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CHAPTER 6

Contrast Mechanism in Heterodyne Force Microscopy:
Friction at Shaking Nanoparticles

To pinpoint the physical mechanism that is responsible for the contrast forma-
tion in Heterodyne Force Microscopy, we perform a quantitative analysis, in
which we compare our experimentally observed contrasts with simulations and
calculations. Firstly, we show that the contrasts greatly depend on both the ap-
plied contact force and on the precise ultrasonic excitation scheme used. Our
analysis shows that we can rule out Rayleigh scattering, variations in sample
(visco)elasticity, damping of the ultrasonic tip motion, and ultrasound attenu-
ation in the nanoparticles and finally have to conclude that friction at shaking
nanoparticles is the only remaining physical contrast formation mechanism.
We find additional evidence for this mechanism in an estimate of the involved
energy dissipation.

Most of this chapter has been made public on the arXiv preprint server [68]
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108 6.1. Introduction

6.1 Introduction

HFMmeasurements showed the capability to image subsurface features with
remarkable contrast and lateral resolution [3, 6–15]. It is claimed that one can
image gold nanoparticles with a diameter of ∼ 17.5 nm buried at a depth of
500 nm in a polymer [6]. The lateral resolution in these images is surprising,
since it is equal to the diameter of the gold nanoparticles. Maybe even more
surprising is the generated contrast, which clearly exceeds the variations in
the background of the images, although the size of the nanoparticles is only a
fraction of the thickness of the sample.

Unfortunately, none of the published HFM experiments provide quantita-
tive information on the measured amplitude and phase range, on the applied
contact force during the measurement, and on the precise excitation scheme in
combination with the resonance frequencies of the cantilever. Also, the actual
depth of the subsurface features is confirmed only in one publication with an
independent technique [15]. This makes it difficult, if not impossible, to under-
stand the contrast formation mechanism.

Only Cantrell et al. provide quantitative information on the nanoparti-
cle size, the depth, the resolution, and the contrast [8]. Measured above gold
nanoparticles that have a diameter of 15 nm and that are buried at a depth of
7 µm, they obtain a subsurface phase contrast of ∼ 2.5 degrees and a resolution
of 25 nm. However, the published image is exaggerated in contrast such that it
discriminates only 2 levels, which leaves questions about a proper identification
of the nanoparticles.

Considering the wavelengths of the ultrasonic excitations, it is hard to un-
derstand the reported contrast and resolution. The wavelength of the ultrasonic
sample excitation is of the order of mm’s, which is much larger than the size
of the subsurface nanoparticles (nm’s) and their depth below the surface (up
to µm’s). As a consequence, the measurements are performed in near-field and
one expects the obtainable resolution to be equal to the depth of the nanoparti-
cles. This argument holds only, if the physical contrast mechanism is based on
the usual, wavelike propagation of the ultrasonic wave that is sent into the sam-
ple. Therefore, it is of crucial importance to understand the physical contrast
formation mechanism. Equipped with this knowledge, it might also be possible
to understand the remarkable resolution of reported HFM experiments.

It is difficult to pinpoint the dominating physical contrast mechanism, as
it involves the ultrasound propagation within the sample, the cantilever dy-
namics, nonlinear mixing, resonance frequency shifting, the explicit excitation
scheme, the resonance frequency spectrum of the cantilever, and the response
to variations in the tip-sample interaction, which are determined by the local
elasticity and adhesion of the sample. All these factors can significantly change
the heterodyne signal leading to a measurable contrast. Due to recent progress
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in exactly these issues (see all previous chapters and [28, 42, 52, 69]), it is now
possible to perform a detailed study on the contrast formation mechanism in
Heterodyne Force Microscopy.

In this chapter, we present a full quantitative analysis on all possible, physi-
cal mechanisms to explain our experimentally observed contrast on a well char-
acterized sample. We show that Rayleigh scattering (see Chap. 2 and [28]) is
not the dominating contrast mechanism, as the experimentally observed con-
trasts are orders of magnitude larger. Then, we explicitly calculate the can-
tilever dynamics for different tip-sample interactions and show that variations
in sample elasticity indeed lead to a contrast that is comparable in magni-
tude to the experiments. However, the derived amplitude contrast is inverted
with respect to the experimentally observed one such that we can rule out also
elasticity variations as the sole reason for the contrast. The only remaining
possibility is tip-sample damping. As we can exclude also tip damping (see
Chap. 4 and [52]), we are left with sample damping and finally conclude that
friction at shaking nanoparticles must be the responsible physical mechanism
for the contrast. We find additional evidence for this mechanism in an estimate
of the involved energy dissipation. From our analysis it becomes clear that the
contrast in an HFM measurement strongly depends on the applied contact force
as well as on the precise ultrasonic excitation scheme applied with respect to
the resonance frequencies (and their shifts) of the cantilever.

6.2 The Detection of Deeply Buried Gold
Nanoparticles with a HFM

For our study, we prepared a sample consisting of the following layers (from
bottom to top): a Silicon wafer with native oxide, a ∼ 97 nm thick PMMA
layer, a 30 nm thick PVA layer with embedded gold nanoparticles (diameter
20 nm), and a 82 nm thick PVA top layer. The density of the gold nanopar-
ticles is 0.7± 0.6 particles/µm2. The precise sample preparation as well as its
characterization, in which we even determined the depth of the Au nanopar-
ticles with an independent measurement based on Rutherford backscattering,
are described in detail in Appxs. 6.A and 6.B.

In our HFM experiment, we chose the ultrasonic excitation frequencies of
both the tip and the sample as well as the difference frequency off resonance,
i.e. not on (or within the width) of a resonance peak of the cantilever. In
analogy to Sect. 1.2, we call this excitation scheme off-off resonance. The
first on/off indication describes whether fdiff (heterodyne signal) is tuned to
a resonance frequency of the cantilever, whereas the second on/off indication
describes whether ft (ultrasonic tip excitation) is tuned to a resonance. This
leads to four different excitation schemes.



110 6.2. Detection of Deeply Buried Gold Nanoparticles

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f
s
=2.52 MHz

4246 kHz

Q = 55

2664 kHz

Q = 91

1418 kHz

Q = 94

524 kHz

Q = 25

A
m

p
lit

u
d
e
 [
V

rm
s
]

87.4 kHz

Q = 67

f
t
=2.50 MHz

1 2 3 4
frequency [MHz]

f
diff

=20 kHz

Figure 6.1: The HFM excitation scheme (off-off resonance) with respect to the vi-
bration spectrum of the free hanging cantilever. A red line indicates a resonance
frequency: its value and corresponding Q-factor are indicated in the top panel. The
blue lines indicate the applied excitation frequencies of the tip ft = 2.50 MHz, the
sample fs = 2.52 MHz, and the difference frequency fdiff = 20 kHz.

Figure 6.1 shows the excitation scheme and the vibration spectrum of the
free hanging cantilever, of which we calibrated the spring constant to be 2.7
N/m using the thermal noise method [67]. Using the method described in
Chaps. 4 and 5 as well as [52, 69], we determined the ultrasonic tip amplitude
to be At = 1.34 nm and the ultrasonic sample amplitude to be As = 0.37 nm.

In the HFM experiment, shown in Fig. 6.2, we simultaneously measured
the height, the amplitude Adiff and the phase ϕdiff of the difference frequency
fdiff for various contact forces Fc. Feedback was performed in contact mode
operation. The contact force Fc is decreased from top to bottom: 163 nN,
115 nN, 67 nN, and 2.4 nN. The gold nanoparticles are visible in all channels
at Fc = 163 nN. The observed density of 1.2 particles/µm2 fits the indepen-
dently determined density. Most of the gold nanoparticles are still visible at
Fc = 115 nN, although the contrasts are significantly reduced. At lower force,
we do not detect any nanoparticles in any of the channels, which supports
that the gold nanoparticles are indeed fully buried under a 82 nm thick PVA
layer. Considering the indentation depths, see Fig. 6.2, and the thickness of
the PVA top layer, we have to conclude that the gold nanoparticles are only
visible by poking hard enough into the sample, although it is striking that we
see them at all in the height images. At Fc = 2.4 nN, we start probing the
attractive part of the tip-sample interaction and recognize that we have dam-
aged the surface, while measuring at the higher contact forces. This observation
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Figure 6.2: From left to right measured simultaneously: the height and both the
amplitude Adiff and the phase ϕdiff of the difference frequency. The contact force Fc

as well as the resulting average indentation into the sample are indicated at the left
in the height images. The gold nanoparticles are only visible at a contact force of 163
nN and 115 nN. At these forces, they are not only visible in the subsurface channels,
but also in the height image. We ‘lose’ the nanoparticles in all three channels with
decreasing force. At a Fc = 2.4 nN, we observe that we damaged the surface, while
measuring at the higher forces. All images within one channel do have the same
(color) range such that the contrast for different contact forces can be compared
directly. We provide typical cross sections with absolute values of the three channels
at the positions of the nanoparticles in Appx. 6.C. As +At = 1.71 nm.

contradicts the general belief that Heterodyne Force Microscopy provides a
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truly nondestructive way of imaging buried features: large indentation might
damage soft biological samples. Finally, one might question the purpose of an
HFM with its complicated excitation scheme and electronics as well as the use
of ultrasound, if the desired information is also present in the height images.

