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CHAPTER 5

Beating beats Nonlinear Mixing in
Heterodyne Force Microscopy

Heterodyne detection schemes are widely used to detect high frequency signals,
which are unmeasurable with conventional techniques. Although counterintu-
itive, we demonstrate that beating, which is a linear effect and does not gen-
erate a heterodyne signal, dominates the heterodyne signal that is generated
by nonlinear mixing, if the nonlinearity of the system is of higher order than
quadratic. We confirm our results experimentally using Heterodyne Force Mi-
croscopy, which is a typical example of a system with a nonquadratic nonlinear-
ity. Our study implies that results of previously reported heterodyne measure-
ments, in which the nonlinearity is of higher order than quadratic, may need
to be reconsidered.

Most of this chapter is submitted for publication in Nature Physics
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82 5.1. Introduction

5.1 Introduction

There are many periodic processes with such a high frequency that they are
difficult to measure experimentally. A solution is the application of a hetero-
dyne detection scheme, as it down-converts the high frequency signal to a lower,
easily measurable frequency by mixing it with a reference signal. This enables
the quantification of the amplitude, the phase, and the frequency modulation
of the original, high frequency signal. A well-known example of a heterodyne
detector is the radio. Heterodyne detection is also widely used in optics, in
quantum devices, in the detection of nuclear magnetic resonance, in microwave
detection, and even in the search for gravitational waves [60–65].

Recently, heterodyne detection was implemented in Atomic Force
Microscopy, called Heterodyne Force Microscopy, see [2–5], to enable the non-
destructive imaging below a surface with nanometer resolution [6–14, 53]. The
subsurface information is contained in an ultrasonic sound wave that travelled
through the sample and has a frequency ωs of several MHz. To detect this
signal, a Heterodyne Force Microscope (HFM) makes use of the nonlinear in-
teraction between the cantilever’s tip and the sample such that a heterodyne
signal at a lower difference frequency ωdiff = |ωs − ωt| is generated, if one
excites also the cantilever with a frequency ωt that deviates slightly from the
sample frequency ωs, see Fig. 5.1. Despite the successful application of Het-
erodyne Force Microscopy, the generation of the heterodyne signal is not well
understood, which allows only qualitative interpretations.

In this chapter we demonstrate that beating, which is ought to occur only
with a linear interaction term, dominates also the heterodyne signal generated
by nonlinear mixing. The specific characteristics of the nonlinear interaction
that define the mixer, determine the sensitivity for beating. On the example of
Heterodyne Force Microscopy, we show that beating is important for all mixers
that have a nonlinearity of higher order than quadratic.

5.2 Beating and Nonlinear Mixing

Beating and mixing have each a unique Fourier spectrum. Beating occurs
with a linear mixer such that one sums over two (or more) harmonic excitations,
see upper panel of Fig. 5.2A. The result (black line) oscillates at an ultrasonic
frequency ωh between ωs and ωt and appears also to oscillate at the difference
frequency ωdiff (red lines). However, as the Fourier spectrum of the time trace
only shows the two original frequencies ωs and ωt, no signal is detectable at
the difference frequency ωdiff . Mixing, see lower panel of Fig. 5.2A, occurs with
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Figure 5.1: HFM excitation scheme: the Silicon sample vibrates with amplitude As

and phase ϕs at a frequency ωs, while the tip vibrates with At and ϕt at ωt. Using an
optical beam method and a lock-in, we detected the amplitude Adiff and phase ϕdiff

of the diference frequency ωdiff = |ωs − ωt|. The tip-sample distance z was varied by
moving the cantilever towards the surface (approach) and out again (retract).

a nonlinear interaction and is usually the product of two harmonic excitations.
The result really oscillates at the difference frequency (red line) and the sum
frequency (black line). In contrast to beating, the Fourier spectrum of the time
trace shows the difference and the sum frequency, but not the frequencies of
the two, original harmonic excitations. Therefore, beating and mixing are two
intrinsically different effects that are classified by the type of interaction and
their Fourier analysis.

The typical excitation scheme used in a HFM is shown in Fig. 5.1. The
sample vibrates with amplitude As and phase ϕs at a frequency ωs. At the same
time, the cantilever vibrates with amplitude At and phase ϕt at a frequency
ωt. The ultrasonic excitation frequencies ωs and ωt are chosen well above the
first resonance of the cantilever, while their frequency difference ωdiff is below
the first resonance. As a consequence, the cantilever is not able to follow the
ultrasonic motion of the sample, but it is able to follow the heterodyne signal
generated at the difference frequency ωdiff .

Figure 5.2B depicts the heterodyne signal generation in a HFM. The sum
of the high frequency motion of both the cantilever At cos(ωtt) and the sample
As cos(ωst) results in beating of the tip-sample distance. Note that both the
amplitude of the ultrasonic tip motion At and the amplitude of the ultrasonic
sample motion As are assumed to be constant for all tip-sample distances z.
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Figure 5.2: (A) Beating versus nonlinear mixing with ωs = 1.1 MHz, ωt = 1 MHz,
As = 0.1 nm, and At = 1 nm. Beating is the sum of two harmonic functions (upper
panel): the Fourier spectrum (FT) contains only the two original frequencies ωs and
ωt. Nonlinear mixing is the product of two harmonic functions (lower panel): the
FT contains only the two nonlinear frequencies |ωs − ωt| and |ωs + ωt|. (B) The tip-
sample distance is the sum of the ultrasonic motion of the cantilever At cos(ωtt) and
the sample As cos(ωst), which results in beating. The nonlinear tip-sample interaction
generates a drive force at the sum and the difference frequency, which is fed back into
the tip-sample distance via the transfer functionH(ωdiff) of the cantilever (red arrow).
The FTs show the frequencies present before and after the mixer that describes the
tip-sample interaction. (C) The tip-sample interaction as a function of the distance z
(left panel): obtained from the experiment (red), as used in the analytical calculation
(dashed black), and a second order approximation around ze = 0.53 (blue). Please
note that Fts(z = 0) ̸= 0 per definition. The derivative of the tip-sample interaction
as a function of the distance z (right panel): as used in the analytical calculation
(dashed black) and the second order approximation around ze = 0.53 (blue). The
blue line is only a good approximation of Fts near z = ze = 0.53.
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This nontrivial assumption has been suggested [5,53] and, in addition, recently
predicted theoretically as well as confirmed experimentally (see Chaps. 3 and
4 as well as [42, 52]). The tip-sample distance is the input of the mixer that
describes the nonlinear tip-sample interaction. This mixer generates a drive
force at the difference frequency, which results in a realmotion of the cantilever.
Therefore, the force is fed back into the tip-sample distance via the transfer
function of the cantilever, which is characterized by H(ωdiff). We address the
general case without feedback mechanism below and show that beating still
gives corrections to the heterodyne signal.

