regardless of their
exact shape and material. We have done tests and observed heaping for
rice grains, slightly bent vermicelli grains (see Fig. 6.5), and perfect PMMA
cylinders and metal spherocylinders, both measuring 3 × 3 × 12 mm3

(Q = 4). For short grain rice (Q = 2), we did not observe any heaping.

6.3.3 Heap Location

A qualitative difference between the behavior of rice (Q = 4) and vermi-
celli (Q = 14) is the precise location of the heap. For Q = 14, it is exactly
in the center of the system, which results in a symmetric h(R,φ) that can
be averaged over φ. For Q = 4, the center of the heap is often a few cm
off-center (see Fig. 6.4(d)). The heap does reach a steady height (Fig. 6.8),
but the center of its location corotates with the system. This observation
could help in finding the explanation for the heap formation, but it is also
a reason, especially when studying h(R), to perform experiments with
high aspect ratio particles.

6.3.4 Filling Height Dependence

We study how the heaping effect varies with the filling height h0/Rs.
In the split-bottom geometry, the flow profile changes with h0/Rs [76].
Therefore, it is interesting to study its influence on the heaping.
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Figure 6.10: (a-c) Series of snapshots of top views of the setup, where colored particles
sprinkled on the surface illustrate the core precession [77]. (d) Precession rate ωp as a
function of vertical coordinate H for Rs = 45 mm (�), Rs = 65 mm (×) and Rs = 95 mm
(◦) [77]. (e) The transition in flow structure from shallow to deep flows in the cylindrical
split-bottom geometry. In the dark gray region the material comoves with the disk. [76].

Before looking at the heaping data, we summarize the filling height
dependence of split-bottom flows in Fig. 6.10. In (e), we show how the
flowing region varies with h0. For shallow filling heights, all the grains
in the center of the system comove with the inner bottom disk. For high
h0, there is a velocity gradient in the vertical direction (precession), and
particles at the surface have a significantly lower flow rate than the disk.
The precession is visualized in (a-c) using colored particles at the surface.
Here, the system is driven via the outer wall, and the spiral pattern is a
reflection of the angular velocity difference, which increases with R, be-
tween bottom disk and surface particles. In (d), we plot the precession
rate ωp = 1 − ωs(R→0)

ω , where ωs(R → 0) is the limit of the rotation rate
towards center of the top surface [77], as a function of the vertical coor-
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Figure 6.11: Filling height dependence of hM and the core precession ωp for Q = 14

particles.

dinate H . We see that at the bottom, the particles comove with the disk,
whereas with increasing H , the precession also increases.

Going back to the heap data, the first question is for which h0/Rs the
effect is the most prominent. In the blue curve in Fig. 6.11, we show the
heap height hM of the heap as a function of h0/Rs and see that the effect is
strongest for h0/Rs ≈ 0.75. To compare the heaping with the flow profile,
we compare hM to the precession rate ωp (plotted in black). We note that
we believe the h0/Rs-dependence to vary with Q.

When we systematically study the filling height, we find the following
regimes:

h0/Rs < 0.5 – For low h0/Rs (trumpet flow), there is no heap formation.
The grains on top of the bottom disk just corotate with it (ωp = 0) and
nothing happens in this rigid core. For h0/Rs close to 0.5, we see a small
ridge on the outside of the center, next to the shear band (Fig. 6.12(b)).
0.5 < h0/Rs < 0.9 – For this range in h0/Rs (dome flow), the shear band
starts to close and the grains at the surface rotate slower than the bottom,
which results in ωp > 0. We observe high heaps where the highest point
(for Q = 14) is at the center of the core (Fig. 6.12(a)).
h0/Rs > 0.9 – For h0/Rs > 0.9, the flow at the surface becomes in-
creasingly smaller, ωp goes to 1 and hM decreases. The system does dilate,
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Figure 6.12: (a) The surface shape h(R/Rs) for h0/Rs = 0.57 and Q = 4 rice particles.
The 12 curves from blue to red correspond to θ [rev]=0.2, 0.3, 0.5, 0.8, 1.2, 2, 5, 10, 20, 40,
70, 100. (b) The surface shapes for h0/Rs = 0.46.

which suggests that the dilation in the core also occurs for high filling
heights. However, the dilation is averaged out in space so it manifests
itself as a homogenous dilation instead of as a heap.