Before we discuss the contrast at Fc = 2.4 nN, it is important to understand
the lateral friction in HFM experiments. It has been shown by Dinelli et al. [70]
that the lateral friction in UFM measurements almost vanishes, if the cantilever
is not in contact with the sample during a part of its high frequency oscillation.
In most HFM experiments, the cantilever is getting in and out of contact with
the sample. Therefore, the reduction of the lateral friction is also expected to
occur in HFM. In our HFM measurements at the high contact forces (163 nN,
115 nN, and 67 nN), the cantilever is always fully in contact with the sample
during the complete high frequency motion. Therefore, at these contact forces,
the lateral friction is not reduced, which might have led to a damaged sample.
In contrast, at Fc = 2.4 nN, the cantilever is not in contact with the sample
during a significant part of the high frequency motion (compare As+At = 1.71
nm with the indentation of 0.4 nm). As a consequence, we can exclude any
lateral frictional effects in the images at this contact force. As this image at
Fc = 2.4 nN was measured after the images at higher contact forces , we have
to conclude that the sample was indeed damaged while measuring at the higher
contact forces (see the vertical lines). We did not see any damage in the image
at higher contact forces as the tip was pushed deeper into the sample than the
height corrugations, which resulted from the damage (compare the indentation
of at least 3.5 nm with the height corrugations of 1.5 nm).

At Fc = 2.4 nN, both subsurface channels (amplitude and phase) show a
clear correlation with the height. As the cantilever mainly probes the attrac-
tive part of the tip-sample interaction during an oscillation cycle, the effective
contact area of the tip depends on the height variations of the sample: the
contact area is much smaller on a mountain than in a valley. Adhesion is di-
rectly proportional to the contact area. Based on the analytical derivation of
the heterodyne signal (see Chap. 5 and [69]), we expect that adhesion vari-
ations indeed lead to a variation in both the amplitude and the phase of the
subsurface signal. We attribute the strong correlation, with its stripy pattern,
between the height and the subsurface channels to a variation in contact area,
which leads to different values for the adhesion in the tip-sample interaction,
and conclude that variations in the adhesion can generate a contrast in the
subsurface channels.

To quantify the contrasts of the gold nanoparticles in Fig. 6.2, we provide
the average values above the nanoparticles for the different channels with re-
spect to their background. To enable a comparison with the expected contrast
based on Rayleigh scattering (see Chap. 2 and [28]), we have to normalize the
amplitudes Adiff with respect to their background amplitudes Ab. At Fc = 163
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nN, the height is 2.8 nm, the amplitude Adiff is -120 pm, the background am-
plitude Ab is 270 nm, the normalized amplitude contrast -0.44, and the phase
ϕdiff is 7.2 degrees. At Fc = 115 nN, the normalized amplitude contrast is -0.11
and the phase contrast is 2.9 degrees, see also Tab. 6.1. Based on Rayleigh
scattering, the expected normalized amplitude contrast is 10−6 and the phase
contrast is 0.1 millidegree for a gold particle with a diameter of 20 nm buried
50 nm deep under a polymer (PMMA) (see Chap. 2 and [28]). It is striking
that the experimentally observed normalized amplitude contrast is 5 orders of
magnitude larger and the experimentally observed phase contrast is 4 orders of
magnitude larger than the theoretically predicted ones. We have to conclude
that Rayleigh scattering does not form a major contribution to the physical
contrast mechanism in current HFM measurements at MHz frequencies.

6.3 Subsurface Contrast due to Variations in
the Tip-Sample Interaction

In Chap. 5 and [69] it was elucidated how the heterodyne signal is gener-
ated: its magnitude strongly depends on both the applied contact force and
the specific characteristics of the tip-sample interaction. In the appendices, we
show, both experimentally (Appx. 6.D) and analytically (Appx. 6.E), that
the heterodyne signal depends on the elastic properties of the sample, which
is characterized by the Young’s modulus E. For sufficiently soft samples, the
amplitude Adiff of the heterodyne signal is proportional to E. Therefore, we
consider in the following elasticity variations in the sample, due to the presence
of the nanoparticles, as a possible physical contrast mechanism.

From an analytical 1D model, we estimate that the Young’s modulus above
a gold nanoparticle is ∼ 10% higher than the Young’s modulus of PVA, which
is 2.4 GPa, see Appx. 6.F. The ∼ 10% elasticity variation should be easily
detected with Force Modulation Microscopy and Ultrasonic Force Microscopy.
Therefore, both techniques should be able to see the nanoparticles. In principle
this questions the application of Heterodyne Force Microscopy. However, we
will see that a different physical contrast mechanism, which can neither be stud-
ied with Force Modulation Microscopy nor with Ultrasonic Force Microscopy,
dominates the contrasts in this particular HFM experiment. To determine the
contrast formation based on these elasticity variations, we numerically calcu-
lated the motion of the cantilever for different tip-sample interactions using
the method outlined in Chap. 3 and in [42]. Although our numerical calcu-
lation shows a hysteresis between the approach and the retract curve of the
cantilever, in this chapter, for reasons of clarity, we show only the results for
the approach curves. We did, however, calculate both sets of curves and found
that the difference in contrast is negligible between a determination from the
approach or retract curves, respectively. To receive an upper bound on the
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contrast and to elucidate the contrast formation effect on the basis of small
elasticity variations, we consider Young’s moduli up to 6 GPa.

For the simulations, we fitted an experimentally obtained tip-sample inter-
action Fts measured on PMMA with the Derjaguin-Muller-Toporov (DMT-)
model, see Sect. 1.4 and [23]. We used this description of Fts for the 2.4 GPa
case and modified only the elasticity for the other cases describing samples with
Young’s moduli of 2, 3, 4, 5, and 6 GPa, respectively. A parameter called λ,
which is related to the elasticities of the tip and the sample, is usually used
to differentiate between the applicabilities of different models that describe the
tip-sample interaction, see Fig. 1.8 and [27]. As λ = 0.63 in our case, one
should use the Maugis-Dugdale (M-D-) model, see Fig. 1.8 [25]. Nevertheless,
our approach with the DMT-model is fully justified, as we have demonstrated
in Chap. 4 and in [52] that it does not matter at all for the numerical simula-
tions which of the models describes the tip-sample interaction, as long as the fit
perfectly matches the (experimentally obtained) tip-sample interaction. The
only thing that matters is the particular shape (form) of Fts(z) and not the
model that is used to describe this particular interaction. In addition, please
note that it is almost impossible to use the M-D-model, as it does not provide
an analytical expression for Fts such that it can only be solved iteratively, if
the value of λ is not known a priori.

As the specific vibration spectrum of the cantilever has great influence on
the results, we first matched the spectrum used in the calculations to that of
our experiment, see Appx. 6.G. To elucidate the effect of different ultrasonic
excitation schemes, we considered three distinct cases, which all three had a
difference frequency at 20 kHz (well below the first resonance frequency of the
cantilever). This implies that the first on/off indication is always off in our
case. In the off-off resonance case both ultrasonic excitations are chosen off
resonance halfway between the 3rd and 4th resonance of the cantilever. In the
off-on resonance case the excitation of the tip coincides with the 4th resonance
of the cantilever and the sample frequency is 20 kHz below it. The experimental
excitation scheme reflects the particular situation of our experiment as shown
in Fig. 6.1, which has both ultrasonic excitations off resonance but relatively
close to the 4th resonance. The other excitation schemes are depicted in Appx.
6.H.

Considering Young’s moduli between 2 and 6 GPa as well as the experimen-
tal excitation scheme, Fig. 6.3 shows the corresponding tip-sample interactions
and, as a function of the applied contact force, the indentations as well as the
amplitudes Adiff and phases ϕdiff of the heterodyne signal at the difference
frequency. The results of the other two excitation schemes are provided in
Appx. 6.H. The contrasts at a certain contact force can now be evaluated
from the difference in the signals stemming from different elasticities. The
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Figure 6.3: Considering the experimental excitation scheme, we calculated the tip-
sample interaction Fts(z) and, as a function of the applied contact force Fc (given by
I0), the corresponding sample indentation as well as the amplitude Adiff and phase
ϕdiff of the heterodyne signal for different sample elasticities: 2 GPa (black), 3 GPa
(red), 4 GPa (magenta), 5 GPa (green), and 6 GPa (blue). The inset in the lower
left panel shows Adiff for 6 GPa plotted as a function of the height of the cantilever’s
base, zb, such that a comparison becomes possible with other calculations (see Chaps.
3, 4, and 5, as well as [42, 52,69]).

indentation contrast decreases with decreasing contact force. The amplitude
contrast stays over a large range almost constant (and even increases), before
it collapses to zero at very small contact forces. The phase contrast strongly
depends on the specific excitation scheme, but always collapses to zero at very
small contact forces.

To receive upper bounds, we determine the contrasts from the differences
between a sample with 2 GPa and 6 GPa. In Tab. 6.1, we list the results for the
different excitation schemes as well as the experimentally determined contrasts
for comparison. For completeness, we provide, for the experimental scheme,
also the contrasts obtained from the difference in samples with 2.4 GPa (PVA)
and 2.6 GPa (effective elasticity above the nanoparticles, as derived in Appx.
6.F). Starting with the height contrast, we find comparable values between the
experiment and the calculated excitation schemes, except for the experimental
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scheme, in which the contrast is obtained from the difference in samples with
2.4 GPa (PVA) and 2.6 GPa.

