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CHAPTER 3

Cantilever Dynamics in
Heterodyne Force Microscopy

Heterodyne Force Microscopy showed the possibility to image deeply buried
nanoparticles below a surface. However, the contrast mechanism and the mo-
tion of the cantilever, which detects the subsurface signal, are not yet under-
stood. We present a numerical study of the cantilever motion in different HFM
modes using realistic tip-sample interactions. The results provide information
on the sensitivity to the heterodyne signal. The parameters in our calculations
are chosen as closely as possible to the situation in real experiments to enable
(future) comparisons based on our predictions. In a HFM both the tip and
the sample are excited at slightly different ultrasonic frequencies such that a
difference frequency is generated that can contain subsurface information. We
calculate the amplitude and phase of the difference frequency generated by the
motion of the cantilever. The amplitude shows a local maximum in the attrac-
tive Van-der-Waals regime and an even higher plateau in the repulsive regime.
The phase shifts 180 degrees or 90 degrees, depending on the mode of opera-
tion. Finally, we observe oscillations in both the amplitude and the phase of
the difference frequency, which are caused by a shift of the resonance frequency
of the cantilever and an involved transient behavior.

Most of this chapter is published in [42]
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48 3.1. Introduction

3.1 Introduction

In an HFM, both the sample and the cantilever are excited at slightly
different ultrasonic frequencies. The amplitude and the phase of the (nonlinear)
difference frequency of the two ultrasonic frequencies allow to extract possible
subsurface information at an experimentally accessible frequency. A striking
resolution has been reported by Shekhawat and Dravid [6]. Cantrell et al.
[8] showed an amplification of the difference frequency signal, when tuning
the difference frequency to a contact resonance. This was later applied in
an intermitted contact setup by Cuberes [13], where feedback was performed
on the fundamental mode of the cantilever while the difference frequency was
matched to the frequency of the second cantilever mode. Recently, Tetard et al.
introduced Mode Synthesizing Atomic Force Microscopy (MSAFM), in which
the nonlinear tip-sample interaction generates a series of frequencies and not
only a signal at the difference frequency [14]. Applications of MSAFM focus
on measuring hard structures within soft (bio-)materials [9–12].

Until now there is a clear lack of quantification of subsurface measurements.
In order to obtain quantitative measurements, one needs to understand both
the high-frequency wave propagation in the sample as well as the cantilever
dynamics in the vicinity of a vibrating sample, as the latter provides the mea-
surable signal containing the possible subsurface information.

Regarding the wave propagation, it has been shown recently that the high-
frequency acoustic excitations in the sample are Rayleigh scattered by subsur-
face voids or defects (see Chap. 2 or [28]), as the wavelength of ultrasound is
on the order of a few millimeter. It has been shown that the expected ampli-
tude contrast is in the order of 10−4 times the amplitude of the non-scattered
wave; a value so small that its experimental detection is doubtful. However,
it has also been shown that the typical phase contrast is in the order of a few
millidegrees, which ought to be detectable. Since the phase contrast of a buried
particle may be measured more easily than its amplitude contrast, we will also
pay attention to the phase of the cantilever motion.

Concerning the cantilever dynamics, it is still not known how a vibrating
cantilever reacts to (high-)frequency vibrations of the sample, although the ef-
fect on a static cantilever has been investigated [43–47]. Since the tip-sample
interaction is nonlinear, unexpected effects might occur that could perhaps
lead to an increase of the detected amplitude/phase contrast. The nonlinear
interaction between the tip and the sample causes the cantilever to vibrate at
any frequency, which is a linear combination of the high ultrasonic frequencies
through the tip and the sample. Recent work by Cantrell et al. [32] has shown
analytically that the phase of the sample corresponds 1-to-1 with the phase of
the difference frequency. They make a mode expansion of the motion of the
cantilever, in which each mode represents a resonance of the cantilever. This
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is analogous to our approach, which we describe in this chapter, except we nu-
merically solve the equation of motion to take into account the full nonlinearity
of the tip-sample interaction.

