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CHAPTER 4

Subsurface-AFM: Sensitivity to the Heterodyne Signal

Applying a HFM, it has been impressively de-monstrated that it is possible to
obtain subsurface information: ∼ 17.5 nm large gold nanoparticles that were
buried 500 nm deep, have been imaged. It is the heterodyne signal that contains
the subsurface information. We elucidate, both theoretically and experimen-
tally, the sensitivity to the heterodyne signal as a function of the tip-sample
distance. This is of crucial information for experiments as the distance and,
therefore, the sensitivity is tunable. We show that the amplitude of the het-
erodyne signal has a local maximum in the attractive part of the tip-sample
interaction before it, surprisingly, reaches an even higher plateau, when the tip-
sample interaction is repulsive. This can only be explained by a non-decreasing
amplitude of the ultrasonic motion of the tip, although it is in full contact with
the surface. We confirm this counterintuitive tip behavior experimentally even
on a hard surface like Silicon.

Most of this chapter is published in [52]
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68 4.1. Introduction

4.1 Introduction

It has always been a desire in microscopy to nondestructively image below
a surface. Recent developments in scanning probe microscopy have shown the
possibility to image subsurface nanoparticles on a nanometer scale [3–8, 53].
These measurements have been extended also to biological samples and cells
[6, 9–12]. The technique used is called Heterodyne Force Microscopy [2, 3, 13].
A HFM uses the ultrasonic excitation of both the sample and the cantilever
at slightly different frequencies, which are in the order of a few MHz. The
nonlinear tip-sample interaction mixes these two ultrasonic excitations and
generates a heterodyne signal at their frequency difference, called the differ-
ence frequency [3, 6–14, 31–33, 48]. Mostly the difference frequency is chosen
to lie well below the fundamental resonance of the cantilever, such that the
cantilever really starts to oscillate at the difference frequency. It is exactly
this oscillation of the cantilever at the heterodyne difference frequency, which
contains the subsurface information.

In this chapter we elucidate, both theoretically and experimentally, the sen-
sitivity to the heterodyne signal as a function of the tip-sample distance. This
is of crucial information for experiments as the distance and, therefore, the sen-
sitivity is tunable. Moreover it paves the way for making HFM measurements
quantitative.

To develop a microscope that enables the quantitative imaging of subsur-
face structures at the nanoscale, detailed knowledge is crucial on the cantilever
dynamics in close vicinity to a vibrating surface as well as on the propagation
of the ultrasonic waves through the sample. The effect of a vibrating surface
on a static cantilever has been investigated [43–47], but the case were the can-
tilever is also oscillating at an ultrasonic frequency still lacks understanding,
although an analytical approach was explored [32]. It has been shown that
the ultrasonic wave propagating through the sample is Rayleigh scattered by
subsurface nanoparticles (see Chap. 2 or [28]). The amplitude contrast gener-
ated by a nanometer sized subsurface scatterer is negligible, but the generated
phase contrast should be detectable, as it is in the order of a few millidegrees
(see Chap. 2 or [28]). It is to mention here that a sufficiently strong signal
amplitude is required for a proper phase detection. Still the main question
remains how the cantilever is able to pick up both the amplitude and the phase
of the ultrasonic wave after it has propagated through the sample.

Recent work by Tetard et al. (TET) [33] describes a generalization of Het-
erodyne Force Microscopy, called Mode Synthesizing Atomic Force Microscopy
(MSAFM), in which both the cantilever and sample are excited at frequencies,
ωt and ωs respectively, far above the fundamental resonance of the cantilever.
Using a numerical method TET show how the nonlinear tip-sample interaction
generates a signal at the difference frequency ωdiff = |ωs − ωt| in the atractive
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part of the tip-sample interaction and compare this with their experimental
results. They conclude that the generation of the amplitude of ωdiff appears
to more crucially depend on the particular power law of the long-range forces
than on the short-range repulsive forces.