The decrease in height contrast for smaller contact forces is reproduced for
all cases. Considering the amplitude contrast ∆Adiff , the absolute values in
the experiment are between a factor 1 and 100 times larger than the calculated
ones. There are three striking issues, if one compares the different ∆Adiff values
in more detail. Firstly, the values of the off-on resonance case are significantly
lower than all other values. This is due to this particular excitation scheme
(see also Appx. 6.I), in which the ultrasonic tip amplitude is significantly
decreased when the cantilever gets into contact with the surface, due to the
related frequency shift of the 4th resonance. The size of this shift and, there-
fore, also of the amplitude reduction of the ultrasonic tip vibration, increases
both with increasing contact force and with the stiffness of the sample. The
off-on resonance case is a special excitation scheme and its particular behavior
is (almost) not present in the off-off resonance case and in the experimental
excitation. This is also the reason why the values of the latter schemes are com-
parable. Secondly, in contrast to the experiment, where the ∆Adiff contrast is

method Fcontact height ∆Adiff Ab Ac ∆ϕdiff

[nN] [nm] [pm] [pm] [] [deg]

experiment 163 2.8 -120 270 -0.44 7.2
115 1.2 -40 360 -0.11 2.9

off-on resonance 163 1.8 -0.86 7.0 -0.12 11
(2 → 6 GPa) 115 1.2 -0.23 9.6 -0.02 12

off-off resonance 163 1.8 42 20 2.1 0.014
(2 → 6 GPa) 115 1.3 63 24 2.6 -0.002

exp. scheme 163 1.8 17 15 1.1 0.120
(2 → 6 GPa) 115 1.2 32 19 1.7 0.083

exp. scheme 163 0.08 0.87 17 0.05 0.027
(2.4 → 2.6 GPa) 115 0.03 1.1 21 0.05 0.008

Table 6.1: The obtained contrasts in the height, the amplitude Adiff , the normalized
amplitude Ac (for which we also provide the background amplitude Ab), and the
phase ϕdiff for a contact force of 163 nN and 115 nN. The contrasts are provided for
the experiment as well as for different numerical calculations, in which we take into
account specific exaction schemes. To receive clear upper estimates, we determined
(most of) the contrasts from the differences in the curves between a sample with 2
GPa and 6 GPa. For completeness, we provide, for the experimental scheme, also the
contrasts obtained from the difference in samples with 2.4 GPa (PVA) and 2.6 GPa
(effective elasticity above the nanoparticles, as derived in Appx. 6.F).
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less for a lower contact force, the off-off resonance case and the experimental
schemes show a larger contrast at lower force. This already indicates a problem.
However, the most striking issue is the sign of the contrast. In the experiment
we have a negative amplitude contrast ∆Adiff , whereas it is positive for the off-
off resonance and the experimental schemes. Whatever the argument is, the
elasticity (or viscoelasticity) above the nanoparticle is for sure increased, which
leads to a higher amplitude Adiff (see Fig. 6.3) and to a positive amplitude con-
trast ∆Adiff . We have to conclude that, although variations in the elasticity
produce a contrast with a magnitude that is comparable with the experiments,
elasticity variations cannot explain the inverted contrast. A different physical
mechanism must be present.

The contrast inversion in the off-on resonance case is due to the larger fre-
quency shift of the 4th mode on stiffer samples. Above the nanoparticle, the
amplitude reduction of the ultrasonic tip vibration At is significantly larger
than the reduction on the PVA without nanoparticles (see the details in Appx.
6.I). The contrast inversion in this case indicates the importance to provide
both the precise excitation scheme and the spectrum of the cantilever for each
published HFM measurement.

The more proper value for a comparison between the experiment and the
calculated schemes, is the normalized amplitude contrast Ac. Ignoring the mi-
nus sign, we find values of the right order of magnitude. The values of the
simulated experimental schemes are only a factor ∼ 3 times too high, which
has to be compared to Rayleigh scattering that predicts an Ac that ∼ 100000
times too low.

The magnitude of the experimentally observed phase contrast ∆ϕdiff is only
comparable to the special case of the off-on resonance excitation scheme. The
large phase shift in this scheme is due to the frequency shift of the 4th reso-
nance: the particular off-on resonance excitation scheme makes the tip vibra-
tion especially sensitive to phase changes based on frequency shifts (see Appx.
6.I). Although much smaller in magnitude, a similar argument holds also for
the phase shifts in the off-off resonance and experimental excitation schemes.
Since the ultrasonic tip excitation in the experimental scheme is closer to the
4th resonance frequency of the cantilever, we observe a larger phase contrast
than in the off-off resonance scheme.

We conclude that the contrast from (small) variations in the elasticity of the
sample results in a much larger contrast than Rayleigh scattering. The order of
magnitude is comparable to the contrast measured in the experiments. How-
ever, variations in sample elasticity cannot be the physical contrast mechanism
in our HFM experiment, as it would imply an opposite sign.
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6.4 Friction at Shaking Nanoparticles

Ruling out both variations in the tip-sample interaction (elasticity and ad-
hesion) and Rayleigh scattering, the only remaining physical contrast mecha-
nism must lead to a significant reduction of the tip amplitude At or sample
amplitude As above the nanoparticles, as Adiff ∼ AtAs/

√
A2

t +A2
s (see Chap.

5 and [69]). These reductions can be described as tip-sample damping. Tip
damping can also be excluded, as it has been shown that At keeps 99.7% of its
amplitude at a contact force of 25 nN even on a hard sample like Silicon (see
Chap. 4 and [52]). One should mention here that the damping of the resonance
frequencies of a cantilever that is in contact with a sample, is generally assumed
to be directly proportional to the Young’s modulus of the sample [71]. Without
significant tip damping, the contrast must be due to a reduction in the sample
amplitude. Since a reduction of As, due to tip-sample damping, is expected to
occur also on the polymer without nanoparticles, and since Adiff is larger above
the nanoparticle, due to the increase in the effective Young’s modulus, we need
a mechanism that leads to a strong decrease of As only above the nanoparticle
to overcompensate the increase in Adiff such that it effectively leads to a con-
trast inversion. In the following we consider different possibilities.

Let us start with a possible vertical motion of the nanoparticles in the
polymer matrix. At low ultrasonic sample frequencies, this motion is surely in
phase with the excitation. However, if the ultrasonic excitation is above the
resonance frequency of the system “nanoparticle in polymer”, the motion will
be out of phase. This would indeed lead to a significant reduction of As only
above the nanoparticle. The problem, however, is that the sample excitation
is at 2.5 Mhz and that we estimated the resonance frequency of the “nanopar-
ticle in polymer” system to be ∼ 9 GHz. The nanoparticles should, therefore,
simply follow the ultrasonic displacements of the polymer.

Another mechanism worth considering is sample damping (reduction of As)
by energy dissipation at the nanoparticles. Next to the contrast formation
based on pure energy dissipation, a temperature effect might additionally en-
hance the contrast, especially if, e.g., the elasticity of the polymer would have a
strong dependence on the temperature. To evaluate this effect, we estimate the
energy dissipation from the experiment. We determine the sample amplitude
As (far away from the nanoparticle) in analogy to the method described in
Chap. 3 and in [42]. With As ∼ 0.22 nm at Fc = 163 nN, we need a reduction
of ∼ 41% to explain the observed contrast. As is ∼ 0.29 nm at Fc = 115 nm
and we need a reduction of ∼ 13% to reach the corresponding contrast. Both
estimations deliver a similar value: 0.83 and 0.37 pW, respectively. Therefore
the maximum energy dissipation of the nanoparticles is in the order of 2.07
eV/oscillation of the ultrasonic sample vibration. This value is so small that
we rule out also any temperature effects. It is important to realize here that the
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local elastic response of the sample above the nanoparticles is increased (see
Sect. 6.F), which leads according to Eq. 6.9 to an increased amplitude Adiff of
the heterodyne signal even without considering any form of energy dissipation.
As we observe holes, the real dissipation must be even higher and we estimate
the additional dissipation (on the basis of the effective elasticity increase) to be
in the order of 0.09 eV/oscillation. The real dissipation has, therefore, to be
increased with this value. The remaining question is the physical mechanism
that is responsible for this energy dissipation. One might consider ultrasound
attenuation within the nanoparticles as well as friction at the interface between
the nanoparticle and the polymer.

The ultrasound attenuation for gold is ∼ 150 times smaller than the atten-
uation for PVA. Therefore the total energy dissipation is less at the positions
measured above the nanoparticles than at the positions far away from them.
This effect results, in comparison to the experiment, again in a wrong sign
of the contrast, as As would be larger above the nanoparticles. We estimate
the resulting energy ‘gain’ based on a smaller ultrasound attenuation at the
nanoparticles to be 0.45 eV/oscillation. The real dissipation that is responsi-
ble for the contrast, must be increased with this value to overcompensate the
contrast inversion.

We are left with friction at the interface between the nanoparticles and the
PVA. Due to a weak (chemical) bonding between the gold and the PVA, the
nanoparticles might slip instead of following the displacements of the PVA. One
might even consider a small cavity around the nanoparticles such that they are
shaken up and down. Both effects would lead to a significant amount of friction.
Considering shaking nanoparticles, we are able to explain our observed contrast
with a total energy dissipation of 2.61 eV/oscillation at the nanoparticles. This
value is comparable (and definitively in the right order of magnitude) with the
energy dissipation derived from atomic scale friction experiments of a sharp tip
in contact with a surface [72].

Pinpointing the physical mechanism to friction at shaking nanoparticles, we
can consider the consequences for the lateral resolution. If one assumes that
the propagation in amplitude reduction obeys a scattering-like behavior, the
‘fingerprints’ of the nanoparticles at the surface should show a larger diam-
eter than the diameter of the nanoparticles. Moreover, as we are measuring
in near-field, the size of the ‘fingerprints’ should be in the order of the depth
of the nanoparticles. The deeper the nanoparticle is, the larger should be its
image at the surface. These considerations stand in clear contrast to experi-
mental observations: nanoparticles with a diameter of ∼ 17.5 nm, buried 500
nm deep, are imaged with a diameter of ∼ 20 nm [6], and the imaged diameter
is even decreasing with increasing depth of the nanoparticles [15]. A solution
to this might be found by considering a combination of a stress field that is
introduced on the nanoparticle by the indenting tip [29,30], a resulting shaking
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that is no longer parallel to the initial ultrasonic displacements of the PVA,
and a highly nonisotropic propagation of the amplitude reduction such that
there is a significant enhancement in the direction of the shaking movement.