The latest experiments and calculations [33, 48] show that the excitation
of the difference frequency is optimal when the cantilever is vibrated in the
attractive regime of the tip-sample interaction, where the Van-der-Waals force
is dominant. These papers also show that the excitation of the difference fre-
quency is enhanced, if one, in addition, weakly excites the first resonance of
the cantilever. However, in their analytical model, it is not possible for the
cantilever to indent into the sample. This is an important point, as one would
expect the snapping in-and-out of contact with the sample to be the “biggest”
nonlinearity that, therefore, produces the strongest signal at the nonlinear dif-
ference frequency.

In this chapter we study the cantilever dynamics in Subsurface-AFM. We
include the possibility of soft samples and find that the maximum excitation
of the difference frequency is in full contact with the sample. The surface
of the sample is assumed to vibrate at an ultrasonic frequency (ωs) with a
fixed amplitude (As) and phase (ϕs). The cantilever is excited at a slightly
different ultrasonic frequency (ωt) with amplitude (At) and phase (ϕt). This
is analogous to the experimental setups of [3, 6, 7, 9–12, 14, 33]. We calculate
the excitation of the difference frequency ωdiff = |ωs − ωt| as a function of the
tip-sample distance (see Fig. 3.1).
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Figure 3.1: The corresponding HFM setup of our numerical calculations. The sample
is excited at a frequency (ωs) with a fixed amplitude (As) and phase (ϕs), and the
cantilever is excited at a frequency (ωt) with amplitude (At) and phase (ϕt). The
amplitude (Adiff) and the phase (ϕdiff) of the difference frequency ωdiff = |ωs − ωt|
is detected via a lock-in. During approaching and retracting the cantilever from the
surface, only the z-position of its base is moved.
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We confirm the peak in the Van-der-Waals regime published by Tetard et
al. [33], but, in addition, we find that the amplitude of the difference frequency
converges to a plateau in the repulsive regime of the tip-sample interaction.
Furthermore, we find changes in the phase of the difference frequency that are
related to tapping mode operation as well as the sign of the effective drive force
at the difference frequency. Finally, we show that there is an excitation of the
fundamental resonance (1st mode) of the cantilever, if the cantilever moves in
or out of contact with the sample. We discriminate two effects. Firstly, while
going in or out of contact, due to its deflection, the cantilever’s tip slows down
or accelerates, respectively, which results in an excitation of the fundamental
resonance of the cantilever. Secondly, in the case that the difference frequency is
tuned to the frequency of the 1st mode of a free cantilever, the actual resonance
frequency of the cantilever shifts due to the tip-sample interaction. This results
in a transient behavior of the oscillator leading to oscillations in both the
amplitude and the phase of the difference frequency.

3.2 Theory and Calculation

The dynamics of a cantilever with uniform cross section, fixed on one end
and with external forces applied to its free end, is well modelled using the
Euler-Beam equation [32,49,50], which we, therefore, also take as our starting
point.

EI
∂

∂x4

[
Φ(x, t) + ai

∂Φ

∂t

]
+ ρwh

∂Φ

∂t2

+ ah
∂Φ

∂t
− δ(x− L) [Fts(z) + Fdrive(t)] = 0 (3.1)

, in which E is the Young’s modulus of the cantilever, I is the moment of
inertia, ai is the internal damping coefficient, ρ is the density, w, h, and L
are, respectively, the width, height, and length of the cantilever, ah is the
hydrodynamic damping, δ(x − L) is the δ-function which describes that the
force acts at the free end only, and Φ(x, t) is the vertical displacement of the
cantilever at position x and at time t. Fdrive is the drive force on the cantilever
at its free end and Fts(d) represents the tip-sample interaction acting on the
free end, where z is the tip-sample distance. In our model, the tip-sample
distance is given by z = zb + Φ(L, t) + As cos(ωst + ϕs), where zb is the base
position (fixed end) of the cantilever, As is the vibration amplitude of the
sample, ωs is the angular frequency of the sample, and ϕs is the phase of the
sample. Φ(L, t) is the vertical displacement of the end of the cantilever. In
first approximation, this consists of the cantilever deflection δ, the ultrasonic
tip motion At cos(ωtt + ϕt), and the real motion at the difference frequency
Adiff cos(ωdifft + ϕdiff). To enable future comparisons with experiments, we
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subtract an offset in zb such that zb = 0, if the deflection δ = 0 during the
approach cycle of the cantilever. This is the border between the attractive and
the repulsive regime, at which the effective force on the cantilever is zero.