Here we show, by contrast, how the repulsive interaction does generate a
signal at the difference frequency ωdiff , with an amplitude that is even stronger
than the peak observed in the attractive Van-der-Waals regime. TET choose
a volume integrated Lennard-Jones potential (LJ-model), which is also called
the Bradley model of rigid contact, see Sect. 1.4. This model has a divergence
at zero tip-sample distance. To prevent divergences in their simulation they
constrained the tip-sample distance such that the cantilever cannot come closer
to the sample than a certain distance d0. This restriction is indeed necessary,
but by choosing the numerical parameters more carefully, it is possible to study
the cantilever dynamics even deep in the repulsive part of the tip-sample in-
teraction. In our simulations we calculate not only the LJ-model, which shows
a significant amplitude of the difference frequency in the repulsive regime, but
we also calculate with the Derjaguin-Muller-Toporov interaction (DMT-model),
see Sect. 1.4 and [23], where indentation of the sample is allowed to a certain
extent and there is no divergence at zero tip-sample separation. Usually the
DMT-model is a more realistic description of the tip-sample interaction, es-
pecially for recent experiments, using MSAFM, performed on soft biological
samples [12, 14, 33]. To confirm our simulations, we performed measurements
and find an excellent agreement between our numerical calculations and our
experiments. Finally we show, experimentally for the first time, that the ul-
trasonic amplitude of the cantilever/tip remains almost constant, even if the
cantilever is pushed such that the tip is deep in the repulsive regime. This result
clarifies the observed amplitude behavior of the difference frequency and might
explain the particular choice of many HFM experiments [3, 6–14,31–33,48], in
which the cantilever is brought in full contact with the sample.

4.2 Numerical Calculation of the Heterodyne
Signal

Figure 4.1 shows a schematic view of the setup used in both the experi-
ments and the numerical simulations. The cantilever is excited at an angular
frequency ωt with amplitude At and phase ϕt, while the sample is excited at
an angular frequency ωs with amplitude As and phase ϕs. In an experiment,
the cantilever’s base is continuously moved towards the sample and out again.
During this movement, the nonlinearity in the tip-sample interaction generates
a drive force on the cantilever at the difference frequency ωdiff = |ωs − ωt|, of
which we detect both the amplitude Adiff and the phase ϕdiff in the cantile-
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Figure 4.1: Scheme of the HFM setup of our experiments and our numerical simu-
lations. The sample is excited at a frequency (ωs) with a fixed amplitude (As) and
phase (ϕs), and the cantilever is excited at a frequency (ωt) with amplitude (At) and
phase (ϕt). The amplitude (Adiff) and the phase (ϕdiff) of the signal at the difference
frequency (ωdiff) is detected via a lock-in method. During an experiment, in which
we approach and retract the cantilever from the surface, only the z-position of its
base is moved.

ver’s motion (response to the drive force) via a lock-in method in both the
simulations and the experiments.

To receive a proper description for the tip-sample distance z, one has to
realize that we vary the cantilever’s base zb in both the simulations and the ex-
periment. Next, to account for a possible bending of the cantilever, we include
the deflection δ (which is a function of the spring constant of the cantilever),
in addition to the ultrasonic motion of both the cantilever and the sample.
Finally, we take into account the response of the cantilever to the drive force
at the difference frequency ωdiff and get

z =zb + δ +Adiff cos(ωdifft+ ϕdiff) (4.1)

+As cos(ωst+ ϕs) +At cos(ωtt+ ϕt).

To enable a proper comparison between the simulations and the experi-
ments, we subtract an offset in zb such that zb = 0, if the deflection δ = 0
during the approach cycle of the cantilever to the surface. This is exactly the
point, at which the effective interaction on the tip changes sign from an attrac-
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tive interaction to a repulsive interaction 1.
Let us first discuss our numerical simulations, in which we used a mode