Hence, we find that ωp and hM are connected; for filling heights where
there hardly is precession, there is also no significant heaping. This sug-
gests that the heaping could be driven by the gradients in angular velocity.

6.4 The Mechanism behind the Heaping

To understand the mechanism behind the heap formation, we perform
experiments with a more complex experimental protocol. First, we do ex-
periments where we pause the shear, remove the heap, restart the shear,
and see that the heap regrows. Second, we will reverse the direction of
the flow, which first, surprisingly, makes the heap disappear and then re-
grow. Finally, using colored particles, we visualize the secondary convec-
tive flow.

6.4.1 Heap Removal

We want to know if the driving mechanism for the heaping occurs con-
tinuously, or if it is a transient effect that only works until a steady state
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Figure 6.13: In this experiment we first grow a steady state heap by shearing the system
for 60 rev. The heap height hm is plotted in red, purple is the average height 〈h〉 (we see
that the system dilates), and blue is the lowest point hl. After 60 rev we stop the system,
remove the heap with a vacuum cleaner, and then restart the flow. We see that the heap
grows back. These curves are the average over 10 runs (see error bars) and are for Q = 4

particles.

density has been reached in the core. To find out, we perform experiments
where we shear the system for 60 rev at 1/15 rps – which is long enough
to reach a steady state. We then stop the motor and remove the heap using
a vacuum cleaner. After this we restart the motor (in the same direction)
and observe what happens. We perform the experiment ten times and av-
erage the data for hm, 〈h〉 and hl. The result is shown in Fig. 6.13, with
error bars that indicate the standard deviation over the ten runs. It can
be seen that a steady heap height is reached well before θ = 60 rev. After
we have removed the heap, it grows back at a rate similar to the speed of
the first heap formation. The heap reaches a slightly lower height than
the first time, which is simply caused by the fact that there are now less
particles in the system. From 〈h〉, we see that the system dilates. This
is in accordance with the findings of Wegner et al. [139], who reported
dilatancy for particles with 2 < Q < 5 in split-bottom Couette flow.
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Figure 6.14: Evolution of hm for an experiment where we repeat the heap growth and
removal seven times. Every time we remove the heap, it grows back (until a filling height
is reached where we never see heap formation). We can therefore conclude that the heap
formation process is not a transient effect. This data is for Q = 14 particles.

We have performed an exploratory measurement, where we repeat the
heap removal multiple times in a single experiment. The evolution of hm
is plotted in Fig. 6.14. After each time we remove the heap, it grows back
– until a filling height is reached where no heap formation occurs. Note
that the data in Fig. 6.14 is more noisy than the data in Fig. 6.13 because
the latter is the average over 10 runs, while the former is only a single run.

The observation that the heap regrows after removal strongly indicates
that the heaping process is continuous and not a transient dilation effect.

6.4.2 Reversal

To learn something about the structure of the packing, we perform exper-
iments where we reverse the direction of the flow. We first shear for 53 rev
at 1/15 rps to reach a steady state heap, and then reverse flow direction.
From the results that are plotted in Fig. 6.15(a) (averaged over ten runs),
it can be seen that the heap collapses very fast when the flow is reversed.
After the collapse, the heap has completely disappeared and the center of
system even shows a small dip compared to the shear band (Fig. 6.15(b)).
When we keep shearing after the collapse we see that the heap grows back,
at a speed similar to the initial growth rate. After 53 more revolutions, we
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Figure 6.15: (a) In this experiment we shear for 53 rev, then shear in the other direction
for 53 rev, and then reverse again and shear for 53 rev. Upon reversal, the heap first
abruptly disappears and then grows back. This data is for Q = 4 and is averaged over
ten runs. (b) The surface profiles h(R) for the initial surface (black), the steady state heap
(blue) and the collapsed heap after reversal (red). This data is for Q = 14.

reverse the flow direction again, and observe the same behavior. From this
experiment we can conclude that the packing in the core of the system is
anisotropic. In practice, this could mean that the sheared particles leave
empty voids behind, which they can easily reoccupy if the direction of
shear is reversed.