We use the boundary conditions of a free cantilever beam, which is clamped
at its base and has a tip of mass Mt at its free end:

Φ(0, t) = 0

∂Φ

∂x
(0, t) = 0[

EI
∂2Φ(x, t)

∂x2
+ It

∂3Φ(x, t)

∂t2∂x

]
x=L

= 0 (3.2)[
EI

∂3Φ(x, t)

∂x3
−Mt

∂2Φ(x, t)

∂t2

]
x=L

= 0

(3.3)

, where It is the moment of inertia of the tip and L is the length of the can-
tilever. These boundary conditions introduce a discrete set of solutions such
that it is possible to solve Eq. 3.1 by using the ansatz Φ(x, t) = φ(x)η(t).
By applying the mass-normalized eigenmodes, as described in [51], we are able
to make a mode expansion: Φ(x, t) =

∑
j φj(x)ηj(t), where φj(x) are the

mass-normalized eigenmodes and ηj(t) are the corresponding amplitudes. The
mass-normalized eigenmodes are given by

φj(x)/αj = cos

(
λj

L
x

)
− cosh

(
λj

L
x

)
(3.4)

+ ξj

{
sin

(
λj

L
x

)
− sinh

(
λj

L
x

)}
(3.5)

, where λj is the jth positive real root of

1+ cosλ coshλ+ λ
Mt

mL
(cosλ sinhλ− sinλ coshλ)

− λ3It
ρwhL3

(coshλ sinλ+ sinhλ cosλ) (3.6)

+
λ4MtIt

(ρwhL2)2
(1− cosλ coshλ) = 0

, ξj is given by

ξj =
sinλj − sinhλj + λj

Mt

ρwhL (cosλj − coshλj)

cosλj + coshλj − λj
Mt

ρwhL (sinλj − sinhλj)
(3.7)
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, and the normalization constant αj is determined from∫ L

0

∂2φj

∂x2

∂2φr

∂x2
EIdx = ω2

j δrj (3.8)

, where δrj is the Kronecker delta and ω2
j is the eigenfrequency of mode j,

which has a corresponding quality factor Qj :

ω2
j =

(
λj

L

)4
EI

ρwh
(3.9)

Qj =
ωj

ah

ρwh + aiω2
j

(3.10)

Using the mode expansion in Eq. 3.1 we derive a differential equation for ηj(t).

η̈j +
ωj

Qj
η̇j + ω2

j ηj = φj(L) [Fexc(t) + Fts(z)] (3.11)

We use this mode expansion (Eq. 3.11) to numerically solve the equation of
motion of the cantilever in the time domain. In order to accurately solve the
high-frequency motion of the cantilever used in Subsurface-AFM, we need to
include the first 10 eigenmodes of the cantilever. This is significantly higher
than the 4 modes used in the calculation of [50]. We use a leap-frog algorithm
in combination with a 4th order Runge-Kutta method to find the time evolu-
tion of ηj .

For our simulations we assumed a standard Silicon cantilever with a stiff-
ness of 2 N/m, which has its first flexural mode at 73.4 kHz. The cantilever
has a length of L = 230µm, a width of w = 30µm, a height of h = 2.7µm, a
Young’s modulus of E = 179 GPa, a Poisson ratio of ν = 0.28, a density of
ρ = 2330 kg/m3, an internal damping of ai = 4.3 · 10−10 s, a hydrodynamic
damping of ah = 5.6 ·10−4 kg/ms, a tip mass of Mt = 5.4 ·10−15 kg, a moment
of inertia of the tip of It = 3 · 10−22 kg m2, and a tip radius of R = 5 nm.
The damping coefficients ai and ah were chosen to match the measured quality
factors, Q, of the fundamental mode of 150 and the second mode of 450.