expansion to model the cantilever dynamics. In the mode expansion the mo-
tion of the cantilever is expressed as the sum over its eigenmodes [50, 51], in
which each eigenmode is characterized by a resonance frequency, a correspond-
ing quality factor Q, and a mode shape. A full description of our approach
can be found in Chap. 3 and in [42]. In our calculations we assumed a Sili-
con cantilever with a stiffness of 2 N/m and a tip radius of R = 5 nm. The
fundamental mode has a resonance frequency of 73.4 kHz and a quality factor
Q of 150. In our numerical simulations, the cantilever is ultrasonically excited
at ωt/2π = 3.1705 MHz with an amplitude At = 10 nm, while the sample is
ultrasonically excited at ωs/2π = 3.1695 MHz with an amplitude As = 0.1 nm.
Both ultrasonic excitations are far away from any resonance and lie between
the resonance frequencies of the 4th and 5th eigenmode of the cantilever. The
difference frequency ωdiff is 1 kHz, which is well below the fundamental mode
of the cantilever.

As mentioned above, we used two different types of tip-sample interactions
in our numerical simulations: the DMT-model as described by Eq. 4.2, and the
LJ-model as decribed by Eq. 4.3. The LJ-model was also used by TET. In both
models, the tip-sample interaction is characterized by the Hamaker constant H
and the distance a0, at which the repulsive part of the tip-sample interaction
becomes significant. The DMT-model has one additional parameter, which is
the effective tip-sample elasticity described by an effective Young’s modulus
Eeff . In our numerical simulations, we assumed H = 8.2 · 10−20 J, a0 = 0.45
nm, and Eeff = 100 GPa. The value for Eeff corresponds to a Silicon tip
indenting a Silicon sample.

FDMT
ts (z) =

{
−HR

6a2
0
+ 4

3Ef

√
R(a0 − z)3/2 if z < a0

−HR
6z2 if z ≥ a0

(4.2)

FLJ
ts (z) =

2HR

9a20

(
1

4

[a0
z

]8
−
[a0
z

]2)
(4.3)

Next to the LJ- and DMT-model, one could also consider the so-called the
Maugis-Dugdale (M-D-) model or the Johnson-Kendall-Roberts (JKR-) model.
The difference between the DMT-, the M-D-, and the JKR-model is mainly the
treatment of the attractive part of the tip-sample interaction. An overview of
the different models can be found in Sect. 1.4 and [54, 55]. The applicabil-
ity of a certain model is fully determined by an elasticity parameter λ and
a normalized load P [27]. These parameters depend on the radius R of the
tip, an effective elasticity, the effective work of adhesion, the “Dugdale” stress,

1The offset is given by As +At +Adiff . To avoid an unnecessary complication (nonlinear
rescaling) of the x-axes in the plots of this chapter, we neglect for these axes the variations
in both At and Adiff .
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and the applied load. For very large loads, it is sufficient to use the Hertzian
contact model. As the DMT-, M-D-, and JKR-model all include a Hertzian
contact repulsion, these models are applicable for a larger range of forces not
only describing the high load regime correctly but also the low load part with
attractive interaction. The LJ-model is different in this sense, as it contains a
pure Lennard-Jones potential and not a Hertzian contact description. Based
on the values for Silicon (material of our tip and sample) and on a tip radius
of 5 nm, which characterizes the tip-sample interaction in our simulations and
describes also our experiments, we find that λ = 0.01. If we take into account
also the variations in tip radii (see below), we receive values for λ between 0.007
and 0.014 and conclude that λ = 0.01 properly describes all cases discussed in
the current chapter. Considering the other parameter, the normalized load P ,
we realize that we have to deal with a large range between -2 and 200, as we
study the amplitude Adiff as a function of the contact force. The determination
of the appropriate model can be nicely read off from Fig. 1.8. For λ = 0.01, the
LJ-model should be used for loads smaller than 0.6 nN, while the DMT-model
should be applied for higher contact loads. We safely can neglect the M-D-
and the JKR-model, as they are both only applicable at significantly higher λ
values: λ = 0.086 and λ = 5.6, respectively. We conclude that it is sufficient to
consider only the LJ-model and the DMT-model and to address a comparison
between those results.