6.4.3 Convection

The observations that the heap regrows after removal and that particles
avalanche down the slopes of the heap, suggest that the heaping is caused
by a continuous convective motion that pushes the particles upwards in
the center of the system. We test this picture in a simple experiment using
colored particles. In this experiment, we prepare the system by putting
a layer of colored beads in the core at a certain depth below the surface.
When we start shearing the system, we see that after a certain – burying
depth-dependent – amount of rotations, the colored particles arise at the
surface. When repeating this experiment with spherical particles, we do
not observe colored beads at the surface, even after 100 rotations. Using a
vacuum cleaner we find that they are still located at their initial position.
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Figure 6.16: Three snapshots of continuous heaping. The images are affinely corrected
which explains why the sides of the images are blurred. In (a), there are three dark tracer
particles rising to the surface, in (b) they are falling down the slope of the hill and in (c)
two of the particles disappear in the shear band. This is work in collaboration with T.
Börzsönyi.

To visualize the particles that avalanche down the heap, we (in col-
laboration with T. Börzsönyi – see next section) perform experiments with
wooden pegs and make a video of the surface. Using PIV, we correct the
frames of this video for the affine motion of the core, so that we can eas-
ily see the motion of each individual particle. In Fig. 6.16 we show three
snapshots of the video. The blurred outside of the pictures is caused by
the affine correction which is only set to correct the motion of the inner
part of the system. In (a), there are three dark tracer particles rising to the
surface, in (b) they are falling down the slope of the heap and in (c) two
of the particles disappear in the shear band. The cyclic raising and disap-
pearing of the tracers particles is a clear visualization of the convection.

6.4.4 Conclusion

From the experiments that are described in Sec. 6.3 and 6.4, we can con-
clude several things about the heap formation.

From the filling height dependence we learn that heaps only reach a
significant height when there is precession. It is easy to imagine that,
when there is no precession, the core is not “fluidized” enough to allow
heaping. On the other hand, this could also indicate that the gradient in
the angular velocity actually drives the heaping. The amount of preces-
sion depends onR [79], and there is more shear between horizontal planes
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as R increases towards Rs. This could explain why the heap is off-center
for Q = 4, and why we only see a ridge on the inside of the shear band for
low filling heights.

Whereas the heap formation is a robust effect that we find for many
different particles with Q > 3, it is less clear how the surface profiles h(R)
and the local densities of the system vary with particle shape. Fig. 6.12(a)
and Fig. 6.13, both for Q = 4 particles, suggest that the shear band as well
as the core dilate under shear. In contrast, Fig. 6.9 for Q = 14, suggests
that in the shear band, alignment dominates and the packing compacts,
whereas in the core, the dilation wins and the volume expands. We have
not studied this systematically and cannot offer precise statements.

The facts that the heap regrows after it has been removed, and that
the particles rise to the surface of the heap and then avalanche down its
slopes, suggest that the heap formation is caused by convection. In the
next section we will study this in more detail using 3D data which is ac-
quired via X-ray tomography.

6.5 3D X-ray CT Tomography

To be able to see the flow and orientation of the particles below the surface,
we perform heaping experiments in an X-ray CT scanner in collaboration
with the groups of T. Börzsönyi (Budapest) and R. Stannarius (Magde-
burg) [123, 124, 137–139].