6.5 Conclusions

In conclusion, we presented a first quantitative analysis of the contrast for-
mation mechanism of an HFM experiment. We showed that the contrasts
strongly depend on the applied contact force, which raises serious questions
about the general conception of measuring nondestructively with an HFM. Elu-
cidating the physical contrast mechanism, we showed that Rayleigh scattering
is not dominating, as the contrast values are orders of magnitudes too small.
Anyhow, Rayleigh scattering might become significant in the future with in-
creasing frequencies of the ultrasonic excitations. Variations in the tip-sample
interaction do generate a contrast that is significantly larger than predicted by
Rayleigh scattering, and the magnitude is also comparable to the experimental
values. This is valid for rather small variations in both the (visco)elasticity
and, not shown here, also the adhesion. However, we can also rule out this
contrast formation mechanism, as there is a problem with the sign that leads
to contrast inversion. The only left over possibility is tip-sample damping. We
showed that tip damping is not an issue and considered several effects for sam-
ple damping. Finally, we conclude that friction on shaking nanoparticles is the
only remaining contrast formation mechanism. We receive additional evidence
for this effect, as the energy dissipation estimated from the experiments fits
well with the dissipation reported for atomic scale friction experiments. Fric-
tion on shaking nanoparticles can also explain the observed lateral resolution,
if the reduction in sample amplitude is almost only in the direction, in which
the nanoparticles are shaking.

Based on the new insight, we expect that the contrast mechanism differs
greatly between the systems “nanoparticles in polymers” and “(gas) voids in
a solid”. In the latter, friction cannot be the dominating physical contrast
mechanism, as the dissipated energy on the interface between a (gas) void and
a solid is orders of magnitude lower than on the interface between a metal and
a polymer. Therefore, we rather expect elasticity variations in the sample to
dominate this contrast: a PVA nanoparticle with a radius of 10 nm inside a
209 nm thick gold plate results, according to Eq. 6.16, in a reduction of the
effective elasticity by 75%. As a consequence, the difference amplitude Adiff

is reduced with 2.5% above the PVA nanoparticle (see Eq. 6.9), which can
easily be detected with a HFM. Future detailed quantitative research is needed
that addresses the differences between these two systems with respect to the
remaining questions.

Finally, we would like to stress that the observed contrast and resolution
depend on many specific details of the experiment, as outlined in this chap-
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ter. This includes even the possibility for a contrast inversion. Therefore, it is
necessary to provide not only the amplitude and phase range of reported HFM
measurements, but also the applied contact force, the particular excitation
scheme, the frequency spectrum of the cantilever up to a resonance frequency
higher than the highest applied ultrasonic frequency, and the ultrasonic ampli-
tudes of both the tip/cantilever and the sample.
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Appendices of Chapter 6

Materials and Methods

In the Supplementary Material, we provide necessary specific details, back-
ground information, and insight in our estimations and calculations to support
the statements and results of Chap. 6.

We describe the precise details of the sample preparation in Appx. 6.A, and
we present a detailed sample characterization by means of Rutherford Backscat-
tering in Appx. 6.B. In Appx. 6.C, we provide typical cross sections of the
HFM images (including the height channel) that are presented in Sect. 6.2, at
the position of a gold nanoparticle. In Appx. 6.D, we show experimental evi-
dence for the statement that a harder surface results in an increased amplitude
of the signal at the heterodyne difference frequency. In Appx. 6.E, we even
provide an analytical argument for this. Important for the correct determina-
tion of the expected contrasts, we derive, in Appx. 6.F, an upper bound on the
elasticity variations induced by the buried gold nanoparticles in our sample.
In Appx. 6.G, we describe how we set up our numerical calculations such that
they match the conditions of the experiments as closely as possible, and, in
Appx. 6.H, we provide a complete overview on the results of our simulations.
Finally, in Appx. 6.I, we address the consequences of frequency shifts for the
particular contrast formation.

6.A Sample Preparation

Inspired by the sample with buried gold nanoparticles of Shekhawat and
Dravid [6], we set out to produce comparable ones. We decided to use gold
nanoparticles with a diameter of 20 nm (±10%), which we got from BBI So-
lutions [73]. A schematic cross section of the final sample that we used in the
current study, is shown in Fig. 6.4. In the following, we describe important
issues of the sample preparation and provide the recipe.

As a substrate, we used a freshly with acetone cleaned Silicon (100) wafer
that was covered with a native oxide. The polymer layers (including the suspen-
sion with the nanoparticles) were deposited by means of a spin coater, see also
the recipe below. We decided to use two different polymers: polymethylmetha-
crylaat (PMMA) with a degree of polymerization of 970 and polyvinyl alcohol
(PVA) with a degree of polymerization of 2700. The degree of polymerization
is the number of monomers in the molecule and it characterizes the length of a
single polymer molecule. This information is important, as the material proper-
ties of the polymer layers strongly depend on the molecule length. As we faced
some problems with clustering of the nanoparticles as well as with their density,
we describe these issues shortly in the following. Our first attempt to create a
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PMMA

PVA

Si ~ 1 mm

97 nm

82 nm

30 nm

Figure 6.4: A schematic cross section of the final sample that we used in the current
study. On the Silicon wafer, we have (from bottom to top), a 97 nm PMMA layer,
a 30 nm PVA layer that also contains gold nanoparticles with a diameter of 20 nm,
and a 82 nm PVA layer.

layer of gold nanoparticles on top of a spin coated PMMA layer was to let a sus-
pension of pure (Milli-Q) water with gold nanoparticles evaporate at ambient
conditions. This led to large “mountains” of clustered nanoparticles, which we
measured with an Atomic Force Microscope (AFM). In our second attempt, we
tried to embed the gold nanoparticles within a PVA layer by dissolving them in
a PVA solution before spin coating on top of the PMMA. The gold nanoparti-
cles did stick out with their “heads” just above the PVA layer, with which they
were simultaneously spin coated, such that we easily could verify the density,
again, with AFM. This approach resulted in an (for our research) unsuitable
low density of nanoparticles of less than 0.1 nanoparticle/µm2. By increasing
the concentration of the nanoparticles in the PVA solution, we were able to in-
crease the density to 0.7± 0.6 nanoparticle/µm2. We derived this distribution
from AFM measurements, see Fig. 6.5A. Finally, we buried the nanoparticles
by spinning another PVA layer on top of this structure. As we considered that
the solvent, which is present while spinning the additional PVA layer, might
(partially) dissolve the thin nanoparticles/PVA layer that is to be buried, lead-
ing to a possible redistribution of the nanoparticles, we counterchecked the
density with a Secondary Electron Microscope (SEM) on the final sample with
the top PVA layer. Due to the different electron emissions between gold and
PVA, the SEM is capable of imaging the nanoparticles, even if they are buried
under a 82 nm thick PVA layer, see Fig. 6.5B.

The final recipe for the sample production is as follows:

1. solution: 30 mg PMMA / mL Toluene
This results in a ∼ 97 nm thick PMMA layer, which was confirmed inde-
pendently with an AFM measurement [74].

2. solution: 250 µL of 2 mg PVA / mL water + 750 µL suspension of pure
water and gold nanoparticles
This leads to a PVA layer with embedded gold nanoparticles with a diam-
eter of 20 nm. The thickness of this PVA layer is less than 30 nm (∼ 10
nm), as we verified with AFM that the “heads” of the gold nanoparticles
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are sticking out. After burying this PVA layer with the top PVA layer,
we find an effective thickness of 30 nm for this layer that contains the
nanoparticles.

3. solution: 2mg PVA / mL water
This step leads to a ∼ 82 nm thick PVA layer.

Each step in the recipe represents an individual spin coating procedure. In
each spin coating step, a droplet of the corresponding solution was put onto
the sample by means of a pipet before the spin coater started to rotate for

5 s at 2000 rpm immediately followed by

90 s at 4000 rpm.

Although we did not apply explicitly a curing (baking) step of the final
sample after the preparation, the complete sample was baked for approximately
3 minutes at ∼ 140 0C to glue it with crystalbond 509 onto the ultrasonic
transducer of the sample. This was always done within 24 hours after the spin
coating procedure. We assume that, during this baking procedure, most of the
remaining solvents in the sample were evaporated.

A   AFM: B   SEM:

300 nm200 nm

22 nm
22 nm

Figure 6.5: Density and distribution of the nanoparticles: (A) measured with an
AFM before burying them under an additional PVA layer, and (B) measured with a
SEM on the final sample, where the nanoparticles are covered by a 82 nm thick top
PVA layer.
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6.B Independent Verification of the
Nanoparticle Depth

Rutherford Backscattering Spectrometry (RBS) is a technique that can
quantitatively determine both the composition of a sample and the depth dis-
tribution of the elements [75]. The sample is bombarded with He-ions with a
typical energy in the range of MeV. The He-ions are scattered at the atomic
nuclei within the sample. An energy dependent histogram of the backscattered
He-ions contains specific information on the type and depth of the atomic nu-
cleus, at which the He-ion was scattered. Each element, or nucleus type, has
its own distinct signature in an RBS spectrum. If a sample consists of a (very)
thick layer of only one element, the energy at which the number of backscatter
events drops to zero is called the surface channel. If the backscatter events of a
certain element drop to zero at energies lower than the corresponding surface
channel (surface signal shift), this particular element is covered by a layer of
another element (of a composition of elements). The size of the shift is directly
related to the thickness of the covering layer.

In order to quantify HFM experiments, it is of great importance to have a
well defined sample, in which the depth of the subsurface particles (or features)
is counterchecked with an independent technique. To this end, we performed an
RBS measurement on the sample that we used for experiments, to quantify the
exact depth of the gold nanoparticles as well as the thickness of the individual
layers. To deduce quantitative data from an RBS measurement, it is necessary
to perform a simulation [76]. Figure 6.6 shows both the RBS measurement
(black) and the corresponding result of the simulation (red) 1. The surface
channels of the different elements in our sample (Carbon, Oxygen, Silicon,
and Gold) are indicated in blue. Although almost at the detection limit of
the RBS setup, the inset clearly shows a signal obtained from the buried gold
nanoparticles: it is a sharp distribution, which indicates a well defined depth
of the nanoparticles, with a clear shift away from the surface channel of Au,
from which we can determine the thickness of the top PVA layer.