Figure 4.2 shows the ωdiff amplitude Adiff for both the DMT-model (upper
panel) and the LJ-model (lower panel) as a function of the height of the can-
tilever’s base zb (that determines tip-sample distance z). The vertical dashed
lines indicate the distances where the cantilever touches the sample and starts
to feel the repulsive part of the tip-sample interaction. For both the DMT-
model and the LJ-model, we see that there is indeed, as also shown by TET,
a peak in the attractive part of the tip-sample interaction. However, with
decreasing cantilever height zb, when the tip starts to feel the repulsive interac-
tion, the amplitude Adiff of ωdiff converges to a plateau, also for the LJ-model.
Both plateau’s are even higher than the peak in the attractive Van-der-Waals
regime. This indicates the importance of the repulsive part of the tip-sample
interaction. We conclude that there is almost no difference in Adiff , if deter-
mined by either the DMT- or the LJ-model.

To address the influence of the shape of the cantilever’s tip, we evaluated
the amplitude Adiff considering the DMT-model for three different tip radii,
R = 15 nm (black), R = 5 nm (grey), and R = 1.67 nm (light grey) as a
function of the tip-sample distance, see Fig. 4.3. We observe similar curves as
shown in Fig. 4.2 and note that the height of the peak in the attractive part
of the tip-sample interaction depends on the tip radius R, whereas the height
of the plateau in the repulsive part converges to the same value for all R.



4.2. Numerical Calculation of the Heterodyne Signal 73

1E-4

1E-3

0.01

0.1

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

1E-4

1E-3

0.01

0.1
LJ-model

A
s
+A

t
 = 10.1 nm

 

z
b
 [nm]

DMT-model

A
s
+A

t
 = 10.1 nm

A
d

i�
 [

n
m

] 
 

 

A
d

i�
 [

n
m

] 
 

F
c
 [nN]

0.000.621.442.31

Figure 4.2: Numerical simulations (ωt/2π = 3.1705 MHz, At = 10 nm, ωs/2π =
3.1695 MHz, and As = 0.1 nm): the amplitude Adiff of ωdiff for the DMT-model
(top) and the LJ-model (bottom) as a function of the height of the cantilever’s base
zb (that determines tip-sample distance z). Note that the x-axis is not linear in z due
to the cantilever’s deflection δ. zb = 0 defines the border between the attractive and
the repulsive regime, at which the effective force on the cantilever is zero, whereas
the vertical dashed lines indicate the distances, at which the cantilever touches the
sample and starts to feel the repulsive part of the tip-sample interaction. When
approaching the surface, both models show a peak in the attractive part of the tip-
sample interaction before an even higher plateau is reached in the repulsive part.

The inset of Fig. 4.3 shows that the height of the local maximum Apeak
diff in

the attractive part of the tip-sample interaction is directly proportional to R.
The reason for this linearity becomes obvious, if one realizes that the adhesion
in the attractive part of the tip-sample interaction scales with the tip radius
R. This can also be seen in Eq. 4.2: the tip-sample interaction for z > a0 is
directly proportional to R. Accordingly, also Adiff is proportional to R.

A similar argumentation implies that the height of the plateau of the am-
plitude Adiff depends on the properties of the repulsive part of the tip-sample
interaction. Therefore, one would expect that the height of the plateau is pro-
portional to

√
R, see Eq. 4.2. However, it was shown in Chap. 3 (or [42]) that

the height of the plateau can be calculated on the basis of As and At only,
without any knowledge on R. The reason for this is that the amplitude Adiff

is in saturation on the plateau. The chosen variation in tip radii R in this
chapter does not lower Adiff below its saturation value implying even that the
height of the plateau is independent of all other parameters characterizing the
tip-sample interaction (such as the tip radius R).
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Figure 4.3: Numerical simulations: the amplitude Adiff of ωdiff for the DMT-model
as a function of the height of the cantilever’s base zb (that determines tip-sample
distance z). Note that the x-axis is not linear in z due to the cantilever’s deflection δ.
Different colors indicate different tip radii R: 15 nm (black), 5 nm (grey), and 1.67
nm (light grey). The inset shows that the height of the local maximum Apeak

diff in the
attractive part of the tip-sample interaction is directly proportional to R. The height
of the plateau is independent of R.