5.3 Results and Discussion

To derive an expression for the signal at the difference frequency, we need
a description of the tip-sample distance z that has a static offset zb given by
the position of the cantilever’s base. To account for a possible bending of the
cantilever, we include the deflection δ (which is a function of the spring constant
of the cantilever) in addition to the ultrasonic motion of both the cantilever
and the sample. Finally, we add the feedback term, see Appx. 5.A.1, that
accounts for the motion of the cantilever at the difference frequency ωdiff .

z = zb + δ+Adiff cos(ωdifft+ ϕdiff) +As cos(ωst+ ϕs) +At cos(ωtt+ ϕt) (5.1)

To enable a proper comparison between the simulations and the experi-
ments, we subtract an offset in zb such that zb = 0, if the deflection δ = 0
during the approach cycle of the cantilever to the surface. This is exactly the
point, at which the effective interaction (contact force) Fc on the tip changes
sign from an attractive interaction to a repulsive interaction. Equation 5.1 is
used in the tip-sample interaction Fts(z) to find the effective drive force on the
cantilever at the difference frequency. This can be done in two ways: either one
makes, as usual, a second order Taylor expansion of the tip-sample interaction
Fts around the equilibrium position ze = zb + δ of the cantilever, or one first
uses beating to rewrite the high frequency motion of both the tip and the sam-
ple as a motion at a high frequency ωh with amplitude Ah =

√
A2

s +A2
t and an

amplitude modulated term at frequency ωh, before making a linear expansion
of the tip-sample interaction Fts around a time varying equilibrium position of
the cantilever. The first method, referred to as standard nonlinear mixing, is
valid only for second order (quadratic) interactions, whereas the latter, referred
to as beating and mixing, is valid for any type of interaction. The derivations
and validities of both methods are described in detail in Appx. 5.A. Next to
the fact that “beating and mixing” is the more general theoretical description,
additional proof for “beating and mixing” is found in our HFM experiments,
which we discuss below.

Let us now compare the solutions of both methods, in which the amplitude
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Adiff and the phase ϕdiff of the heterodyne signal (Tab. 5.1: Eq. 5.2) and
the static deflection δ of the cantilever (Tab. 5.1: Eq. 5.3) are determined
by three parameters: I0 denotes the average tip-sample interaction, I1 denotes
an effective tip-sample spring, and I2 represents an effective mixing term. In
the “standard nonlinear mixing” solution, I1 and I2 are determined by the val-
ues of the first and the second derivative of the tip-sample interaction at the
equilibrium position ze. In contrast, the “beating and mixing” solution takes
explicitly into account the high frequency motion and, therefore, the deriva-
tive of the tip-sample interaction at all tip-sample distances between ze and
ze±Ah. This description holds as long as As ·At is smaller than A2

h. The three
parameters I0, I1 and I2 become weighted integrals of Fts and ∂Fts/∂z. If the
nonlinear mixer is purely quadratic, the integrals reduce to the values for I0,
I1 and I2 of the solution of “standard nonlinear mixing” (see Appx. 5.A.2).
Therefore, the “beating and mixing” solution is required for all interactions
that cannot be approximated with a quadratic function.

The tip-sample interaction in Heterodyne Force Microscopy deviates signif-
icantly from a quadra-tic behavior. This becomes evident from the left panel
of Fig. 5.2C, in which we show Fts obtained from the experiment (red), Fts

as used in the analytical calculation (dashed black), and the quadratic inter-
action or second order approximation of Fts around z = ze = 0.53 nm (blue).
Although the quadratic interaction is a good approximation of the tip-sample
interaction close to ze = 0.53 nm, this approximation clearly fails at a tip-
sample distance of, e.g., z = ze = 1.53 nm. This is even worse for the first
derivative of the tip-sample interaction, which is shown in the right panel of
Fig. 5.2C. Therefore, “standard nonlinear mixing” does not describe the het-
erodyne signal generation in a HFM: the tip-sample interaction is not quadratic
over a z range equal to the typical ultrasonic vibration amplitude Ah of 1 nm.

To plot the difference signal analytically, we need the inverse transfer func-
tion of the cantilever, which is characterized by its absolute value |H−1(ωdiff)|
and its phase shift Λ. If the cantilever approaches the sample, the tip-sample
interaction acts on the free end of the cantilever and causes a shift in resonance
frequency, a corresponding phase shift, and a change in mode shape (see Appx.
5.B).

To confirm experimentally that “beating and mixing” is important in Het-
erodyne Force Microscopy, we measured both the amplitude of the heterodyne
signal Adiff and the deflection δ as a function of the tip-sample distance (defined
by the cantilever’s base position zb), see Fig. 5.3A. The hysteresis is the result
of the detection via a lock-in. If we would have measured significantly slower,
there would be no hysteresis. We used a 2 N/m cantilever, which has its first
resonance frequency around 70 kHz. The sample was a freshly cleaned Silicon
wafer. We obtained an analytical description of the tip-sample interaction by
fitting the Derjaguin-Muller-Toporov model [23] and I0 to the experimental
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Adiffe
iϕdiff =

AsAt√
A2

s + A2
t

I2e
i(ϕs−ϕt)

|H−1(ωdiff )|eiΛ − I1
(5.2)

δ = I0/k (5.3)

Standard nonlinearMixing Beating andMixing

I0 = Fts(zb + δ) I0 =
1

π

∫ 1

−1

Fts

(
zb + δ +

√
A2

s + A2
tu

)
du

√
1 − u2

I1 =
∂Fts

∂z
(zb + δ) I1 =

1

π

∫ 1

−1

∂Fts

∂z

(
zb + δ +

√
A2

s + A2
tu

)
du

√
1 − u2

I2 =
1

2

√
A2

s + A2
t

∂2Fts

∂z2
(zb+δ) I2 =

1

π

∫ 1

−1

∂Fts

∂z

(
zb + δ +

√
A2

s + A2
tu

)
udu

√
1 − u2

=

√
A2

s + A2
t

2π

∫ 1

−1

∂2Fts

∂z2

(
zb + δ +

√
A2

s + A2
tu

)√
1 − u2du

Table 5.1: The general solutions, see Appx. 5.A, for the generated heterodyne signal
(Eq. 5.2), which is characterized by I1 and I2, and the static deflection, (Eq. 5.3),
which is characterized by I0. The parameters for “standard nonlinear mixing” are
given in the first column, and for “beating and mixing” in the second column. If
the tip-sample interaction Fts is purely quadratic, the parameters of both solutions
become equal. “Beating and mixing” explicitly takes into account the high frequency
motion and, therefore, the values of Fts and ∂Fts/∂z at all tip-sample distances
between ze and ze ±Ah, in which Ah =

√
A2

s +A2
t .

deflection δ (see Appx. 5.D). The cantilever was excited at 2.87 MHz with an
amplitude of 0.96 nm, while the sample was excited such that ωdiff = 1 kHz.
The vibration amplitude of the sample was 0.32 nm. The full experimental
details are described in Appx. 5.E.

To compare the different analytical (and numerical) solutions with the ex-
perimentally measured curve, we plotted the latter in red also in the background
of Fig. 5.3B, 5.3C, and 5.3D. Figure 5.3B shows the solution for “standard non-
linear mixing”. The discontinuities, in both the amplitude and the deflection,
are due to the specific choice of tip-sample interaction (see Appx. 5.D). We
observe that “standard nonlinear mixing” does not fit the measurement qual-
itatively. This is in contradiction with the general conception that standard
nonlinear frequency mixing generates the observed signal in Heterodyne Force
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Figure 5.3: The heterodyne amplitude Adiff as obtained from the experiment (A: red),
from “standard nonlinear mixing” (B: black), from “beating and mixing” (C: black),
and from a full numerical simulation (D: black). For comparison, the experimental
curves (red) are also shown in the background of (B), (C), and (D). The bottom panels
show the corresponding static deflection δ of the cantilever in the different methods.
Notice that both the experimental results and the numerical calculations support the
validity of “beating and mixing”, as their curves qualitatively fit the “beating and
mixing” ones. “Standard nonlinear mixing” deviates significantly.