The RBS spectrum in Fig. 6.6 shows that Silicon is present just below the
sample’s surface, see the rise (and the tiny plateau) in the spectrum almost at
the Silicon surface channel as well as layer 2 in Tab. 6.2. We can explain this
with the presence of air bubbles in our sample and/or holes in some of the spin
coated polymer layers. As a consequence, the best simulation result contains 4
layers on top of the Silicon wafer (see Tab. 6.2).

1We gratefully thank Prof. R. Wördenweber and E. Hollmann (Forschungszentrum Jülich,
Germany) for the RBS measurements and a first analysis of the data.
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Figure 6.6: The RBS measurement (black) and the corresponding result of the sim-
ulation (red). The surface channel of the different elements in our sample (C, O, Si,
and Au) are indicated in blue. Although almost at the detection limit of the RBS
setup, the inset clearly shows a signal obtained from the buried gold nanoparticles.

layer 1 2 3 4 5
“material” PVA PVA PVA PMMA Si

thickness [nm] 17 65 30 97 3000
density [1023 atoms/cm3] 1.254 1.254 1.254 1.083 4.979

C 5.000 5.000 5.000 12.000 0.000
H 4.000 4.000 4.000 8.000 0.000
O 0.500 0.5000 0.500 1.000 0.000
Au 0.000 0.000 0.001 0.000 0.000
Si 0.000 0.430 0.430 0.800 1.000

Table 6.2: Layer thickness and composition according to our simulation that fit the
RBS measurements best. Each layer is specified by its thickness [nm], its density
[1023 atoms/cm3], and its composition C:H:O:Au:Si (not normalized to 1, as this is
performed automatically by the used software).
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The combined thickness of layers 1 and 2 is 82 nm. Therefore, the gold
nanoparticles are buried approximatly 82 nm below the surface. The thickness
of the underlying PMMA layer is approximately 97 nm. We verified the total
thickness of 209 nm by scanning over scratches on the sample with an AFM.
The minimum thickness that we found in all AFM heightlines is ∼ 250 nm,
which confirms the RBS analysis.

It is striking that the sample contains more C than expected, but less O.
From the simulation, we find the following composition for the PVA:
C2H1.6O0.2, which has to be compared to C2H4O1. The lack of oxygen can
be explained either by the formation of water during the baking procedure at
∼ 140 degrees 0C after the spin-coating or by a decomposition of the polymer
layers during the RBS measurements (a clear spot on the sample surface was
visible after the experiment). For the PMMA layer we find a composition of
C5H3.3O0.4 instead of C5H8O2.

6.C Cross Sections of the HFM Images at a
Gold Nanoparticle

In this appendix, we provide typical cross sections of the height as well as
the amplitude Adiff and the phase ϕdiff of the heterodyne signal at a position
of a gold nanoparticle for an applied contact force of 163 nN and 115 nN.

The cross sections at the nanoparticles taken for all channels of the HFM
measurements at a contact force of 163 nN and 115 nN are shown in Fig. 6.7
and 6.8, respectively. The channels (and cross sections) belong to the height
(A), the amplitude Adiff (B), the phase ϕdiff (C), and (again) the height (D).
All images also provide information on the values of the signal background next
to the nanoparticles, since they all show raw data without filtering and back-
ground subtraction. The same pixel in the different channels were measured
simultaneously. A, B, and C show the cross sections at the pixels indicated by
the blue line, which is at the exact same location in A, B, and C. Please note
that the blue line crosses the “middle” of the nanoparticle in B and C, whereas
there is a clear offset in y- and also in x-direction in A. To capture the full
height information we, therefore, added also images D, where the blue line is
shifted over the “middle” of the nanoparticles.

At a contact force of 163 nN, all three channels clearly show a strong con-
trasts, whereas at 115 nN the contrasts in the subsurface channels B an C are
almost of the same size as the corresponding background variations.
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Figure 6.7: Cross sections at the nanoparticles taken for all channels of the HFM
measurements at an applied contact force of 163 nN. The channels (and cross sections)
belong to the height (A), the amplitude Adiff (B), the phase ϕdiff (C), and (again)
the height (D). All images are raw data without any filtering and also without any
background subtraction such that the cross sections also provide information on the
values of the signal background next to the nanoparticles. All channels are recorded
simultaneously such that the same pixel in the different channels is taken at exactly
the same time. A, B, and C show the cross sections at the pixels indicated by the
blue line, which is at the exact same location in A, B, and C. It is remarkable that
the blue line crosses the “middle” of the nanoparticle in B and C, whereas there is a
clear offset in y- and also in x-direction in A. To capture the full height information
we, therefore, added also image D, where the blue line is shifted over the “middle”
of the nanoparticles. The cross sections are drawn over the same gold nanoparticle.
As +At = 1.71 nm.
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Figure 6.8: Cross sections at the nanoparticles taken for all channels of the HFM
measurements at an applied contact force of 115 nN. The channels (and cross sections)
belong to the height (A), the amplitude Adiff (B), the phase ϕdiff (C), and (again)
the height (D). All images are raw data without any filtering and also without any
background subtraction such that the cross sections also provide information on the
values of the signal background next to the nanoparticles. All channels are recorded
simultaneously such that the same pixel in the different channels is taken at exactly
the same time. A, B, and C show the cross sections at the pixels indicated by the
blue line, which is at the exact same location in A, B, and C. It is remarkable that
the blue line crosses the “middle” of the nanoparticle in B and C, whereas there is a
clear offset in y- and also in x-direction in A. To capture the full height information
we, therefore, added also image D, where the blue line is shifted over the “middle”
of the nanoparticles. The cross sections are drawn over the same gold nanoparticle.
As +At = 1.71 nm.
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6.D Experimental Dependence of the
Difference Frequency Amplitude Adiff on
the Sample Elasticity

To experimentally address the dependence of the amplitude Adiff of the
heterodyne signal at the difference frequency on the elasticity of the sample,
which is characterized by its Young’s modulus E, we present results for the
difference frequency generation on both a soft sample (∼ 97 nm thick PMMA,
E ∼ 2.4 GPa) and a hard sample (Silicon (100) wafer, E ∼ 179 GPa). The
HFM experiment was performed with a similar cantilever as described in Sect.
6.2.

We obtained the Young’s modulus on PMMA by fitting an experimentally
obtained tip-sample interaction Fts with the Derjaguin-Muller-Toporov (DMT-
) model, see Sect. 1.4 and [23]. A parameter called λ, which is related to the
elasticities of the tip and the sample, is usually used to differentiate between
the applicabilities of different models that describe the tip-sample interaction,
see Fig. 1.8 and [27]. As λ = 0.63 in our case, one should use the Maugis-
Dugdale model [25]. Nevertheless, our approach with the DMT-model is fully
justified, as we have demonstrated in Chap. 4 and in [52] that it does not
matter at all for the numerical simulations which of the models describes the
tip-sample interaction, as long as the fit perfectly matches the (experimentally
obtained) tip-sample interaction. The only thing that matters is the particular
shape (form) of Fts(z) and not the model that is used to describe this particular
interaction.

The cantilever has a spring constant of 2.0±0.4 N/m, which was calibrated
using the thermal noise method [67]. We applied an off-off resonance excitation
scheme with an ultrasonic tip frequency of 2.870 MHz and an ultrasonic sample
frequency of 2.871 MHz leading to a heterodyne signal at a difference frequency
fdiff of 1 kHz. The ultrasonic vibration amplitudes of both the tip At and the
sample As were slightly different for the two experiments: At = 0.94 nm and
As = 0.32 nm on Silicon, whereas At = 1.23 nm and As = 0.18 nm on PMMA.
The tip amplitudes were determined using the procedure outlined in Sect. 5.E,
in [52] and below we describe how we determined the sample amplitudes from
the measurements. We measured the amplitude Adiff of the difference frequency
as a function of the cantilever’s base position zb on both the Silicon and the
PMMA layer. zb is defined such that zb = 0, if the deflection δ = 0 during the
approach cycle of the cantilever to the surface. This is exactly the point, at
which the effective interaction (contact force) Fc on the tip changes sign from
an attractive interaction to a repulsive interaction.

Figure 6.9 shows the amplitude Adiff of the heterodyne signal as well as
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Figure 6.9: Top panel: the amplitude Adiff of the heterodyne signal as a function
of the cantilever’s base position zb on both a hard Silicon sample (red) and a soft
PMMA layer (black). The top axis shows the contact force Fc for negative zb. As
Adiff ∝ As · At/

√
A2

s +A2
t , see below, Chap. 5, and [69], and as the vibration

amplitudes are slightly different for the measurements on Silicon and PMMA, one
has to multiply the amplitude Adiff for the PMMA case with a scale factor of 1.78
to accommodate for a valid comparison. Please note that, even with this correction
factor, Adiff is significantly larger on the hard Silicon surface (179 GPa) than on the
soft ∼ 97 nm thick PMMA layer (2.4 GPa). The lower panel shows the corresponding
deflection δ of the cantilever.

the corresponding deflection of the cantilever as a function of the cantilever’s
base position zb on both a Silicon sample (red) and a ∼ 97 nm thick PMMA
layer (black). The top axis in Fig. 6.9 shows the contact force Fc for negative
zb. To determine the ultrasonic vibration amplitude As of the sample, we can
estimate As, for the case of Silicon, from the height of the plateau, using the
method described in Chap. 4 and in [52], to be 0.32 nm. Without the existence
of a clear plateau in the PMMA case (note the slight decrease of Adiff for neg-
ative zb), we instead use the maximum amplitude of the difference frequency
Adiff (0.18 nm) for the estimation and find As = 0.18 nm.
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To enable a valid comparison between the measurements on the two differ-
ent samples, one has to multiply the amplitude Adiff for the PMMA case with
a correction factor of 1.78, as Adiff ∝ As · At/

√
A2

s +A2
t (see below, Chap. 5,

and [69]) and as the vibration amplitudes are slightly different for the mea-
surements on the different samples. Taking this correction factor into account,
one still observes that, for the same contact force, Adiff is significantly larger
on the hard Silicon surface than on the soft ∼ 97 nm thick PMMA layer. The
peaks in the attractive regime are larger for the soft PMMA sample, because
the adhesion is larger on the PMMA sample than on the Silicon sample (please
note the difference in deflection in the attractive part of the tip-sample inter-
action). Thus we conclude that the amplitude Adiff significantly depends on
the elasticity of the sample and increases with increasing Young’s modulus E.