6.5.1 Setup and Methods

The experiments are performed in a split-bottom cell with an outer ra-
dius of 19.5 cm. The inner disk is attached just above the bottom of the
container and has a radius of 13 cm and a thickness of 6 mm. In this
setup, we shear the particles by rotating the side wall and the outside of
the bottom disk. This is in contrast with the setup that was introduced in
Sec. 6.2.1, where we drove the system via the inner disk. The reason for
this originates from the fact that, because of the CT scanner, the setup can-
not contain metal parts and has to be driven by hand. However, there is no
difference between rotating the bottom disk or the outer wall in the quasi-
static regime in which we measure. The cell is filled to a filling height
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Figure 6.17: (a) A picture of the setup placed in the scanner. (b) Visualization of the
position and orientation of the particles as reconstructed using a tracing program [138].
(c) An example of a slice through the system made with the X-ray tomograph.

h0/Rs = 0.54 with cylindrical wooden (IKEA r) pegs with dimensions
2.5×0.5×0.5 mm3.

The scanner is a medical X-ray angiography machine (Siemens Artis
zeego) at the INKA lab, Otto von Guericke University, Magdeburg. It con-
sists of a rotational C-arm based X-ray source mounted on a high-precision
robot-arm with a flat-panel detector, featuring high resolution whole vol-
ume computer tomography [138]. We make a scan after each 1/16 of a
rotation and obtain a spatial resolution of 0.49 mm/voxel – which is sig-
nificant to identify individual particles. A picture of the scanner and the
measuring cell is shown in Fig. 6.17(a).

In Fig. 6.17(c) we show an example of a slice obtained by the X-ray de-
vice. From these images we can extract local densities (by simply thresh-
olding the image and counting the light voxels), and particle orientations
(via PIV). We can also track each individual particle, and obtain its pre-
cisely location and orientation – see Fig. 6.17(b).
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Figure 6.18: (a) The shape of the initial surface (red) and after 7.5 rev (blue). (b) hm for
a run where we reverse the direction of the flow.

6.5.2 Results

To get a first impression of the data, we threshold the images that corre-
spond to the slice through the center of the cell (Fig. 6.17(c)), and find the
boundary of the packing to recover the shape of the surface (Fig. 6.18(a))
and the heap height (Fig. 6.18(b)). The contrast between the black back-
ground and the white particles is large enough so that we can find a thresh-
old value in between the intensity of the particles and the background.
This way, we count the percentage of white voxels and obtain a packing
fraction of roughly 65%. By finding the height of the packing, h, as a
function of the horizontal coordinate x, we recover the surface shape h(x)
and heap height hm. Fig. 6.18 shows that the global heaping behavior is
similar to the results reported in Sec. 6.3.

In Fig. 6.19 we show de density Φ (color) and velocity (arrows), ob-
tained by PIV, as a function ofR and z. The data is averaged over φ and 83
scans of the full system, which corresponds to approximately 5 rotations,
all in steady state. In the density field we not only observe the shape of
the heap, but also that the density is slightly lower in the shear band than
in the core. In the shear band,

.
γ is higher than in the core, so the data sug-

gests that, for these particles, a higher
.
γ favors dilation. This is consistent

with our results of Fig. 6.9 and Fig. 6.12, which showed that, for Q = 4
particles, dilatancy is dominant in the shear band.
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Figure 6.19: Density Φ (color) and velocity (arrows) as a function of R and z. The data
is averaged over φ and 83 scans of the full system, which corresponds to approximately 5
rotations, all in steady state. The density field shows that the density is slightly lower in
the shear band than in the core. The velocity field shows a clear convective roll that pushes
the particles upwards for small R. For large R, we cannot do PIV because the particle
displacements in between two scans are too large to see which particle corresponds to
which particle in between two frames. The white scale arrow represents a convection
speed of 0.055 cm/rev, which is 1.4 × 10−3 times the main velocity of the grains - in the
shear band just outside the inner disk - that corotate with the outer wall.

The velocity field, visualized with the arrows, shows a clear convective
roll that pushes the particles upwards at small R. At the top of the heap,
the particles avalanche down the heap with relatively high velocity, just as
observed in Sec. 6.3.