Microscopy. In contrast, “beating and mixing”, shown in Fig. 5.3C, does
qualitatively fit the measured curve. The curvature is correctly reproduced
at all tip-sample distances zb. This confirms experimentally that “beating
and mixing” generates the difference signal in Heterodyne Force Microscopy.
Additional proof comes from a full numerical simulation (see Chap. 4 and [52])
that is shown in Fig. 5.3D. Again, the hysteresis is due to a lock-in. The full
numerical simulation further supports “beating and mixing”, as it qualitatively
fits both the experimentally measured curves and the analytical “beating and
mixing” solution.

Finally, let us discuss the general case of heterodyne measurements without
a feedback to the input of the mixer as in Heterodyne Force Microscopy. We
argue that even without feedback, beating is essential to correctly describe
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the heterodyne detection. As the feedback term in a HFM is contained in I1
(see Appx. 5.A.3), we can set I1 to zero in Eq. 5.2. Note that the inverse
transfer function H−1(ωdiff) is still necessary to correctly describe the force on
the cantilever at the difference frequency. Also without feedback, “beating and
mixing” still determines the heterodyne signal and the static deflection through
the parameters I0 and I2. Therefore, we generally conclude that beating is of
crucial importance for heterodyne detection schemes.

Appendices of Chapter 5

Materials and Methods

In the supplementary materials we discuss both the analytical methods
and the experimental details that are needed to understand the dynamics in
Heterodyne Force Microscopy, which is a nonlinear mechanical system driven
simultaneously at two different frequencies.

In Appx. 5.A we derive analytical equations for the difference frequency
generation considering only standard nonlinear mixing in Appx. 5.A.1, and
a combination of beating and mixing in Appx. 5.A.2. Both solutions show
that a nonlinear tip-sample interaction is required to produce a signal at the
difference frequency. We show in Appx. 5.A.2 that both solutions are equal as
long as the tip-sample interaction is purely quadratic. However, the solutions
differ significantly, if the interaction is more nonlinear than purely quadratic,
which is the case in Heterodyne Force Microscopy. The standard solution of
mixing fails and, instead, one has to consider a combination of beating and
mixing. The main essence is that the high frequency beating motion leads to
two correction terms that alter the standard solution.

In a HFM the nonlinear tip-sample interaction generates a force at the dif-
ference frequency, which leads to a feedback on the tip-sample distance, as the
cantilever really vibrates at the difference frequency. As a feedback mechanism
is usually absent in standard nonlinear mixing, we discuss the solutions without
feedback in Appx. 5.A.3 and obtain that beating still produces a correction
term to the amplitude and the phase of the difference frequency in comparison
to the standard solutions.

To evaluate the analytical solutions as a function of the tip-sample distance
such that we can compare them with the difference frequency generation re-
sults from experiments, we need the inverse transfer function of the cantilever
at the difference frequency, an expression for the tip-sample interaction, and
the amplitudes As and At of the ultrasonic excitations of the sample and the
cantilever respectively.

In Appx. 5.B we derive an analytical equation for the inverse transfer
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function of the cantilever by making a mode expansion. To enable a correct
comparison, we use values in the final description that match our experimental
values as close as possible. In Appx. 5.D we fit an experimentally measured
tip-sample interaction to obtain a realistic, analytical expression for it. Finally,
we describe our experimental details in Appx.5.E, in which we also explain how
we determine the amplitudes As and At of the ultrasonic excitations.

5.A Analytical Derivation of the Difference
Frequency Generation

5.A.1 Difference Frequency Generation Considering
Nonlinear Mixing only

In this appendix we provide the equations for standard nonlinear mixing
as they are derived normally using a second order Taylor expansion. We start
with an equation for the tip-sample distance z. This distance has a static offset
zb, which is given by the height of the base of the cantilever. In addition, we
have to take into account a possible bending of the cantilever, which results in
a change of z and is described by the deflection δ. Furthermore, the tip-sample
distance z contains the ultrasonic motion of both the cantilever at frequency
ωt and the sample at frequency ωs. Finally, we have to add a feedback term
that accounts for a variation of z at the difference frequency ωdiff = |ωs − ωt|,
as the cantilever really vibrates at ωdiff due to the effect of the nonlinear tip-
sample interaction. If H(ωdiff) denotes the transfer function of the cantilever
that transfers a given force into an amplitude, the feedback term is given by
H(ωdiff)F (ωdiff), in which F (ωdiff) describes the drive force on the cantilever
at the difference frequency ωdiff . To keep our description as general as possible,
we do not make any assumptions on the drive force F (ωdiff), and we evaluate
F (ωdiff) from the motion of the cantilever at the difference frequency such
that F (ωdiff) = Adiff |H−1(ωdiff)| cos(ωdifft + ϕdiff + Λ), in which |H−1(ωdiff)|
denotes the absolute value of the inverse transfer function of the cantilever
and Λ denotes the corresponding phase shift. Therefore, the feedback term is
simply given by Adiff cos(ωdifft+ϕdiff). This leads to the following equation for
the tip-sample distance:

z = zb + δ+Adiff cos(ωdifft+ ϕdiff) +As cos(ωst+ ϕs) +At cos(ωtt+ ϕt) (5.4)

We use the derived expression for the tip-sample distance, Eq. 5.4, in the
tip-sample interaction Fts(z) to find the effective drive force on the cantilever
at the difference frequency. To take into account nonlinear mixing, we approx-
imate the tip-sample interaction Fts(z) by a conventional second order Taylor
expansion. Higher order terms are usually neglected, as their values are suf-
ficiently small. The square term will produce a nonlinear mixing term. Since
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we use a second order Taylor expansion that we evaluate in a fixed, single
point, it is to be expected that the description holds exactly only for quadratic
interactions.

Fts (zb + δ +Adiff cos(ωdifft+ ϕdiff)+

As cos(ωst+ ϕs) +At cos(ωtt+ ϕt)) =

Fts(zb + δ)

+
∂Fts

∂z
(zb + δ) [Adiff cos(ωdifft+ ϕdiff)+ (5.5)

As cos(ωst+ ϕs) +At cos(ωtt+ ϕt)]

+
1

2

∂2Fts

∂z2
(zb + δ) [Adiff cos(ωdifft+ ϕdiff)+

As cos(ωst+ ϕs) +At cos(ωtt+ ϕt)]
2

As the high frequency motion of the cantilever is unaltered, see Chaps. 3
and 4 as well as [42, 52], and as we are only interested in the static deflection
of the cantilever and its motion at the difference frequency ωdiff , we evaluate
Eq. 5.5 further and collect only the terms at zero frequency and the difference
frequency ωdiff . For the evaluation of the square term, we make use of

cos(x) cos(y) = 0.5[cos(x− y) + cos(x+ y)] (5.6)

such that e.g.