6.E Analytical Dependence of the Difference
Frequency Amplitude Adiff on the Sample
Elasticity

The analytical theory that completely describes the generation of the het-
erodyne signal at the difference frequency for HFM experiments (see Chap. 5
and [69]) showed that the signal is characterized by the following analytical
expressions:

Adiffe
iϕdiff =

AsAt√
A2

s +A2
t

I2e
i(ϕs−ϕt)

|H−1(ωdiff)|eiΛ − I1
(6.1)
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I2 =

√
A2

s +A2
t

2π

∫ 1

−1

∂2Fts

∂z2

(
zb + δ +

√
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s +A2
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)√
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, in which Adiff and ϕdiff are the amplitude and the phase, respectively, of the
signal at the difference frequency, and As and At are the ultrasonic vibration
amplitudes of the sample and the tip with corresponding phases ϕs and ϕt.
|H−1(ωdiff)| represents the absolute value of the inverse transfer function and
its corresponding phase shift Λ, Fts is the tip-sample interaction as a function
of the tip-sample distance z, zb is the position of the cantilever’s base, and δ is
the deflection of the cantilever.

The integrals I1 and I2 completely determine the generation of the signal
at the difference frequency and they both depend on the particular tip-sample
interaction Fts. As the tip-sample interaction in the experiment can be well
described by the Derjaguin-Muller-Toporov (DMT-)model [23], Fts can be ex-
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pressed by

Fts(z) =


−HR

6a20
+

4

3
Ef

√
R(a0 − z)3/2 if z ≤ a0,

−HR

6z2
if z > a0.

(6.4)

, in which R is the radius of the cantilever’s tip, H the Hamaker constant, a0
the distance at which the repulsive part of the tip-sample interaction is first felt
by the cantilever (∼ at the minimum of Fts), and Ef is an effective Young’s
modulus describing the effective tip-sample stiffness. This effective Young’s
modulus Ef is determined by the elasticities (Et and E) as well as the Poisson
ratio’s (µt and µ) of the cantilever and the sample, respectively:

1

Ef
=

1− ν2

E
+

1− ν2t
Et

(6.5)

Since we probe our final sample that consists of several polymers layers, of
which E ∼ 2.4 GPa, with a hard Silicon cantilever with Et ∼ 179 GPa, we
can neglect (1 − ν2t )/Et and receive that the effective elasticity Ef is directly
proportional to the elasticity E of the sample. The repulsive part of the tip-
sample interaction, see Eq. 6.4, is, therefore, also directly proportional to the
elasticity E of the sample. As a consequence, this is valid also for the integrals
I1 and I2 described by Eqs. 6.2 and 6.3. Using these proportionality relations
in Eq. 6.1, we find a simple expression for the elasticity dependence of the
amplitude Adiff of the heterodyne signal:

Adiff ∝
∣∣∣∣ E

γ + E

∣∣∣∣ = E√
E2 + |γ|2 + 2ERe [γ]

(6.6)

, in which γ is a complex constant. If the cantilever is completely in the
Hertzian contact regime (z < a0) during its oscillation, gamma can be written
as

γ =
|H−1(ωdiff)|eiΛ[

2
√
R
√

A2
s+A2

t

π

] ∫ 1

−1

√
α−u
1−u2 du

(6.7)

, in which α is the normalized indentation given by:

α =
a0 − zb − δ√

A2
s +A2

t

(6.8)

We can evaluate an lower estimate for γ by setting the normalized inden-
tation α = 1 and noticing that for smaller α, the integral in the expression for
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γ would become smaller, and γ, therefore, larger. Using the ultrasonic ampli-
tudes of both the tip and the sample, we appraise

√
A2

s +A2
t = 1.39 nm. For

the tip radius we assume R = 5 nm. The inverse transfer function |H−1(ωdiff)|
can be derived as described in Sect. 5.B and in [69], in which we take a spring
constant of 2.5 N/m and set Λ to zero. This leads to the following estimates
for γ and Adiff :

γ = 0.5GPa

Adiff ∝ E [inGPa]

0.5 + E [inGPa]
(6.9)

, in which E has to be inserted in GPa. Equation 6.9 describes an analytical
dependence of Adiff on the sample elasticity E. For soft samples, in which E
is smaller than 0.5 GPa, Adiff is approximately proportional to E. Therefore,
we also expect analytically that a harder sample results in a higher amplitude
Adiff of the heterodyne signal, especially above the nanoparticles, where the
effective elasticity is slightly increased with respect to the soft polymer. On
very hard samples, with E ≫ 0.5 GPa, Adiff approaches a constant value and
becomes independent of E.

Please note that we have neglected the influence of the elasticity on both the
deflection of the cantilever and the transfer function of the cantilever. However,
this is a valid approximation, as we never saw a decrease in the amplitude Adiff

of the difference frequency at a given contact force while the elasticity E of the
sample was increased.

6.F Effective Sample Elasticity above the
Nanoparticles

In this appendix, we derive an upper bound for the effective sample elas-
ticity, measured at the sample surface, that is increased by the presence of the
buried nanoparticles in the polymer.

Figure 6.10 shows a schematic cross section of the sample, which consists of
a PVA layer (PVA), the gold nanoparticles (Au), and a PMMA layer (PMMA).
The Au is buried at the depth d, and has a radius R. The total thickness of
the sample is denoted with t. The sample is compressed by a stress σ, which
is equal to the force F per unit area A.

From linear elasticity theory, we know that an applied external stress is
negatively proportional to the relative change in thickness, in which the pro-
portionality factor is given by the Young’s modulus E of the material. For our
sample this reduces to the following equations:

σ = −EPV A

d−R
(δd− δR) = −EAu

2R
(2δR) =

EPMMA

t− d−R
(δt− δd− δR) (6.10)
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d - R

Au: 2R

t - d - R

σ = F/A

Si ~ 1 mm

PMMA

PVA

Figure 6.10: A schematic cross section of the sample, which consists of a PVA layer
(PVA), the gold nanoparticle (Au), and a PMMA layer (PMMA). The Au is buried
at the depth d, and has a radius R. The total thickness of the sample is denoted with
t. The sample is compressed by a stress σ, which is equal to the force F per unit area
A.

, in which EPV A, EAu, and EPMMA are the Young’s moduli of PVA, gold, and
PMMA, respectively, δd is the variation in depth of the nanoparticle, δR is the
variation in radius of the nanoparticle, and δt is the variation in thickness of
the sample.

It is straightforward to derive the solutions for δd, δR, and δt, from Eq.
6.10:

δd = −Rσ
[
E−1

Au − E−1
PV A

]
− dσE−1

PV A (6.11)

δR = −RσE−1
Au (6.12)

δt = −tσE−1
PMMA − dσ

[
E−1

PV A − E−1
PMMA

]
−Rσ

[
2E−1

Au − E−1
PV A − E−1

PMMA

]
(6.13)

If one introduces an effective Young’s modulus Eeff , the complete sample
with all three layers can be regarded also as a sample consisting of one layer
with a thickness t of an isotropic material such that

σ = −Eeff

t
δt (6.14)

By substituting Eq. 6.13 in Eq. 6.14, we find an expression for the effective
Young’s modulus Eeff :

Eeff =
1

E−1
PMMA + d

t

[
E−1

PV A − E−1
PMMA

]
+ 2R

t

[
E−1

Au − 0.5E−1
PV A − 0.5E−1

PMMA

]
(6.15)

Let us now discuss the two limits of this equation. Firstly, if the diameter
2R of the nanoparticle is equal to the thickness t of the sample (and thus d = 0),
we find that Eeff = EAu. Secondly, if the radius R of the nanoparticle is equal
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to zero and the sample is infinitely thick (t ≫ d), we find that Eeff = EPMMA.
Thirdly, if the radius R of the nanoparticle is equal to zero and d = t, we find
that Eeff = EPV A. These results reflect correct expectations, as the sample
consists only of Au in the first case, only of PMMA in the second case, and
only of PVA in the third case.

Equation 6.15 provides an upper bound on the elasticity on the surface
above a nanoparticle. In reality, the variation in elasticity due to a nanoparticle
should be derived from a 3D calculation, as the stress is spread out also laterally
through the sample [77]. As a consequence, the rise in elasticity caused by the
presence of the nanoparticle decreases with increasing depth of the nanoparti-
cle. This effect is comparable to a stone underneath a pillow: if one just touches
the pillow, the stone is not felt, but if one pushes harder into the pillow, the
presence of the stone is clearly noticed.

Let us now calculate the expected effective elasticity increase for our sam-
ples. PMMA and PVA, both have a similar Young’s modulus: EPMMA ∼
EPV A = 2.4 GPa. Under this assumption, Eq. 6.15 reduces to:

Eeff =
1

E−1
PV A + 2R

t

[
E−1

Au − E−1
PV A

] (6.16)

We assume that the Young’s modulus of the gold nanoparticle is equal to
that of bulk gold, which is 78 GPa [78] and consider the total thickness to be
t = 209 nm. For the radius, we take R = 10 nm of the gold nanoparticles,
as this is the average of their radii distribution [73, 74]. Using this value for
the radius R, we find the effective Young’s modulus Eeff to be equal to 2.65
GPa. Therefore, the surface directly above the nanoparticle has (at maximum)
a 10% higher Young’s modulus than that of the bulk polymer of 2.4 GPa.