We continue our analysis by obtaining the orientation tensor T :

Tij =
3

2N

N∑
n=1

[l
(n)
i l

(n)
j −

1

3
δij ] , (6.1)

where l(n) is a unit vector along the long axis of particle n [123]. The
eigenvalues of T ; Trr, Tφφ and Tzz correspond to the amount of alignment
in the radial, tangential and vertical direction. A value of 1 corresponds to
perfect alignment, a value of -0.5 to an alignment in one of the other two
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Figure 6.20: The density field (a) and eigenvalue Tφφ of the orientation tensor (b) for the
initial packing and for the packing after 10.5 rev when a heap has formed (c-d). (a) and
(c) show that the density has become slightly lower when the heap has formed. (b-d) show
that the difference in alignment is enormous.

directions. We find that the alignment in the tangential direction (Tφφ) is
the strongest. In Fig. 6.20 we show the density Φ and Tφφ before and after
the formation of the heap. It can be seen that the density is slightly lower
when the heap has formed, but the difference is small. On the contrary,
the difference in alignment before and after the flow is enormous. Initially,
the particles are not aligned, but after a shear of 10.5 rev, the particles are
aligned in the flow direction in a large part of the system.

6.5.3 Origin of the Convection

Now that we have clearly seen that the heaping is the result of convection,
we want to know what drives the convection rolls. There are strong indi-
cations that the heaping process is related to the breaking of symmetry in
the system. We note that, irrespective of the shear direction, the convec-
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Figure 6.21: Using a schematic representation of the particle orientation, shear direction
and convection direction, we investigate which particle orientation effect is allowed to
cause the heaping by symmetry (see text).

tive flow is always upwards for low R. However, when we reverse the flow
direction once a heap has already grown, the convection initially works
in the inverse direction (Fig. 6.15). This suggests that the main flow leads
to orientation of the grains, which is crucial to drive the secondary flow –
something that is absent for spherical grains.

Symmetry – To investigate which particle orientation effect could cause
the heaping, we identify which effect is allowed by symmetry. The basic
idea is as follows: We take the z-reflection of the experiment, and con-
sider whether this changes the direction of the convection with respect to
the other properties of the system. If the z-reflection alters only the di-
rection of the convection, and lets the other properties of the experiment
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unaffected, then we know that, by symmetry, the speed of the convection,
vconv, has to be zero.

Of course, the z-symmetry of the system is broken by both gravity and
the shape of the shear band. However, if we reverse the shear direction, the
shear band shape and gravity are unaffected, but, initially, the convection
does change direction, leading to the vanishing of the heap. Additionally,
if the heaping were caused by the gravity or the flow profile, it is expected
to also occur for spherical particles – but it does not. Hence, we rule out
gravity and flow structure as candidates to determine the direction of the
heaping.

We will now consider the symmetry of the directions of the convec-
tion and the main flow, and the precise orientation of the particles, where
from now on, gravity is neglected. In Fig. 6.21 we show schematic repre-
sentations of the experiment. The simplest case, where the particles are
aligned exactly with the streamlines of the flow, is shown in (a-b). If the
situation is reflected in the z-direction, the particle orientation and flow
direction remain the same, but the convection changes sign. This means
that in this case, the rate of the convection, vconv, must be zero. In (c-d)
we consider the case where the particles are misaligned in the horizon-
tal plane. In (c), the front side of particle points inwards with respect to
the streamline. If we take the z-reflection of this situation, as in (a-b),
the misalignment and flow direction stay the same, while the convection
does change sign. Again, this implies vconv = 0. In (e-g) we break the z-
symmetry by considering particles of which the front side points upwards
(U) and the back side point downwards (D). If we now take the z-reflection
(f), the flow direction is unaltered, but the misalignment of the particles -
which is now also in the z-direction -, and the direction of the heaping, do
change. This means that in this case, vconv does not have to be zero, and
convection is allowed by symmetry. In (g), we take the x-reflection of (f).
Here, the misalignment and flow direction change with respect to (f), but
the convection does not. The resulting configuration is the situation that
is reached when the flow direction is reversed starting from (e). The mis-
alignment is the same, the flow is reversed and the convection reverses,
which results in the initial disappearance of the heap. Hence, a vertical
misalignment of the particles is consistent with both a finite secondary
flow, and a transient reversal of the secondary flow upon reversal of the
main flow.
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Earlier analysis of the orientation of the particles in the shear band has
shown that the particles indeed do not exactly align with the streamlines
of the flow [137]. Instead, the front sides of the particles point inwards
and upwards, where the average angles Θa and φa between the orientation
of the particles and the streamline are 10◦ and 5◦ respectively. In addition,
this orientation state is not stable. The particles continuously tumble with
a normalized rotation velocity ω = dΘ/dθ < 0 for all Θ [137, 159]. To ver-
ify our hypothesis that the convection is caused by the vertical misalign-
ment of the particles, we extract Θa(|ωt|) and φa(|ωt|) from the orientation
tensor T . Since the behavior of the alignment will most likely be different
in different parts of the system, we define four different regions where
we will monitor the alignment – see Fig. 6.22. The results are shown in
Fig. 6.23. In (a), we show the heap height hm, where the dashed line indi-
cates the moment when we reverse the shear direction. In (b-c) we plot Θa