[Adiff cos(ωdifft+ ϕdiff)]
2 = 0.5A2

diff + 0.5A2
diff cos(2ωdifft+ ϕdiff) (5.7)

and

2AsAt cos(ωst+ ϕs) cos(ωtt+ ϕt) =AsAt cos(ωdifft+ [ϕs − ϕt])

+AsAt cos([ωs + ωt]t+ [ϕs + ϕt]). (5.8)

Keeping only the terms at zero frequency and at frequency ωdiff , we find the
following equation of motion

Fts(zb + δ)

+
∂Fts

∂z
(zb + δ)Adiff cos(ωdifft+ ϕdiff)

+
1

2

∂2Fts

∂z2
(zb + δ)

1

2
A2

diff +
1

2
A2

s +
1

2
A2

t +AsAt cos(ωdifft+ [ϕs − ϕt])︸ ︷︷ ︸
nonlinearmixing


= kδ +Adiff |H−1(ωdiff)| cos(ωdifft+ ϕdiff + Λ) (5.9)
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, where k denotes the spring constant of the cantilever. The inverse transfer
function |H−1(ωdiff)| is necessary to account for the force on the cantilever at
the difference frequency ωdiff . Both the inverse transfer function H−1(ωdiff)
and the phase Λ are defined below in Appx. 5.B. To derive a solution for the
static deflection δ as well as for the amplitude Adiff and the phase ϕdiff of the
difference frequency, we separate in Eq. 5.9 the static terms at zero frequency
from those at the difference frequency ωdiff . This results in the following two
equations.

kδ = Fts(zb + δ) +
1

4

∂2Fts

∂z2
(zb + δ)

[
A2

diff +A2
s +A2

t

]
(5.10)

∂Fts

∂z
(zb + δ)Adiff cos(ωdifft+ ϕdiff)+

1

2

∂2Fts

∂z2
(zb + δ)AsAt cos(ωdifft+ [ϕs − ϕt])

=Adiff |H−1(ωdiff)| cos(ωdifft+ ϕdiff + Λ) (5.11)

By using cos(A + B) = cos(A) cos(−B) + sin(A) sin(−B), Eq. 5.11 can be
further evaluated to find a solution for Adiff and ϕdiff

Re

[
∂Fts

∂z
(zb + δ)Adiffe

(iωdiff t+iϕdiff )

]
+

Re

[
1

2

∂2Fts

∂z2
(zb + δ)AsAte

(iωdiff t+iϕdiff )

]
= Re

[
Adiff |H−1(ωdiff)|e(iωdiff t+iϕdiff+iΛ)

]
(5.12)[

∂Fts

∂z
(zb + δ)Adiffe

(iϕdiff ) +
1

2

∂2Fts

∂z2
(zb + δ)AsAte

(iϕdiff )

]
eiωdiff t

=
[
Adiff |H−1(ωdiff)|e(iϕdiff+iΛ)

]
eiωdiff t (5.13)

This leads to the following two equations for the static deflection of the
cantilever and the amplitude and the phase of the motion at the difference
frequency:

kδ = Fts(zb + δ) +
1

4

∂2Fts

∂z2
(zb + δ)

[
A2

diff +A2
s +A2

t

]
Adiffe

iϕdiff =
1
2AsAt

∂2Fts

∂z2 (zb + δ) ei(ϕs−ϕt)

|H−1(ωdiff)|eiΛ − ∂Fts

∂z (zb + δ)

(5.14)

(5.15)
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To enable a later comparison, we define Î1 ≡ ∂Fts

∂z
(zb + δ) and

Î2 ≡
√
A2

s +A2
t

1

2

∂2Fts

∂z2
(zb + δ), such that

Adiffe
iϕdiff =

AsAt√
A2

s+A2
t

Î2e
i(ϕs−ϕt)

|H−1(ωdiff)|eiΛ − Î1
(5.16)

In Sect. 5.3, we compare the solution of Eqs. 5.14 and 5.15 with the
experimental data and conclude that nonlinear mixing alone cannot explain
the experimentally measured curves. To solve Eqs. 5.14 and 5.15 we need
the inverse transfer function of the cantilever H−1(ωdiff) (see Appx. 5.B), the
tip-sample interaction Fts(z) (see Appx. 5.D), and the amplitudes At and As

of the ultrasonic vibrations (see Appx. 5.E).

5.A.2 Difference Frequency Generation Considering
Beating and Mixing

In the following we derive analytic expressions for the static deflection of
the cantilever and its motion at the difference frequency by considering both
beating and nonlinear mixing. We start with rewriting the ultrasonic, high
frequency motions of the sample and the cantilever such that beating becomes
evident.

As cos(ωst+ ϕs) +At cos(ωtt+ ϕt)

=
√

A2
t +A2

s + 2AsAt cos([ωs − ωt] t+ [ϕs − ϕt])

× cos

(
ωs + ωt

2
t+

ϕs + ϕt

2
+ arctan

[
As −At

As +At
tan

{
ωs − ωt

2
t+

ϕs − ϕt

2

}])
=

√
A2

t +A2
s + 2AsAt cos([ωs − ωt] t+ [ϕs − ϕt]) · cos(ωht+ ϕh) (5.17)

, in which ωh describes a high frequency motion with
Min{ωs, ωt} < ωh < Max{ωs, ωt} and ϕh denotes the phase corresponding
to ωh. It is allowed to express the ultrasonic, high frequency motion with ωh

in Eq. 5.17, as is explained in the following. Firstly, the tangent of an angle
oscillating at a single frequency (ωs − ωt)/2 is taken. Secondly, the tangent
is multiplied with (As − At)/(As + At), which alters the amplitude, but not
the frequency. Thirdly, the amplitude is converted back to an angle, which
still oscillates at a single frequency (ωs − ωt)/2. The argument of the cosine
describing the high frequency motion is the sum of two angles: one oscillating
at the sum frequency and one oscillating at the difference frequency. The net
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result is a motion at a single, high frequency ωh.
Equation 5.17 shows that the variation of the tip-sample distance at the

high, ultrasonic frequency ωh has an amplitude modulation at frequency ωdiff .
We approximate the amplitude modulation by making only a linear expan-
sion of Eq. 5.17, in which we make use of

√
1 + 2x ≈ 1 + x; ∀x ≪ 1 with

x = AsAt/(A
2
s + A2

t ). We find two terms that together describe the effective
high frequency variation of the tip-sample distance.

As cos(ωst+ ϕs) +Atcos(ωtt+ ϕt) (5.18)

=
√

A2
t +A2

s cos(ωht+ ϕh)︸ ︷︷ ︸
zhigh

+
AtAs√
A2

t +A2
s

cos(ωdiff t+ [ϕs − ϕt])︸ ︷︷ ︸
modulation

cos(ωht+ ϕh)︸ ︷︷ ︸
carrier frequency︸ ︷︷ ︸

amplitudemodulated zhigh

Equation 5.18 consists of two terms, which are given by zhigh and an ampli-
tude modulated term of zhigh. The amplitude modulation is at the difference
frequency such that the tip-sample distance is modulated in beats at ωdiff .
Beating does not excite new frequencies in a linear system. Although we are
considering only beating with Eq. 5.18, the nonlinear tip-sample interaction
does lead to a real excitation of the cantilever at the difference frequency. Keep-
ing this in mind, we can write down the equation of motion for the cantilever,
in which we include, in analogy to Appx. 5.A.1, a feedback term that explicitly
describes the motion of the cantilever at the difference frequency.