One might also consider different macroscopic tip shapes and their corre-
sponding change in the tip-sample interaction, as described in [56, 57]. These
shapes will not have an influence on the height of the plateau in the repulsive
regime, as Adiff is in saturation. In the attractive regime, however, we do ex-
pect an influence on the local maximum Apeak

diff . Such an influence is, in first
approximation, well modelled by a variation in tip radius R, which we did (see
above).

4.3 Experimental Detection of the Heterodyne
Signal

Let us now discuss the experiments. In analogy to our numerical simu-
lations, we performed the experiment with a standard 2 N/m cantilever on
a freshly cleaned Silicon sample. The cantilever was an OMCL-AC240TN of
Olympus [58], which has a length of 240 µm, a width of 40 µm, a thickness of
2.3 µm, a typical resonance frequency of 73.4 kHz, and a tip radius of 5 nm,
which we confirmed with a high resolution Scanning Electron Microscope. The
sample was glued with Crystalbond 509 onto a piezo element, which has a free
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resonance in the order of 4 MHz. In the same way, the cantilever was glued
onto a similar piezo element that was mounted in a custom-made cantilever
holder. The cantilever and the sample were excited at 2.870 MHz and 2.871
MHz respectively, which are far from any resonances of the cantilever. The
experiments were performed on a Nanoscope V Multimode 8 from Bruker [16].
The motion of the cantilever is measured via the standard optical beam de-
flection method. The slope of the mode shape at the cantilever’s free end
is proportional to the sensitivity. Since we obtain the slopes of all higher
eigenmodes of the cantilever from the numerical calculations, we estimate the
sensitivity of the photodiode for the 5th mode to be 12.6 times higher than
the sensitivity for the first mode. This method is valid, because the higher
eigenmodes are insensitive to the tip-sample interaction such that the mode
shape does not significantly change when the tip gets into contact with the
sample: considering the forces applied in all experiments that are described in
this thesis, we only have a maximum frequency shift of ∼ 10 kHz of the 5th
mode at a maximum contact force Fc = 163 nN (see also Fig. 5.4, which shows
the frequency shifts of the different modes as a function of the applied load at
the end of the cantilever in terms of the normalized tip-sample stiffness I1/k).
In this way, we obtained a sensitivity of 67.7 nm/V at 71.8 kHz and 5.4 nm/V
at 2.87 MHz. This leads to a measured amplitude At of the cantilever at 2.87
MHz of approximately 0.96 nm. The amplitude As of the sample vibration
was not measured. However, as the plateau in the repulsive regime depends
only on the amplitudes of both the cantilever At and the sample As (see Chap.
3 and [42]), we can estimate the sample amplitude As to be 0.32 nm in our
experiments. During the experiments we never saw the excitation ωs of the
sample in the cantilever’s motion, which we attribute to the unfavorable ratio
of the cantilever stiffness and the sample stiffness at MHz frequencies.

In Fig. 4.4 we see the amplitude Adiff of ωdiff in the top panel and the
static cantilever deflection in the bottom panel. The amplitude Adiff shows
qualitatively the same features as in the simulations presented in Fig. 4.2.
It reaches a local maximum in the attractive regime, i.e. negative deflection,
indicated with the vertical lines. In the repulsive regime, the amplitude rises
to a plateau, which is in excellent agreement with our numerical simulations.
Even at a deflection of 10 nm, which corresponds to a contact force of 20 nN
and an indentation of 0.9 nm, the value of the plateau remains constant. How-
ever, as soon as the tip is indented approximately As + At, the cantilever is
in contact with the sample during the complete ultrasonic oscillations. As a
consequence, the tip-sample interaction approaches a more linear dependence
(as it is deeper in the repulsive regime). This implies that the generation of
the nonlinear heterodyne signal, Adiff , starts to decrease to zero, as ∂Fts/∂z
approaches zero causing also that I2 in Eq. 5.27 as well as Adiff in Eq. 5.24
approach zero. Therefore, the plateau does not remain constant and is expected
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Figure 4.4: Experiment: the amplitude Adiff of ωdiff (top) and the static cantilever’s
deflection δ (bottom) measured on Silicon as a function of the height of the cantilever’s
base zb (that determines tip-sample distance z). Note that the x-axis is not linear in
z due to the cantilever’s deflection δ. zb = 0 defines the border between the attractive
and the repulsive regime, at which the effective force, Fc, on the cantilever is zero. It
is impossible to indicate the positions, at which the cantilever touches the surface, due
to the missing information on Fts in the experiment. The solid vertical lines indicate
the positions of the local maxima of Adiff and demonstrate that these maxima are
indeed located in the attractive part of the tip-sample interaction (δ < 0). Please note
that Adiff converges to a plateau in the repulsive part of the tip-sample interaction.