6.G Setting up the Numerical Calculations

As the amplitude and phase contrast highly depend on both the exact ex-
citation scheme and precise resonance frequency spectrum of the cantilever,
which can even result in a contrast inversion, it is of uttermost importance to
match the spectrum of the cantilever in the numerical calculation (numerical
cantilever) to the spectrum of the cantilever used in the experiment (experi-
mental cantilever). In this appendix, we describe the matching procedure.

On the basis of the resonance frequencies fnum
i of the numerical cantilever

and the corresponding resonance frequencies fexp
i of the experimental can-

tilever, we defined a normalized, relative error ei for each resonance frequency:

ei =
|fnum

i − fexp
i |

fexp
i

(6.17)
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We took into account the first 5 modes of the cantilever and used the average
ei as a measure for the quality of our fit. We optimized the fit by varying the
elasticity Et of the cantilever, the length L of the cantilever, the tip mass me,
the moment of inertia Ie of the tip, and the density ρs of the cantilever. As a
best fit, with an average error of 1.397%, the cantilever is described by following
parameters: Et = 222 GPa, L = 207 µm, me = 5.76 ·10−15 kg, Ie = 3.51 ·10−22

kg m2, and ρs = 3207 kg m−3. We did not fit the width and the thickness of the
cantilever. Instead we have chosen them to be 20 µm and 2.7 µm, respectively,
to set the spring constant of the numerical cantilever to 2.5 N/m such that
it is comparable to the spring constant of 2.7 ± 0.4 N/m of the experimental
cantilever.

The Q-factors that describe the widths of the resonance peaks, were chosen
such that the widths of the resonance peaks match between the numerical and
the experimental cantilever. If Qexp

i is the experimentally measured Q-factor
of the resonance frequency fexp

i , the corresponding numerical Q-factor Qnum
i

is related to Qexp
i by

Qnum
i =

fnum
i

fexp
i

Qexp
i (6.18)

Fig. 6.11 shows the vibration spectrum of both the experimental cantilever
and the numerical cantilever. The bottom two panels show the amplitude and
the phase of the experimental cantilever. The phase extremely decreases al-
most linear with the frequency (notice the phase change from 00 to −42000):
this is due to the phase change in the fixed cables, which deliver the electronic
drive signal to the cantilever. The red lines indicate the experimentally de-
termined resonance frequencies, which are indicated at the top together with
their corresponding Q-factors that describe the widths of the resonance peaks.
The second panel from the top shows the spectrum of the numerical cantilever.
The blue lines indicate the frequencies of this particular excitation scheme with
ft = 2.50 MHz (cantilever) and fs = 2.52 MHz (sample), as well as the differ-
ence frequency fdiff = 20 kHz.
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Figure 6.11: The vibration spectrum of both the experimental and the numerical
cantilever. The bottom two panels show the amplitude and the phase of the exper-
imental cantilever. The phase extremely decreases almost linear with the frequency
(notice the phase change from 00 to −42000): this is due to the phase change in the
fixed cables, which deliver the electronic drive signal to the cantilever. The red lines
indicate the experimentally determined resonance frequencies, which are indicated at
the top together with their corresponding Q-factors that describe the widths of the
resonance peaks. The second panel from the top shows the spectrum of the numerical
cantilever for comparison. The blue lines indicate the frequencies of this particular
excitation scheme with ft = 2.50 MHz (cantilever) and fs = 2.52 MHz (sample), as
well as the difference frequency fdiff = 20 kHz.
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6.H Complete Overview of the Results of the
Numerical Calculations

In Sect. 6.3, we describe the results of three different schemes for the
ultrasonic excitations: off-off resonance, in which the ultrasonic excitations
are chosen halfway between the 3rd and 4th resonance of the cantilever; off-
on resonance, in which the ultrasonic excitation frequencies are on the 4th

resonance of the cantilever; experimental excitation, in which the ultrasonic
excitation frequencies are equally far away from the nearest resonance frequency
as in the experiment. In this appendix, we present the full numerical results of
both the off-off resonance and the off-on resonance scheme.

Figure 6.12 shows the results for the off-off resonance excitation scheme.
The top panel shows the vibration spectrum: blue lines indicate the excitation
frequencies and red lines the resonance frequencies. The bottom three panels
show the numerical results for different sample elasticities as a function of
the applied contact force Fc (given by I0): 2 GPa (black), 3 GPa (red), 4
GPa (magenta), 5 GPa (green), and 6 GPa (blue). The panels depict from
left to right the indentation (∼ inverted height), the amplitude Adiff , and the
phase ϕdiff . The cantilever’s motion is unstable for some contact forces while
indenting in the sample (see jumps at ∼ 70 nN). Note that after the instability
the motion is stable again, Adiff is smooth, we receive smooth motions of the
cantilever, and the phase differences approach values that correspond to the
numerical error of the lock-in.

Let us first discuss the instabilities in the motion of the cantilever. As these
instabilities also appear in the retract curves (not shown here) at approximately
the same contact forces as in the approach curves, it indicates that they are
not based on a numerical issue (instability) within the simulation. Please note
also that, with increasing contact force, we receive smooth motions of the can-
tilever after the instabilities, which is a second indication that it is not based
on a numerical issue. The instabilities must be real. With increasing contact
force, the resonance frequencies of the cantilever shift towards higher frequen-
cies [79]. As a consequence, the value of the transfer function of the cantilever
at the ultrasonic tip frequency H(ft) increases, see Fig. 6.12. Therefore, the
ultrasonic tip amplitude At rises, which also results in an increase of Adiff , see
Eq. 6.1 above. This leads to an even deeper penetration of the tip into the
sample, which, in turn, results in a further shift of the resonance frequencies
towards higher frequencies. This feedback mechanism leads to the instabilities,
as the amplitude of the ultrasonic tip motion of the cantilever keeps increasing.

The increase in amplitude has a counterintuitive effect on the indentation,
which is shown in Fig. 6.13. The red region indicates the initial cantilever
oscillation. If the vibration amplitude of the cantilever increases, as indicated
with the blue region, the cantilever penetrates deeper into the sample, see 1 in
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Figure 6.12: The top panel shows the vibration spectrum in the off-off resonance
scheme: blue lines indicate the excitation frequencies, whereas red lines indicate the
resonance frequencies of the cantilever. The bottom three panels show the numerical
results of the off-off resonance scheme for different sample elasticities as a function
of the applied contact force Fc (given by I0): 2 GPa (black), 3 GPa (red), 4 GPa
(magenta), 5 GPa (green), and 6 GPa (blue). The panels display from left to right
the indentation (∼ inverted height), the amplitude Adiff , and the phase ϕdiff . We
observe an instability in the cantilever’s motion while indenting into the sample (see
jumps at ∼ 70 nN). Note that, after the instabilities, we receive smooth motions
of the cantilever and the phase differences approach values that correspond to the
numerical error of the lock-in.

Fig. 6.13. This results in a larger than linear increase of the average force on
the cantilever during one oscillation, as the tip-sample interaction is nonlinear.
To compensate for this additional increase in average force, the equilibrium
position of the cantilever shifts, see 2 in Fig. 6.13, which results in a decrease
of the indentation. The equilibrium positions of the cantilever are indicated by
the dashed lines. It is exactly this effect that we observe in Fig. 6.12 for contact
forces between 15 nN and 85 nN. Since the cantilever is moved continuously into
sample during the approach phase, the instability can only arise, if the decrease
in indentation per unit time is larger than the speed at which the cantilever is
pushed into the sample. Note that the instability does not remain. During the
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Figure 6.13: Graph that shows that there is a decrease of the indentation, if the
(ultrasonic) vibration amplitude of the cantilever increases. Initially, the cantilever is
oscillating in the region that is indicated in red. If the vibration amplitude increases,
as indicated with the blue region, the cantilever penetrates deeper into the sample
during its oscillation (1). Since the tip-sample interaction is nonlinear, this results
in a larger than linear increase of the average force on the cantilever during one
oscillation. Consequently, the equilibrium position of the cantilever shifts (2), which
results in a decrease of the indentation. The equilibrium positions are indicated with
the dashed lines.

decrease of the indentation, the integral I2, which determines the amplitude
at the difference frequency (see Eq. 6.1), also starts to decrease. When the
cantilever starts to probe the attractive part of the tip-sample interaction, the
integral I2 even rapidly decreases to zero. At this moment, the cantilever
quickly shoots back into the sample to find its new equilibrium position: the
cantilever snaps into contact with the surface [79]. During this process, the
cantilever has no time to enter again the instability loop. We find evidence for
this behavior in the indentation shown in Fig. 6.12: the indentation decreases
after an initial maximum with increasing contact force, until it snaps back into
the sample at the position of the instability.

Figure 6.14 shows the results for the off-on resonance excitation scheme.
The top panel shows the vibration spectrum: blue lines indicate the excitation
frequencies and red lines the resonance frequencies. The bottom three panels
show the numerical results for different sample elasticities as a function of the
applied contact force Fc (given by I0): 2 GPa (black), 3 GPa (red), 4 GPa
(magenta), 5 GPa (green), and 6 GPa (blue). The panels depict from left to
right the indentation (∼ inverted height), the amplitude Adiff , and the phase
ϕdiff .
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Figure 6.14: The top panel shows the vibration spectrum in the off-on resonance
scheme: blue lines indicate the excitation frequencies, whereas red lines indicate the
resonance frequencies of the cantilever. The bottom three panels show the numerical
results of the off-on resonance scheme for different sample elasticities as a function
of the applied contact force Fc (given by I0): 2 GPa (black), 3 GPa (red), 4 GPa
(magenta), 5 GPa (green), and 6 GPa (blue). The panels display from left to right
the indentation (∼ inverted height), the amplitude Adiff , and the phase ϕdiff .