Fts

 zb + δ +Adiff cos(ωdiff t+ ϕdiff)

+
√

A2
t +A2

s cos(ωht+ ϕh) +Amax
diff cos(ωdiff t+ [ϕs − ϕt]) cos(ωht+ ϕh)︸ ︷︷ ︸

beating


= kδ + |H−1(ωdiff)|Adiff cos(ωdiff t+ ϕdiff + Λ) (5.19)

, in which we keep the same definitions as in Appx. 5.A.1 and define Amax
diff as

Amax
diff ≡

AtAs√
A2

t +A2
s

(5.20)

To find a solution to Eq. 5.19, we make, in analogy to Appx. 5.A.1,
an expansion of the tip-sample force. This time, however, we only make a
linear, first order Taylor expansion around a time varying equilibrium position
of the cantilever to restrict ourself to the description of beating only and not
to introduce a nonlinear term explicitly. This derivation is valid for all types
of interactions including linear, quadratic, and all higher order of nonlinear
dependencies.
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Fts

(
zb + δ +

√
A2

t +A2
s cos(ωht+ ϕh)

)
+

∂Fts

∂z′

∣∣∣∣
zb+δ+

√
A2

t+A2
s cos(ωht+ϕh)

Adiff cos(ωdiff t+ ϕdiff)

+
∂Fts

∂z′

∣∣∣∣
zb+δ+

√
A2

t+A2
s cos(ωht+ϕh)

AtAs√
A2

t +A2
s

cos(ωdiff t+ [ϕs − ϕt]) cos(ωht+ ϕh)

=kδ + |H−1(ωdiff)|Adiff cos(ωdiff t+ ϕdiff + Λ) (5.21)

, where, in analogy to Appx. 5.A.1, |H−1(ωdiff)| is the inverse transfer function
of the cantilever at the difference frequency ωdiff , and Λ the corresponding
frequency shift. Both the inverse transfer function H−1(ωdiff) and the phase Λ
are defined below in Appx. 5.B.

In analogy to Eq. 5.9, we find the solutions for Adiff , ϕdiff , and the deflection
δ of the cantilever by separating the terms of zero frequency and the terms at
the difference frequency. However, as the arguments in Eq. 5.21 still contain an
explicit time dependence, due to the high frequency motion of the cantilever,
we first have to integrate over one period to find the solutions. For the zero
frequency motion, e.g., one finds

1

T

∫ T

0

Fts(zb + δ +
√
A2

s +A2
t cos(ωht+ ϕh))dt =

1

T

∫ T

0

kδdt = kδ (5.22)

This leads to the following two expressions

kδ = I0

Adiffe
iϕdiff =

Amax
diff I2e

i(ϕs−ϕt)

|H−1(ωdiff)|eiΛ − I1

(5.23)

(5.24)

in which I0, I1, and I2 are integrals characterizing the tip-sample interaction.

I0 =
1

T

∫ T

0

Fts

(
zb + δ +

√
A2

t +A2
s cos(ωht+ ϕh)

)
dt

=
1

π

∫ 1

−1

Fts

(
zb + δ +

√
A2

t +A2
su

)
du√
1− u2

I1 =
1

T

∫ T

0

∂Fts

∂z

(
zb + δ +

√
A2

t +A2
s cos(ωht+ ϕh)

)
dt

=
1

π

∫ 1

−1

∂Fts

∂z′

(
zb + δ +

√
A2

t +A2
su

)
du√
1− u2

I2 =
1

T

∫ T

0

∂Fts

∂z

(
zb + δ +

√
A2

t +A2
s cos(ωht+ ϕh)

)
cos(ωhight)dt

=
1

π

∫ 1

−1

∂Fts

∂z′

(
zb + δ +

√
A2

t +A2
su

)
udu√
1− u2

(5.25)

(5.26)

(5.27)
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The integrals over the parameter u (right hand side) in equations 5.25 ,5.26,
and 5.27 are obtained by using an Abel transform of the integrals over time
T = 2π/ωh. As we integrate over one period T , the integrals become indepen-
dent of ϕh and we can set the phase ϕh to 0.

Equation 5.24 shows that |Adiff | depends on both integrals I1 and I2. The
integral I1 represents an effective (average) spring constant describing the tip-
sample stiffness, as I1 integrates ∂Fts/∂z over one period of the high frequency
motion of the cantilever. The other integral I2, describes the difference fre-
quency generation via a combination of beating and nonlinear mixing. This
becomes evident, if we partially integrate Eq. 5.27:

I2 =
1

π

∫ 1

−1

∂Fts

∂z′

(
zb + δ +

√
A2

t +A2
su

)
udu√
1− u2

=

√
A2

t +A2
s

2π

∫ 1

−1

∂2Fts

∂z′2

(
zb + δ +

√
A2

t +A2
su

)√
1− u2du (5.28)

A linear tip-sample interaction implies that ∂Fts/∂z is constant and
∂2Fts/∂z

2 = 0, which results in I2 = 0. As a consequence, there is no differ-
ence frequency generation (Adiff = 0). This is in perfect agreement with the
derivation of Adiff considering only nonlinear mixing (Eq. 5.15): Adiff = 0,
if ∂2Fts/∂z

2 = 0. We conclude that both derivations require a nonlinear tip-
sample interaction to generate a signal at the difference frequency. Please note
that, although starting the description with pure beating and using only lin-
ear expansions, nonlinear mixing is not excluded for the solutions provided in
Eqs. 5.23 and 5.24, as we did not include any restrictions on the particular
tip-sample interaction: the equations hold also for a nonlinear tip-sample in-
teraction.

It is instructive to see that Eq. 5.24 becomes equal to Eq. 5.16 for the
special case of a quadratic tip-sample interaction, in which ∂Fts/∂z is linear
and ∂2Fts/∂z

2 is constant.

I1 =
1

π

∫ 1

−1

∂Fts

∂z
(zb + δ +

√
A2

s +A2
tu)

du√
1− u2

=
∂Fts

∂z
(zb + δ) (5.29)

I2 =

√
A2

s +A2
t

2π

∫ 1

−1

∂2Fts

∂z2
(zb + δ +

√
A2

s +A2
tu)

√
1− u2du

=

√
A2

s +A2
t

2

∂2Fts

∂z2
(zb + δ) (5.30)

One sees that, in this special case, I1 = Î1 and I2 = Î2. The “standard” solution
of nonlinear mixing (Eq. 5.16) delivers the “correct” solution as long as the
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interaction is only quadratic. For Heterodyne Force Microscopy, the tip-sample
interaction deviates significantly from a quadratic behavior and Eqs. 5.23 and
5.24 are needed to correctly describe the solutions: a combination of beating
and mixing takes place in this case. The high frequency beating components
lead to two correction terms. I1 describes the average of ∂Fts/∂z for the high
frequency beating component, whereas I2 describes the weighted average of
∂Fts/∂z, where the weighing is done by the cosine term. A proper description
of nonlinear mixing requires, therefore, that one also takes into account the
high frequency beating motion for all interactions that deviate from that of a
pure quadratic form.