The discussion so far is valid for any tip-sample interaction, but as recent
Subsurface-AFM experiments [3,6,8–11,13,14] focus on the application of soft
(bio)materials, we apply the DMT-model [23] to describe the tip-sample inter-
action between the cantilever and the surface. In the DMT-model the tip can,
to a certain extent, indent into the sample. We will also calculate the response
of the cantilever using the Bradley model of rigid contact, described in Chap.
4. According to the DMT-model, the force-distance relation is given by

Fts(z) =

{
−HR

6a2
0
+ 4

3Ef

√
R(a0 − z)3/2 if z < a0

−HR
6z2 if z ≥ a0

(3.12)
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, where we take the value for Silicondioxide for the Hamaker’s constant, which
is H = 8.2 · 10−20 J. The effective interatomic distance is a0 = 0.45 nm, and
Ef is the effective Young’s modulus

1

Ef
=

1− ν2

E
+

1− ν2s
Es

(3.13)

with the Poisson ratio of the sample of νs = 0.35 and the Young’s modulus
of the sample of Es = 179 GPa of Silicon. We removed the discontinuity in
the derivatives of Fts(z) at z = a0 by locally approximating Fts(z) with two
quadratic functions: one for 0.8a0 ≤ z ≤ a0, and one for a0 ≤ z ≤ 1.2a0, such
that ∂Fts(a0)/∂z = 0. The other constraint is the continuity of both Fts(z)
and its derivative at z = 0.8a0 and z = 1.2a0. The sum of the oscillation
amplitudes As and At is always chosen to be larger than the region where Fts

is approximated with the two quadratic functions.
Figure 3.2 shows both the tip-sample force (black) as well as the second

derivative of the force (gray) with respect to the tip-sample distance z as a
function of the tip-sample distance z. Note that the tip-sample interaction
Fts(z) is nonzero at z = 0:

Fts(z = 0) = −HR

6a20
+

4

3
Ef

√
Ra

3/2
0 . (3.14)

Note also that the second derivative of the force has two extrema: a positive
one in the repulsive Hertzian contact force regime, and a negative one
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Figure 3.2: The force (black) as a function of the tip-sample distance z. The right
scale corresponds to the second derivative of the force (gray) with respect to the
tip-sample distance. Note that Fts(z = 0) ̸= 0 per definition (see Eq. 3.12).
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in the attractive Van-der-Waals force regime. Also the second derivative is, by
choice, constant in between these two extrema.

The reason why we provide the second derivative becomes clear, if one
considers the nonlinear (or also called heterodyne) mixing term that mixes the
tip vibration with the sample vibration. If we expand the tip-sample interaction
with a Taylor series up to second order,

Fts(zb + ϵ) = Fts(zb) +
∂Fts(zb)

∂z
ϵ+

1

2

∂2Fts(zb)

∂z2
ϵ2

ϵ = As cos(ωst+ ϕs) +At cos(ωtt+ ϕt) (3.15)

one sees that the first term that delivers mixing (multiplication of the two
cosines) is given by the third term with a prefactor of the second derivative.
The mixing amplitude at the difference frequency is, therefore, a direct function
of the second derivative.

Using the force-distance curve of Fig. 3.2, we calculated the cantilever
motion as a function of the tip-sample distance to study the nonlinear frequency
mixing for the Subsurface-AFM case of a HFM. In the simulation, we start
without any tip-sample interaction at 14 nm away from the sample, where we
let the cantilever reach its equilibrium motion (with frequency ωt, amplitude
At, and phase ϕt). Then we turn on the tip-sample interaction and continuously
move towards the surface and out again. During this movement, we record the
motion of the cantilever, from which we calculate the amplitude (Adiff) and
phase (ϕdiff) of the difference frequency at ωdiff = |ωs − ωt| using a lock-in
method.

3.3 Results and Discussion

Following the two different experimental ways of applying the frequencies,
as reported in literature [3, 6, 7, 9–12, 14, 33], we also calculated the cantilever
response for two different frequency schemes, which we call off-off resonance
and on-on resonance (see also Sect. 1.2 for the different HFM modes).

In the off-off resonance scheme all frequencies (that of the tip, the sample,
and the nonlinear difference frequency) are far away from any eigenfrequency
of the cantilever. We have chosen ωtip,sample/2π = 0.5 · (f4thmode + f5thmode ±
1 kHz) = 0.5 · (2.43MHz + 3.90MHz ± 1 kHz) ≈ 3.17 MHz, which leads to a
difference frequency of |ωs − ωt|/2π = 1 kHz.