to decrease for large indentations.
An unexpected result of our numerical simulations is that the ultrasonic

amplitude of the tip, At, remains almost constant while approaching and even
indenting the sample; for details see Chap. 3 and [42]. The reason for this is the
extremely high spring constant of the 5th eigenmode of the cantilever (∼ 1000
N/m) with respect to the spring constant of the bending mode of the cantilever,
which is only 2 N/m in this case. As a consequence of this, the cantilever bends
when getting in full contact with the sample, thereby leaving the high frequency
motion unaltered. Although suggested [5, 53], a constant ultrasonic cantilever
amplitude at MHz frequencies was never observed in experiments before, and
might be surprising, as one intuitively would expect that tip-sample damping
reduces the amplitude At significantly. In the bottom panel of Fig. 4.5, we ac-
tually do see that At remains (almost) constant while approaching and deeply
indenting the tip into the sample in our experiment. In full contact, we still have
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Figure 4.5: Experiment: the amplitude Adiff of ωdiff (top) and the amplitude At of ωt

(bottom) measured on Silicon as a function of the the height of the cantilever’s base
zb (that determines tip-sample distance z). Note that the x-axis is not linear in z due
to the cantilever’s deflection δ. zb = 0 defines the border between the attractive and
the repulsive regime, at which the effective force, Fc, on the cantilever is zero. It is
impossible to indicate the positions, at which the cantilever touches the surface, due
to the missing information on Fts in the experiment. Please note that At stays almost
constant even deep in the repulsive part of the tip-sample interaction: it reduces only
to 99.7% of its free amplitude.

99.7% of the free amplitude left while the static deflection is as large as ∼ 10
nm. Although we see that the tip-sample interaction starts to reduce At when
the cantilever comes into contact, this reduction is indeed very small, because
of the high spring constant and the bending of the cantilever. We attribute the
reduction in amplitude to a change in damping in the tip-sample interaction. As
the quantification of tip-sample damping is a hot topic in nanoscale friction [59],
and as the observed reduction of At in our measurements is larger than the
noise, we estimate from Fig. 4.5 the change in the quality factor Q of the
cantilever’s 5th eigenmode: the quality factor decreases from Q = 92 (based
on our simulations) to Q = 20 when the tip is in full contact with the sample
(see Appx. 4.A). Such a strong decrease is comparable to the results found by
Maier et al. [59].



78 4.4. Conclusion

4.4 Conclusion

In conclusion, we have set a next step to understand the detection mecha-
nism in a HFM. We performed both numerical simulations and experiments of
the cantilever/tip motion to get insight into the difference frequency generation
that contains the subsurface information.

The numerical simulations showed that the amplitude of the difference fre-
quency reaches a local maximum in the attractive part of the tip-sample inter-
action, which is in agreement with TET. Contrarily to TET, we found that the
amplitude of the difference frequency reaches a pleateau in the repulsive part
of the tip-sample interaction in both the LJ-model and the DMT-model. This
shows that the repulsive part of the tip-sample interaction is more important
than previously thought and could possibly explain why most experimental
MSAFM and HFM attempts are performed such that the cantilever is in full
contact with the sample for some time during its oscillation.