For the sake of completeness, we evaluate Eq. 5.19 in the following also to
second order

Fts

(
zb + δ +

√
A2

t +A2
s cos(ωht+ ϕh)

)
+

∂Fts

∂z′

∣∣∣∣
zb+δ+

√
A2

t+A2
s cos(ωht+ϕh)

Adiff cos(ωdifft+ ϕdiff)

+
∂Fts

∂z′

∣∣∣∣
zb+δ+

√
A2

t+A2
s cos(ωht+ϕh)

AtAs√
A2

t +A2
s

cos(ωdifft+ [ϕs − ϕt]) cos(ωht+ ϕh)

+
1

4

∂2Fts

∂z′2

∣∣∣∣
zb+δ+

√
A2

t+A2
s cos(ωht+ϕh)

× (Amax
diff )2 cos2(ωht+ ϕh)

+2AdiffA
max
diff cos ([ϕs − ϕt]− ϕdiff) cos(ωht+ ϕh)

+A2
diff


=kδ + |H−1(ωdiff)|Adiff cos(ωdifft+ ϕdiff + Λ) (5.31)

By separating the components with zero frequency and the difference fre-
quency, we find the following solutions:

kδ = I0 +
1
4
I3A

2
diff+

1
2
I4AdiffA

max
diff cos ([ϕs − ϕt]− ϕdiff) +

1
4
I5 (A

max
diff )2 (5.32)

Adiffe
iϕdiff =

Amax
diff I2e

i(ϕs−ϕt)

H−1eiΛ − I1
(5.33)

, in which the terms I0, I1, and I2 are given by Eqs. 5.25, 5.26, and 5.27, and
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I3 =
1

T

∫ T

0

∂2Fts

∂z′2

(
zb + δ +

√
A2

t +A2
s cos(ωht+ ϕh)

)
dt

=
1

π

∫ 1

−1

∂2Fts

∂z′2

(
zb + δ +

√
A2

t +A2
su

)
du√
1− u2

(5.34)

I4 =
1

T

∫ T

0

∂2Fts

∂z′2

(
zb + δ +

√
A2

t +A2
s cos(ωht+ ϕh)

)
cos(ωht+ ϕh)dt

=
1

π

∫ 1

−1

∂2Fts

∂z′2

(
zb + δ +

√
A2

t +A2
su

)
udu√
1− u2

(5.35)

I5 =
1

T

∫ T

0

∂2Fts

∂z′2

(
zb + δ +

√
A2

t +A2
s cos(ωht+ ϕh)

)
cos2(ωht+ ϕh)dt

=
1

π

∫ 1

−1

∂2Fts

∂z′2

(
zb + δ +

√
A2

t +A2
su

)
u2du√
1− u2

(5.36)

Even if we evaluate Eq. 5.19 with a nonlinear second order expansion, we
find the same solution for Adiff and ϕdiff (compare Eq. 5.24 with Eq. 5.33).
The nonlinear second order expansion delivers only correction terms for the
deflection δ, see I3, I4, and I5 in Eq. 5.32.

5.A.3 Difference Frequency Generation without
Feedback to the Input Signal

In appendices 5.A.1 and 5.A.2 we considered the difference frequency gen-
eration, in which we included a term that explicitly describes the motion of the
cantilever at the difference frequency. This term acts as a feedback mechanism
and has a back action on the result obtained for the amplitude Adiff and the
phase ϕdiff of the difference frequency. In Heterodyne Force Microscopy this
feedback is very important, but in other typical nonlinear systems this feedback
is mostly absent. In this appendix we consider the results for the difference
frequency generation without the back action on the input signals.

Let us first discuss the case where the difference frequency generation is
caused by nonlinear mixing only. Without feedback, we remove the motion of
the cantilever at the difference frequency from Eq. 5.5 and obtain an expression
for the mixing by making a second order Taylor expansion of the tip-sample
interaction:

Fts (zb + δ +As cos(ωst+ ϕs) +At cos(ωtt+ ϕt)) = (5.37)

Fts(zb + δ)

+
∂Fts

∂z
(zb + δ) [As cos(ωst+ ϕs) +At cos(ωtt+ ϕt)]

+
1

2

∂2Fts

∂z2
(zb + δ) [As cos(ωst+ ϕs) +At cos(ωtt+ ϕt)]

2
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Using the same derivation as described in Appx. 5.A.1, we obtain an expression
for the amplitude Adiff and the phase ϕdiff of the difference frequency:

Adiffe
iϕdiff =

Amax
diff Î2e

i(ϕs−ϕt)

|H−1(ωdiff)|eiΛ
, inwhich Î2 =

√
A2

s +A2
t

2

∂2Fts

∂z2
(zb + δ) (5.38)

Let us now consider the case where both beating and nonlinear mixing are
important. By comparing Eqs. 5.16 and 5.38, we notice that we could have
obtained Eq. 5.38 by setting Î1 to zero in Eq. 5.16. A similar argument
holds for the case where both beating and nonlinear mixing are considered.
By setting I1 to zero in Eq. 5.24, we obtain the following expression for the
amplitude Adiff and the phase ϕdiff of the difference frequency:

Adiffe
iϕdiff =

Amax
diff I2e

i(ϕs−ϕt)

|H−1(ωdiff)|eiΛ

, inwhich I2 =

√
A2

s +A2
t

2π

∫ 1

−1

∂2Fts

∂z2
(zb + δ +

√
A2

s +A2
tu)

√
1− u2du (5.39)

In conclusion, even without feedback, the solutions to Adiff and ϕdiff differ
significantly between “standard nonlinear mixing” and ”beating and mixing”
(compare Eqs. 5.38 and 5.39). Described by I2 in Eq. 5.39, a correction is
required that explicitly accounts for the high frequency motion. The solutions
to Adiff and ϕdiff become equal, if Î2 is equal to I2. This is only the case for a
pure quadratic tip-sample interaction or nonlinearity.

5.B Transfer Function of the Cantilever at the
Difference Frequency

In Appx. 5.A we derived analytical expressions for the amplitude and phase
of the difference frequency generation. To solve these equations, we need the
inverse transfer function H−1(ωdiff) of the cantilever at the difference frequency
that transfers a given amplitude into a force, as well as its associated phase
shift Λ. As the difference frequency ωdiff is smaller than the first resonance
frequency of the cantilever ω0, we can use the expression of the phase and the
amplitude of an harmonic oscillator for the transfer function H−1(ωdiff) and Λ
respectively:

Λ = tan−1

[
ωdiffω0/Q0

ω2
0 − ω2

diff

]
(5.40)

H−1(ωdiff) =
1

ϕ0(L)2

√
(ω2

0 − ω2
diff)

2
+

(
ω0ωdiff

Q0

)2

(5.41)
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, in which Q0 denotes the quality factor of the first resonance, ϕ0(L) the mode
shape at the end of the cantilever, and L the length of the cantilever.

To derive an expression for ϕ0(L) and Λ, we calculate in the following
the resonance frequencies, and thus the transfer function, of the cantilever in
contact with the sample. If the cantilever approaches the surface, the changing
tip-sample interaction leads to a change of the transfer function and a frequency
shift of the first mode. To find the frequency shift associated with the tip-
sample interaction, we employ the Euler-beam equation [32,45,49,50].