and φa for the four different regions.

Figure 6.22: Indication of the location of
regions A, B, C and D where we will moni-
tor the alignment of the particles. The color
represents s, which is the largest eigenvec-
tor of T .

By definition, the angles change
sign when the flow direction is re-
versed. The time it takes to reori-
ent is, as expected, different for the
eight curves. For instance Θa in re-
gion C (shear band) reorients rela-
tively fast. We suggest this is be-
cause, in the shear band, the shear
rate is relatively high. Other an-
gles, such as Θa in region D (high
up in the core) and φa in regions
A, B and D (everywhere except the
shear band), take much longer to re-
orient. The number of rotations that
this orientational transient persists,
in particular for the vertical devia-
tion angle φa (about 5 rev), corresponds well to the time it takes for the
heap to start regrowing. This strongly supports our claim that the convec-
tion roll is driven by the vertical deviations between the particle orienta-
tions and the streamlines.
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Figure 6.23: (a) The heap height hm as a function of time for a reversal run. (b) The
average horizontal deviation angle Θa in the four regions as indicated in Fig. 6.22. (c) The
average vertical deviation angle φa. The black dashed line indicates the time when the
flow direction is reversed. It can be seen that different parts of the system take a different
time to reorient. However, the reorientation times, in particular of φa, correspond well to
the time it takes for the heap to start regrowing.
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6.5.4 Conclusion

In this section we have seen that in this alternative setup, that allows
for 3D imaging, the heaping phenomenon is the same as in the setup of
Sec. 6.3. The PIV analysis of the particles in 3D clearly shows a convection
roll that is responsible for the heaping. We have presented a symmetry
breaking argument and experimental data that explain how the convec-
tion is the result of a vertical deviation between the orientation of the
(tumbling) particles and the streamlines of the flow. This argument, in
addition, correctly captures the transient disappearance of the heap upon
reversal.
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6.A Appendix

6.A.1 Outlook

An obvious experiment to do would be to shear oblate (lentils, smarties,
coins) particles rather than prolate (rice) ones. We expect these particles to
align with the bottom during the filling of the setup, whereas upon shear,
the particles in the shear band might orient with the strain rate. Tumbling
and heaping could then also occur.

Another experiment would be to shear ratchet-like particles such as
wheat grains. A wheat grain is covered with tiny hairs that all point in the
same direction. As a result, the grain can easily slide in one direction but
not in the other. In a reversal experiment with ratchet particles, we expect
a dramatic response after the grains snap from very frustrated positions.

Something that is not yet well understood is how dilatancy and com-
paction due to alignment compete for different particle shapes and flow
geometries. It would be interesting to find an order parameter that indi-
cates how the two effects relate.