Furthermore, we performed experiments on a Silicon surface and found an
excellent agreement with our numerical simulations. The experiments showed
that the amplitude of the difference frequency Adiff first reaches a local max-
imum in the attractive part of the tip-sample interaction before it reaches a
plateau in the repulsive part of the tip-sample interaction. The value of the
plateau does not decrease even at a contact force of 20 nN, which equals a
tip-sample indentation of ∼ 0.9 nm and a cantilever’s base offset zb of 10 nm.
However, as we will see in Figs. 6.3, 6.12, and 6.14, the difference amplitude
Adiff decreases to zero for indentations approximately equal to As +At, due to
the decrease of I2 to zero (see Eq. 5.27).

Finally, the numerical simulations showed that the amplitude of the ultra-
sonic cantilever excitation At stays (almost) constant, even if the cantilever
indents deep into the sample. We are the first to show an experiment con-
firming this counterintuitive result: 99.7% of the free amplitude is remained
while the tip is in full contact with the sample. This implies that tip-sample
damping is not important for off resonance excitations schemes, even though
the damping is altered significantly.

Our simulations and experiments are the first steps towards quantitative
HFM measurements, which is necessary for the development of a scanning
probe microscope that delivers true 3D subsurface resolution on the nanometer
scale.
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Appendices of Chapter 4

4.A Estimation of the Quality Factor Reduc-
tion

As the observed reduction of At in our measurements is larger than the
noise, we estimate from Fig. 4.5 the change in the quality factor Q of the
cantilever’s 5th eigenmode. We start with the transfer function, which transfers
a given force on the cantilever into a corresponding amplitude, at the frequency
ωt of a single eigenmode of the cantilever:

H(ωt) =
Φn(L)

2√
(ω2

t − ω2
n)

2 +
(

ωnωt

Qn

)2
(4.4)

, in which ωn is the resonance frequency of the nth eigenmode, which has a
corresponding quality factor Qn, and mode shape Φn(x). While the cantilever’s
tip indents the sample, we do not change the drive force on the cantilever at
the ultrasonic tip frequency ωt. As a consequence, we can relate a change
in vibration amplitude at the frequency ωt to either a change in resonance
frequency ωn or a change in quality factor Qn. As we excite the cantilever off
resonance with a frequency of several MHz, we can neglect a shift in resonance
frequency, as argued in Chap. 3.3. We thus assume the vibration amplitude
At at frequency ωt to be a function of tip-sample damping only:

At(z) =
α√

1 + β/Q(z)2
(4.5)

, in which α and β are defined as follows

α = Φn(L)
2Fd/|ω2

t − ω2
n| (4.6)

β = ((ωnωt)/(ω
2
t − ω2

n))
2 (4.7)

We can use Eq. 4.5 to calculate the reduction of the quality factor of the
nth eigenmode. We know the free quality factor Qn = Q(z = ∞) and the free
vibration amplitude Afree = At(z = ∞), from which we can determine Q(z),
if At(z) is evaluated by dividing their corresponding transfer functions given
in Eq. 4.5.

x2 =

(
At(z)

At(z = ∞)

)2

=
1 + β/Q(z = ∞)2

1 + β/Q(z)2
(4.8)

After rearranging this formula, we obtain an expression for Q(z):

Q(z)

Q(z = ∞)
=

√√√√ β
Q(z=∞)2x

2

β
Q(z=∞)2x

2 + 1− x2
(4.9)
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In our experiment, we excited the cantilever between the 4th and 5th eigen-
mode. If we use the transfer function of the 5th eigenmode. We have the
following parameters: x = 0.997, ωt/2π = 2.87 MHz, ω5/2π = 3.9 MHz, and
Q5 = 92. By using these parameters in Eq. 4.9, we obtain the following reduc-
tion for the quality factor: Q(z)/Q5 = 0.22.

We can do the same calculation for the 4th eigenmode. With x = 0.997,
ωt/2π = 2.87 MHz, ω5/2π = 2.4 MHz, and Q4 = 146, we obtain a reduction of
the quality factor: Q(z)/Q4 = 0.24.

In reality, the off resonance motion should be described by a superposition
of the 4th and 5th eigenmode. However, as the results are similar between the
estimations for the 4th and 5th eigenmode, it is justified to describe the change
in damping with a single mode only in this case.