In the on-on resonance scheme the tip is driven at resonance
ωt/2π = f5thmode ≈ 3.90 MHz, and the sample frequency ωs/2π = f5thmode +
f1stmode ≈ 3.98 MHz is tuned such that the difference frequency |ωs−ωt|/2π =
f1stmode = 73 kHz matches the first eigenmode of the cantilever.

Note that whenever we speak about an eigenfrequency of the cantilever, we
refer to the eigenfrequency of the free hanging cantilever not being in contact
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with the sample. These eigenfrequencies shift to higher frequencies when the
cantilever gets into contact with the sample and shift to lower frequencies in
the attractive regime. We denote the amplitude and the phase at the difference
frequency with Adiff and ϕdiff respectively.

As the shifting of the eigenfrequencies is important for the understanding of
this chapter and the rest this thesis, we shortly discuss this issue in the follow-
ing. The fundamental mode of the cantilever has a resonance frequency of 73
kHz and a spring constant of 2 N/m, if we neglect the tip mass and tip moment
of inertia. Because of the tip-sample interaction, the resonance frequency of the
cantilever shifts to lower frequencies, when the tip-sample interaction is attrac-
tive, and to higher frequencies, when the tip-sample interaction is repulsive 1.
Next to these relatively small shifts, the mode shape changes, if the cantilever
gets into full contact with the sample. If the tip-sample contact gets sufficiently
stiff, the resonance frequency will become that of the first contact resonance,
which is ∼ 320 kHz for the used cantilever (see also Fig. 5.4). In our simula-
tion, due to the bending of the cantilever, we do not reach sufficient tip-sample
stiffness and the first resonance shifts only up to ∼230 kHz (the maximum
tip-sample stiffness that we reach in all experiments described in this thesis is
indicated with a vertical dashed line in Fig. 5.4.). The higher eigenmodes of
the cantilever are much stiffer than the 2 N/m of the fundamental mode: the
spring constant can go up to several 1000 N/m. As a consequence, the fre-
quency shift of the higher eigenmodes caused by the tip-sample interaction is,
therefore, negligible. We estimate the frequency shift of the higher eigenmodes
to be 1000[N/m]/2[N/m] ≈ 500 times smaller than the frequency shift of the
fundamental mode, which can be read of at the position of the horizontal line
for the 5th mode in Fig. 5.4. The contact resonance of the 4th eigenmode,
with a resonance frequency of 2.43 MHz, is 3.61 MHz. However, in order to
reach this high frequency contact resonance the tip-sample contact has to get
100 times stiffer than in the case of the first contact resonance. This is im-
possible in our case, as we even do not reach the first contact resonance (see
Fig. 5.4). Strictly speaking, one would need an infinitely stiff tip-sample con-
tact to reach the contact resonances. As the fundamental mode shifts towards
the contact resonance (∼ 230 kHz), the frequency shift of the 4th eigenmode
with 2.43 MHz is only ∼ 20 kHz. This, together with the fact that the quality
factor, Q, of the 4th eigenmode is 146, implies that At and ϕt are constant
in the off-off resonance scheme: the tip indents into the relatively soft sample
without significant changes to the cantilever resonance frequency. In the on-on
resonance scheme the same argumentation is valid; we use the 5th eigenmode of
3.90 MHz, which shifts only ∼ 10 kHz during the approach and has a Q of 92.
At this point it is important to note that, due to the missing frequency shift of

1Actually it is the sign of the first derivative of the force, which matters for the definition
of attractive and repulsive interaction.
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the high frequency tip motion, also the difference frequency is constant in the
on-on resonance scheme. The cantilever is driven with a constant (difference)
frequency on its fundamental mode. However, when getting into contact, the
first mode shifts to the contact resonance, which implies a phase shift of 90
degrees. We will see back this 90 degrees phase shift in our results.