More related to the heaping process, it would be interesting to study
the details of the convection. In our 3D experiments, we quantified how
fast this convection is, but the speed of the convection may vary with the
aspect ratio of the particles. Even in experiments without a 3D scanner,
this can be measured relatively simply using colored particles. The depen-
dence of the convection speed on particle shape is the subject of current
studies in the group of R. Stannarius.
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Samenvatting

Dit proefschrift gaat over de natuurkunde van de stroming van granu-
laire materialen. Een granulair materiaal, zoals zand, is een materiaal dat
bestaat uit losse korrels. Hoewel één korrel een simpel object is, kan het
collectieve gedrag van miljarden korrels samen erg ingewikkeld zijn. In
verrassend veel gevallen is het niet precies bekend hoe een granulair ma-
teriaal zich gedraagt en dat terwijl dit soort materialen zowel in het leven
van alledag, als in de industrie, als in de natuur enorm veel voorkomen.

Net als materialen zoals water, dat als ijs, vloeibaar water en damp
voor kan komen, kan zand ook verschillende toestanden (fases) aannemen.
Als je bijvoorbeeld over het strand loopt, dan gedraagt zand zich als een
stevige vaste stof, maar als je na afloop het zand uit je schoenen giet, dan
stroomt het als een vloeistof. Het voornaamste deel van dit proefschrift
gaat over experimenten waar we onderzoeken wat er precies gebeurt als je
zand een beetje “vloeibaar” probeert te maken door het zachtjes te schud-
den.

Als twee lagen zand langs elkaar stromen, is er een relatief dunne
afschuifzone waar de korrels daadwerkelijk langs elkaar schuren. Het is
gebleken dat zandstroming vrij goed te begrijpen is, als je deze afschuif-
zone beschouwt als twee oppervlakken die langs elkaar bewegen met een
zekere wrijving. Opvallend genoeg hangt de benodigde kracht niet af
van de stroomsnelheid, dit omdat de kracht vooral gebruikt wordt om
de wrijving te overwinnen. In hoofdstuk 3 onderzoeken we of dit beeld
blijft kloppen als het zand zachtjes geschud wordt. We vinden dat ook het
gedrag van heel zacht geschud zand bepaald wordt door wrijving. Echter,
de wrijvingsweerstand hangt nu af van hoe hard je precies schudt én van
hoe snel het zand stroomt. Als je iets harder schudt, gebeurt er iets heel
anders. Het zand wordt nu zo zacht dat je andere natuurkunde, namelijk
die van vloeistoffen, nodig hebt om de zandstroming te beschrijven.
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Als je een plank met zand steeds iets schever houdt, glijdt het zand
voor een zekere hoek ineens hard naar beneden. Het is onmogelijk om
zand rustig van de plank te laten stromen. Wanneer de korrels zacht
geschud worden, is trage stroming wel mogelijk. Echter, het zand is slechts
“vloeibaar” genoeg om heel traag te stromen en er zijn nog steeds tussen-
liggende snelheden die niet mogelijk zijn. Hoe harder je schudt, hoe meer
snelheden er mogelijk worden. Boven een zekere kritische schudinten-
siteit zijn alle snelheden toegestaan. In hoofdstuk 4 bestuderen we de
trage en snelle stroming en de overgang ertussen. We beschouwen dit
vanuit het belangrijke, kritische punt waar de twee soorten stroming sa-
menkomen.

Als zand een bepaalde kant op heeft gestroomd, heeft die richting
zich in het systeem ingebouwd. Dit resulteert erin dat wanneer je het
zand nu nogmaals wilt laten stromen, het meer kracht kost om dit weer
in dezelfde richting te doen dan in de tegengestelde. We zeggen dat de
pakking anisotroop is. In hoofdstuk 5 laten we zien dat je deze anisotropie
kunt meten door te kijken hoe deze uit de pakking verdwijnt als het sys-
teem geschud wordt. We vinden een relatie tussen hoeveel kracht op het
zand werd uitgeoefend toen het stroomde en de resulterende anisotropie.
Dit vertelt ons dat anisotropie een cruciaal ingediënt is voor het begrijpen
van zandstroming.