EI
∂

∂x4

[
Φ(x, t) + ai

∂Φ

∂t

]
+ ρWh

∂Φ

∂t2

+ ah
∂Φ

∂t
− δ(x− L) [Fts(z) + Fdrive(t)] = 0 (5.42)

, in which E is the Young’s modulus of the cantilever, I is the moment of in-
ertia, ai is the internal damping coefficient, ρ is the density, W, h, and L are,
respectively, the width, height, and length of the cantilever, ah is the hydro-
dynamic damping, and Φ(x, t) is the vertical displacement of the cantilever at
position x and at time t. Fdrive is the drive force on the cantilever at its free
end and Fts(z) represents the tip-sample interaction acting on the free end,
where z is the tip-sample distance.

We calculate the frequency shift of the cantilever modes by recognizing that
a change in boundary conditions applies, if a tip-sample interaction is present.
In analogy to Rabe [45] we change the boundary conditions at the free end of
the cantilever such that

[
EI

∂3Φ(x, t)

∂x3
−Mt

∂2Φ(x, t)

∂t2

]
x=L

= −I1Φ(x, t) Φ(0, t) = 0[
EI

∂2Φ(x, t)

∂x2
+ It

∂3Φ(x, t)

∂t2∂x

]
x=L

= 0
∂Φ(x, t)

∂x

∣∣∣∣
x=0

= 0

(5.43)

, in which Mt denotes the mass of the tip, It the moment of inertia of the
tip, and I1 an effective tip-sample spring given by Eq. 5.26. These boundary
conditions introduce a discrete set of solutions such that it is possible to solve
Eq. 5.42 by using the ansatz Φ(x, t) = ϕ(x)η(t). The general solution of Eq.
5.42, obeying the boundary conditions at x = 0, is

ϕ(x) = A
[
cos

(
λ
x

L

)
− cosh

(
λ
x

L

)]
+ C

[
sin

(
λ
x

L

)
− sinh

(
λ
x

L

)]
(5.44)

, in which A and C are constants to be determined by the boundary conditions
at x = L, and λ is the wave number related to the frequency ω as

ω2 =

(
λ

L

)4
EI

m
(5.45)
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, in which m denotes the mass per unit length of the cantilever beam.
We solve the boundary conditions at x = L as follows. Firstly, we observe

that −I1Φ(L, t) can be transferred to the left hand side of the first equation in
Eq. 5.43. [

EI
∂3Φ(x, t)

∂x3
−Mt

∂2Φ(x, t)

∂t2
+ I1Φ(x, t)

]
x=L

= 0 (5.46)

Secondly, we substitute the second derivative to time of Φ(x, t), which equals
−ω2Φ(x, t). [

EI
∂3Φ(x, t)

∂x3
+Mtω

2Φ(x, t)

(
1 +

I1
Mtω2

)]
x=L

= 0 (5.47)

Finally, we recognize that we obtain the solution as described in [51], but with
a different effective tip mass: we have to substitute Mt in their solution with

Mt → Mt

(
1 +

mI1L
4

EIMtλ4

)
(5.48)

The resonance frequencies are obtained from the characteristic equation in
[51], in which we replace Mt as given by Eq. 5.48. After a straightforward
calculation, we find the following expression

1 + cosλ coshλ+
Mtλ

EI
[cosλ sinhλ− sinλ coshλ]

− Itλ
3

mL3
[coshλ sinλ+ sinhλ cosλ] +

MtItλ
4

m2L4
[1− cosλ coshλ]

+
L3I1
EIλ3

[cosλ sinhλ− sinλ coshλ] +
ItI1
EIm

[1− cosλ coshλ] = 0 (5.49)

The resonance frequencies of the cantilever are obtained from the discrete set
of solutions of λ to Eq. 5.49 and the dispersion relation of Eq. 5.45. Please
note that Eq. 5.49 reduces to the result obtained by Rabe [45], if Mt = 0 and
It = 0, i.e. no tip mass and no tip moment of inertia.

We derived the equations to determine the resonance frequencies of a can-
tilever with tip mass Mt and tip moment of inertia It moving in a general
tip-sample interaction. The inverse transfer function necessary to calculate
the excitation of the difference frequency needs the first resonance frequency.
Equipped with the first resonance frequency ω0, we need ϕ0(L) to finally cal-
culate the inverse transfer function H−1(ωdiff) (see Eq. 5.41). We find the
allowed modes from the discrete set of solutions of λ to Eq. 5.49, which gives
us λr for mode r. Applying the substitution of Eq. 5.48 to the mass-normalized
solutions found in [51], we find for ϕr(x)

ϕr(x) = Ar

[
cosλr

x

L
− coshλr

x

L
+ ξr

(
sinλr

x

L
− sinhλr

x

L

)]
(5.50)
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, in which ξr is given by

ξr =

sinλr − sinhλr + λr

(
Mt

mL
+

I1L
3

EIλ4
r

)
(cosλr − coshλr)

cosλr + coshλr − λr

(
Mt

mL
+

I1L
3

EIλ4
r

)
(sinλr − sinhλr)

(5.51)

, and Ar is determined from the normalization∫ L

0

∂2ϕr(x)

∂x2
EI

∂2ϕs(x)

∂x2
dx = ω2

rδrs (5.52)

, in which δrs is the Kronecker delta. Finally, we determine ϕ0(L) from Eqs.
5.50, 5.51, and 5.52.

As it is important for the frequency shift sensitivity of the cantilever, please
note that the effect of the tip-sample interaction on the mode shape is pro-
portional to I1/λr(I1)

4 (see explicit dependence of the tip-sample interaction
in equation (5.51)). In analogy to the cantilevers used in our experiments, we
assumed a standard Silicon cantilever for our numerical calculations with a
stiffness of 2 N/m and its first flexural mode at 73.4 kHz. The cantilever has
a length of L = 230µm, a width of W = 30µm, a height of h = 2.7µm, a
Young’s modulus of E = 179 GPa, a density of ρ = 2330 kg/m3, an internal
damping of ai = 4.3 · 10−10 s, a hydrodynamic damping of ah = 5.6 · 10−4

kg m2 s, a tip mass of Mt = 5.4 · 10−15 kg, and a moment of inertia of the
tip of It = 3 · 10−22 kg m2. The wave numbers λr(I1 = 0) for this cantilever
without tip-sample interaction are given in Tab. 1. Also shown in Tab. 1
are the proportionality constants 1/λ4

r(I1 = 0), which determine the frequency
shift sensitivity, I1/λ

4
r(I1 = 0) see equation (5.49), of a mode to the tip-sample

interaction 1. We see that the 3rd mode of the cantilever is three orders of

r λr ωr/2π λ−4
r

0 1.87441 73.4 kHz 8.1 10−4

1 4.67949 456 kHz 2.1 10−5

2 7.78852 1.27 MHz 2.7 10−6

3 10.8007 2.44 MHz 7.3 10−7

4 13.6737 3.91 MHz 2.9 10−7

Table 5.2: The wave numbers λr(I1 = 0) for mode r, the resonance frequencies
ωr(I1 = 0)/2π, and the proportionality constants λ−4

r (I1 = 0), which determine
the frequency shift sensitivity, I1/λ

4
r(I1 = 0) see equation (5.49), of a mode to the

tip-sample interaction.