This time, we do not observe any instabilities, as the value of the transfer
function of the cantilever decreases with the shifting of the resonance frequen-
cies towards higher frequencies. This is also the reason, why we do not see an
instability in the results of the experimental excitation scheme, which is pre-
sented in Fig. 6.3. Let us, in the following, have a closer look to the implications
on the contrasts, if applying a the specific excitation scheme.

We start with the height contrast. In both the off-off resonance and the
off-on resonance excitation scheme, we observe that a softer sample (2 GPa)
leads to a deeper indentation at a given contact force. Since we consider mea-
surements that are performed with the feedback operating in contact mode, the
contact force is held constant and a variation in elasticity results in different
indentations, which translates into a measurable height signal: a harder mate-
rial appears to be higher. This consideration holds for all excitation schemes



6.I. Frequency Shifts and their Consequences for the Contrasts 143

including also the experimental excitation scheme, as discussed in Sect. 6.3.
Considering the contrast in the amplitude Adiff that results from parts of the

sample with different elasticities, we observe opposite behavior between the off-
off resonance scheme and the off-on resonance scheme. In the off-off resonance
excitation scheme, we see that a hard surface leads to a higher amplitude Adiff

than a soft surface. This additionally supports both the experimental results
of Appx. 6.D and the analytical result of Appx. 6.E. In contrast, in the off-on
resonance excitation scheme, we observe that for large contact forces (> 110
nN, see Fig. 6.14), a soft surface generates a higher amplitude Adiff than a
hard one. We trust this result of our simulation at large contact forces, as
the cantilever is completely vibrating in the Hertzian contact regime of the
tip-sample interaction at these contact forces: the cantilever does not feel any
attractive forces during is motion. This is not the case at lower forces (< 110
nN), where the contrast is inverted. Further evidence for a contrast inversion
as a function of the applied contact force comes from the fact that the retract
curves (not shown here) show exactly the same characteristics. The contrast
inversion between the off-on resonance case and the off-off resonance case is
caused by the frequency shift of the 4th resonance frequency of the cantilever,
which is explicitly excited in the off-on resonance excitation scheme. We will
discuss this amplitude inversion in Appx. 6.I in more detail.

Let us finish with the variations in the phase that result from parts of the
sample with different elasticities. The phase ϕdiff is directly related to the
shift of that resonance frequency that is nearest to the ultrasonic excitation of
the tip, as will be discussed in Appx. 6.I. In the off-off resonance excitation
scheme, we observe phase variations in the order of 10 millidegrees between a
hard and a soft surface. After the initial phase oscillations, which are inherently
connected to the instabilities, the phase variations become smaller and reduce
finally to a millidegree. In the off-on resonance scheme, the phase variations
between a hard and a soft surface are in the order of a few degrees. We provide
an explanation for the huge difference in sensitivity on the phase in the next
appendix.

6.I Frequency Shifts and their Consequences for
the Contrasts

In Sect. 6.3 as well as in Appx. 6.H, we argued that both the observed
amplitude and the phase contrast are related to a shift of the resonance fre-
quencies, especially in the off-on resonance excitation scheme. We even show
that the amplitude contrast can be inverted depending on the applied excita-
tion scheme. In this appendix, we consider the effect on the contrasts based
on a shift of the 4th resonance frequency of the cantilever to highlight the
implications on the contrasts.
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Figure 6.15: The top panel shows the transfer functions of the cantilever used in
our calculations around its 4th resonance frequency and the bottom panel shows the
corresponding phases. The black line shows the vibration spectrum of the free hanging
cantilever, while the gray line shows the spectrum of the cantilever, when it is pushed
with a contact force of 670 nN into a sample with an elasticity of E = 2 GPa. The
three vertical lines represent the ultrasonic tip excitation frequencies applied in the
different excitation schemes: off-off resonance (blue), experimental excitation (green),
and off-on resonance (red). The corresponding ultrasonic sample excitations cannot
be drawn in the current graph, as they are chosen in our experiment to be only 20 kHz
lower than the ultrasonic tip excitations. The inset shows that the transfer function
increases in the off-off resonance scheme, when the cantilever is pushed into a sample.

Let us first address the shifting of the resonance peaks in general. For small
vibration amplitudes, the frequency shifts are proportional to −∂Fts/∂z [79].
This implies that in the attractive regime (z > a0) all resonance frequencies
shift towards lower frequencies for the particular tip-sample interaction de-
scribed by Eq. 6.4. On the other hand, all resonance frequencies shift towards
higher frequencies in the repulsive Hertzian contact regime (z < a0). Consider-
ing the magnitude of the shifts, we note that, in the repulsive Hertzian contact
regime, ∂Fts/∂z is proportional to the elasticity E of the sample. Therefore,
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the shifts of the resonance frequencies are larger on a hard sample than on a
soft one.

The top panel in Fig. 6.15 shows the transfer functions of the cantilever
used in our numerical calculations around its 4th resonance frequency and the
bottom panel shows the corresponding phases. The black line depicts the vi-
bration spectrum of the free hanging cantilever, while the gray line shows the
shifted spectrum, when the cantilever is pushed with a contact force of 670 nN
into a sample with an elasticity of E = 2 GPa. The three vertical lines repre-
sent the ultrasonic tip excitation frequencies that are applied in the different
excitation schemes: off-off resonance (blue), experimental excitation (green),
and off-on resonance (red). The corresponding ultrasonic sample excitations
are not shown in the current graph, as they are chosen by default (in our case)
to lie only 20 kHz below the ultrasonic tip excitations.

In the following, it is important to notice that, in all three excitation
schemes, the excitation force on the tip at the excitation frequency is held
constant. Figure 6.15 shows that, for both the off-on resonance and the exper-
imental excitation scheme, a shift of the resonance frequency towards higher
frequencies results in a decrease of the value of the transfer function. As a con-
sequence, the resulting ultrasonic tip amplitude At is decreased. This implies
that also the amplitude Adiff is decreased, as Adiff ∼ As · At/

√
A2

s +A2
t , see

Eq. 6.1. The decrease of the transfer function is accompanied by a phase shift.
Following the same line of reasoning, this phase shift translates into a shift of
the phase ϕdiff .

The described effects hold for all excitations of the cantilever, including also
the excitation at the heterodyne difference frequency. This leads to a variety
of excitation schemes with different sensitivities and contrasts. Keeping this
in mind, we can now consider the effects of local elasticity variations of the
surface on both the amplitude Adiff and the phase ϕdiff of the signal at the
heterodyne difference frequency in Heterodyne Force Microscopy.

Let us first discus the amplitude contrast ∆Adiff for the off-on resonance and
experimental excitation scheme. In both schemes, we observed that the value of
the transfer function decreases, if the resonance frequencies shift towards higher
frequencies when the cantilever gets into contact with the sample. As the size
of the shifts are proportional to the elasticity E of the sample, the resonance
frequencies shift more on a hard part of the surface than on a soft part. This
results in a lower value of the transfer function on the hard parts of the surface
implying that also the ultrasonic tip amplitude At and, consequently, also the
amplitude Adiff are lower on the hard parts of the surface. Effectively, this
can result in a negative amplitude contrast (‘holes’ in Adiff at the position of
the nanoparticles), which matches our observations described in Sect. 6.2 for
the off-on resonance excitation scheme. However, there is also a counter effect:
Adiff is larger on harder parts of the sample, as the amplitude Adiff ∼ E (see



Appxs. 6.D and 6.E). Therefore, if an increase in E (and therefore in Adiff)
overcompensates the decrease in At, it is still possible to observe, like in the
experimental excitation schemes, a positive amplitude contrast ∆Adiff .

In the off-off resonance excitation scheme, the value of the transfer function
increases, if the resonance frequencies shift towards higher frequencies when the
cantilever gets into contact with the sample (see the inset in Fig. 6.15). There-
fore, both the ultrasonic tip amplitude At and the amplitude Adiff are higher
on a hard part of the surface. The increase in amplitude Adiff is even magnified
by the increase of Adiff due to the higher Young’s modulus E. Therefore, we
always observe a positive amplitude contrast in the off-off resonance scheme.

Considering the variations in the phase that result from parts of the sample
with different elasticities, the bottom panel of Fig. 6.15, which shows the phase
of the transfer function, serves as a starting point. In analogy to the amplitude
contrast, the contrast in the phase ϕdiff is defined by the difference between
ϕdiff on a hard part of the surface and on a soft part. Equation 6.1 shows that
ϕdiff = ϕt + const, in which we neglected the phase ∆ of the transfer function
at the difference frequency. This is a valid assumption, since we have chosen
the difference frequency to be fdiff = 20 kHz in both our HFM experiments
and the simulations, while the first resonance frequency of the cantilever is at
87.4 kHz. As a consequence, the phase ϕdiff is determined by the phase ϕt of
the ultrasonic cantilever motion.

The sensitivity of the phase ϕt to a shift of the resonance frequency, is
determined by ∂ϕt/∂f . This function has a strong maximum at a resonance
frequency of the cantilever. As a result, the phase ϕt in the off-on resonance
scheme is extremely sensitive to small frequency shifts. This sensitivity de-
creases, if the ultrasonic cantilever excitation is further away from a resonance
frequency of the cantilever. Therefore, the experimental excitation scheme is
less sensitive for a variation in ϕt (and therefore ϕdiff), than the off-on resonance
scheme, but more sensitive than the off-off resonance scheme. As argued above,
the magnitude of the frequency shift is proportional to the Young’s modulus of
the surface. The explained phase sensitivity is the reason why the phase con-
trast is in the order of ten degrees for the off-on resonance excitation scheme,
decreases to one degree in the experimental excitation scheme, before it almost
vanishes in the off-off resonance excitation scheme.