In hoofdstuk 6 bestuderen we de stroming van staafvormige deeltjes.
Een belangrijk verschil tussen staaf- en bolvormige deeltjes is dat het voor
staafvormige deeltjes van belang is in welke richting ze liggen. Granulaire
materialen zetten typisch uit als je ze laat stromen, maar staafjes kun-
nen zich ordenen waardoor ze juist een zeer hoge dichtheid bereiken. Uit
onze stromingsexperimenten, waar we, als we staafjes laten stromen, een
heuvel zien verrijzen uit het oppervlak, blijkt dat de uitzetting het van de
ordening wint. Uit metingen in een CT-scanner, waarbij we ook de deeltjes
onder het oppervlak kunnen zien, blijkt dat er in het midden van het sys-
teem tevens een continue stroming van deeltjes omhoog is die het groeien
van de heuvel veroorzaakt. Aan de rand van de heuvel vallen de deeltjes
dan weer naar beneden. Dit is een mooi voorbeeld van de invloed van de
vorm van de deeltjes op hun stromingsgedrag.
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This dissertation is dedicated to the physics of the flow of granular ma-
terials. A granular material, such as sand, is a material that consists of
a conglomeration of discrete particles. Even though a single particle is a
simple object, the collective behavior of billions of particles can be very
complex. In a surprisingly large amount of cases, it is not exactly known
how a granular material behaves, and this while these kinds of materials
are omnipresent in everyday life, industry, and nature.

Similar to materials such as water, which can occur as ice, liquid water
and vapor, sand can also exist in different phases of matter. If you for
instance walk on the beach, sand behaves like a solid, but if you pour it out
of your shoes afterwards, it flows like a liquid. The main part of this thesis
is dedicated to experiments where we investigate what happens when you
try to “liquefy” sand by weakly vibrating it.

If two layers of sand flow past each other, there is a relatively thin shear
zone where the particles actually scrape past each other. It was found that
sand flow can be understood relatively well if you consider this shear zone
as two surfaces sliding past each other with a certain friction. Surpris-
ingly, the required force does not depend on the flow rate, because the
force is mostly used to overcome the friction. In chapter 3, we investigate
whether this picture remains valid when the sand is weakly vibrated. We
find that the behavior of weakly vibrated sand is also determined by fric-
tion. However, the frictional resistance now does depend on the amount of
vibrations and on the flow rate. If you shake more vigorously, something
completely different happens. The sand now becomes soft to the extent
that you need different physics, namely that of fluids, to describe the sand
flow.

If you increasingly tilt a plank with sand, for a certain angle, the sand
will rapidly slide down. It is impossible to make the sand slide down the
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plank slowly. But, if the grains are weakly vibrated, slow flow is possible.
However, the sand is only “fluid” enough to sustain very slow flow, and
there remain intermediate flow rates that are impossible to induce. The
more you vibrate the sand, the fewer rates are impossible. Above a certain
critical vibration intensity, all rates are allowed. In chapter 4 we inves-
tigate the slow and fast flow, and the transition between these two flow
regimes. We consider this from the perspective of the important, critical
point where the two kinds of flow meet.

If sand has flowed in a certain way, this direction is built into the pack-
ing. As a result, if you want to make the system flow more, it requires
more force to do this in the same direction than in the opposite. We say
the packing is anisotropic. In chapter 5 we show that this anisotropy can
be measured by looking how it disappears from the packing when the sys-
tem is vibrated. We find a relation between how much force was exerted
during the flow, and the resulting anisotropy. This tells us that anisotropy
is a crucial ingredient for the understanding of sand flow.

In chapter 6 we study the flow of rod-shaped particles. An important
difference between rod-shaped and spherical particles is that, for rods,
it is important in which direction they are oriented. Granular materi-
als typically expand when they are sheared. However, rods can order,
thereby reaching a very high density. From our flow experiments, where
we see a heap arising from the surface when we shear rods, we know that
the expansion dominates over the ordering. From measurements in a CT-
scanner, where we can also see the particles below the surface, we know
that there is an additional continuous upwards flow of particles in the cen-
ter of the system. At the edge of the heap, the particles avalanche down its
slope. This secondary flow is a good example of the influence of the shape
of the particles on their flow properties.
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