1For small contact forces, the following equation holds in first approximation: λr(I1) ≈
λr(I1 = 0).
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magnitude less sensitive to the tip-sample interaction than the 0th mode of
the cantilever. This is why the ultrasonic vibration of the cantilever at, e.g.,
frequency fs = 2.8 MHz is relatively insensitive to the tip-sample interaction.

5.C Resonance Frequency Shifts of the Canitlever
Modes
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Figure 5.4: The resonance frequencies of the first 5 modes of the cantilever as a
function of the normalized tip-sample contact I1/k. I1 is the effective tip-sample
spring that has to be taken into account at the free end of the cantilever when getting
into contact with the sample, and k = 2 N/m is the spring constant of the cantilever.
The resonance frequency shifts reduce for the higher modes as these modes get stiffer
with increasing resonance frequency. Strictly speaking, the contact resonances, which
describe the situation with a node at the free end of the cantilever, are reached only
for an infinitely stiff sample (I1). The vertical dashed line indicates the maximum
tip-sample stiffness that we reach in all experiments described in this thesis.

5.D Characterizing the Tip-Sample Interaction

For our numerical calculations, in appendices 5.A and 5.B, we need the
tip-sample interaction or force Fts(z). In general, an accurate measurement of
the tip-sample interaction using an atomic force microscope is difficult and is,
at the present day, still an area of ongoing research [66]. In our experiments,
which were performed in air, we used a cantilever, of which we calibrated the
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spring constant k to be 2.0 ± 0.4 N/m using the thermal noise method [67].
During the measurements, we recorded not only the amplitude at the difference
frequency but simultaneously also the deflection δ. We have to compare the
tip-sample interaction k · δ, obtained from the measurements, with the average
force I0, obtained from our numerical calculations (see Eq. 5.23). This is an
approximation, as we neglect the higher order contributions of I3, I4, and I5
in Eq. 5.32. Anyhow, it provides us with a good estimate of the tip-sample
interaction that we use in the numerical calculations.

Figure 5.5 shows the obtained force-distance curves, in which the exper-
imentally measured curve is indicated in red, and the fit to it that is used
in our analytical calculations, is indicated with a dashed black line. We fit-
ted the experimental curve with a modified Derjaguin-Muller-Toporov (DMT-)
model, see Sect. 1.4 and [23], in which we removed the discontinuity in the
first derivative by inserting two parabolic functions. As a result we got the
following analytical expression for the force-distance curve

Fts(z) =



−HR

6a20
+

4

3
Ef

√
R(a0 − z)3/2 if z < −0.67nm,

α1z
2 + α2z + α3 if − 0.67nm ≤ z ≤ a0,

β1z
2 + β2z + β3 if a0 ≤ z ≤ 2.62nm

−HR

6z2
if z > 3a0.

(5.53)

, in which the radius R of the cantilever’s tip is 0.14 nm, the Hamaker constant
H is 30 · 10−18 J, the distance a0 is 0.25 nm, and Ef is an effective Young’s
modulus describing the tip-sample stiffness equal to 61 GPa.

As can be seen from Eq. 5.53, we locally approximate Fts(z) with two
quadratic functions: one for −0.67 nm ≤ z ≤ a0, and one for a0 ≤ z ≤ 2.62 nm
such that both Fts(z) and ∂Fts(z)/∂z are continuous at z = −0.67 nm, z = a0,
and z = 2.62 nm. These constraints determine the parameters {α1, α2, α3}
and {β1, β2, β3}. We used this procedure to obtain an analytical expression
for the experimental tip-sample interaction and note that we do not have an
absolute z-scale. Therefore, the parameters obtained for Fts(z) do not describe
the material properties of Silicon.

We obtained the Young’s modulus on Silicon by fitting an experimentally
obtained tip-sample interaction Fts with the DMT-model. A parameter called
λ, which is related to the elasticities of the tip and the sample, is usually used
to differentiate between the applicabilities of different models that describe the
tip-sample interaction, see Fig. 1.8 and [27]. As λ = 0.85 in our case, one
should use the Maugis-Dugdale (M-D-) model [25]. Nevertheless, our approach
with the DMT-model is fully justified, as we have demonstrated in Chap. 4
and in [52] that it does not matter at all for the numerical simulations which
of the models describes the tip-sample interaction, as long as the fit perfectly
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Figure 5.5: Force versus distance curves from measurements with a hard Silicon
tip/cantilever pushing into a hard Silicon wafer: obtained from the experiment (red)
and as used in the analytical calculation (dashed black). Please note that Fts(z =
0) ̸= 0 per definition.

matches the (experimentally obtained) tip-sample interaction. The only thing
that matters is the particular shape (form) of Fts(z) and not the model that is
used to describe this particular interaction. In addition, please note that it is
almost impossible to use the M-D-model, as it does not provide an analytical
expression for Fts such that it can only be solved iteratively, if the value of λ
is not known a priori.

Finally we would like to mention that the obtained tip-sample stiffness of
61 GPa fits very well with the Young’s modulus of Silicondioxide, which is
expected to be present on top of our Silicon wafer.

5.E Experimental Details and the Ultrasonic
Amplitudes

We performed the experiments with a standard 2 N/m cantilever on a
freshly cleaned Silicon sample. The sample was glued with Crystalbond 509
onto a piezo element, which has a free resonance frequency in the order of
4 MHz. In the same way, the cantilever was glued onto a similar piezo ele-
ment that was mounted in a home-made cantilever holder. The cantilever and
the sample were excited at 2.870 MHz and 2.871 MHz, respectively, such that
both frequencies are far from any resonance of the cantilever (see Tab. 5.2 for
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comparison). The experiments were performed on a Nanoscope V Multimode 8
from Veeco. We used the standard optical beam deflection method provided by
this instrument to measure the motion of the cantilever. The slope of the mode
shape at the cantilever’s free end is proportional to the sensitivity. Since we
obtain the slopes of all higher eigenmodes of the cantilever from the numerical
calculations, we estimate the sensitivity, measured by the photodiode, for the
5th mode to be 12.6 times higher than the sensitivity for the first mode. This
method is valid, because the higher eigenmodes are insensitive to the tip-sample
interaction such that the mode shape does not significantly change when the
tip gets into contact with the sample: considering the forces applied in all ex-
periments that are described in this thesis, we only have a maximum frequency
shift of ∼ 10 kHz of the 5th mode at a maximum contact force Fc = 163 nN
(see also Fig. 5.4, which shows the frequency shifts of the different modes as
a function of the applied load at the free end of the cantilever in terms of the
normalized tip-sample stiffness I1/k). In this way, we obtained a sensitivity of
67.7 nm/V at 71.8 kHz and 5.4 nm/V at 2.87 MHz. This leads to a measured
amplitude At of the cantilever at 2.87 MHz of approximately 0.96 nm. We did
not measure the amplitude As of the sample vibration directly, which could be
done with an interferometer. Instead, as the plateau in the repulsive regime
depends on the amplitudes of both the cantilever At and the sample As (see
Chap. 4 and [52]), we can estimate the sample amplitude As to be 0.32 nm
in our experiments. During the experiments we never saw the excitation ωs of
the sample in the cantilever’s motion, which we attribute to the unfavorable
ratio of the cantilever stiffness and the sample stiffness at MHz frequencies (see
Chaps. 3 and 4 as well as [42,52]).