We start with the introduction of the off-off resonance results. In Fig. 3.3
the amplitude of the difference frequency for the off-off resonance case is plotted
as a function of the base position zb of the cantilever for various As, while At is
kept constant at 1 nm. There is no frequency mixing far away from the surface
(the oscillations are an artefact of our lock-in detection). When approaching
the sample, we observe a local maximum before the mixing amplitude con-
verges to an even higher plateau in the repulsive regime. The plateau has not
been observed before and is complimentary to the work of Tetard et al. [33],
who reported about a maximum in the attractive Van-der-Waals regime. The

retract

approach

0 2 4 6 8 10 12 14
1E-5

1E-4

1E-3

0.01

0.1

1

10

z
b
 + A

t
 + A

s
 [nm]

A
d

i�
 a

t 
1

 k
H

z 
[n

m
]

O�-O� resonance

Figure 3.3: The amplitude of the difference frequency for the off-off resonance case
as a function of the height of the cantilever’s base zb + As + At (that determines
tip-sample distance z). Note that the x-axis is not linear in z due to the involved
cantilever deflection δ. zb = 0 defines the border between the attractive and the
repulsive regime, at which the effective force on the cantilever is zero. As is 0.1 nm,
0.5 nm, 1 nm, 2 nm, 5nm, and 10 nm and is color coded from black to light grey. At

is fixed and equal to 1 nm. The results are symmetric in As and At: by interchanging
the values of As and At in the simulation, we obtain exactly the same result for the
amplitude of the difference frequency. We see a local maximum before the mixing
amplitude reaches an even higher plateau. The black arrows indicate the approach
and retract curve.
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results shown in Fig. 3.3 are symmetric in As and At: by interchanging the
values of As and At in the simulation, we obtain exactly the same result for the
amplitude of the difference frequency (we will show the symmetry in As and
At also analytically in Chap. 5). We will discuss both the local maximum and
the plateau later. It is interesting to note that we also find a local maximum
and a plateau, when applying a Lennard-Jones potential (see Chap. 4 or [52]).

Investigating Fig. 3.3 more closely reveals that the amplitude of the peak in
the attractive Van-der-Waals regime decreases when As increases. This implies
the existence of an optimal combination of At and As, which maximizes the
peak in the attractive Van-der-Waals regime. We expect that the optimal
combination of At and As is such that only the part of the force-distance curve
is probed where the second derivative is maximal: At + As ≈ 0.1 nm. In
addition, we also observe that the plateau is reached more quickly for smaller
As. We will come back to this later.

Furthermore, when looking at Fig. 3.3, one immediately notes the hysteresis
between the approach and retract curves. This is a numerical effect caused
by the way we calculate the force distance curves. The cantilever is moved
continuously towards the surface, after which it is moved away from the surface.
This continuous movement together with the fact that the cantilever needs some
time to adjust the amplitude of the difference frequency (involved Q factor),
lets the cantilever feel different effective forces on its way towards the sample
with respect to its path away from the sample. In other words, a shift in
time equals a shift in zb position, which leads to the hysteresis. The hysteresis
vanishes, if the cantilever approaches the surface infinitely slowly.

In all figures to follow, we have chosen As of 0.1 nm and At of 10 nm. Also,
everything is plotted as a function of the height of the cantilever’s base zb.

Figure 3.4 shows the amplitude of the difference frequency plotted in black
and the corresponding cantilever deflection plotted in grey. The dotted vertical
line indicates the point, where the repulsive part of the tip-sample interaction
is first felt by the cantilever. The mixing strength increases as one approaches
the sample, because the Van-der-Waals force is increasing and is nonlinear. As
the mixing strength is a direct function of the second derivative of the tip-
sample interaction (see above), we expect two maxima 2: one in the attractive
Van-der Waals regime and one in the repulsive regime. This explains the local
maximum to the right of the dotted vertical line in Fig. 3.4 indicating that it
is in the attractive regime of the tip-sample interaction, which is in agreement
with [33]. However, instead of seeing a second maximum, we observe a plateau
that is completely caused by the repulsive part of the tip-sample interaction.

At this point one should realize two important facts. First, the spring
constant of the 5th eigenmode is in the order of 103 N/m whereas the spring

2The change in sign of the second derivative of the tip-sample interaction leads to a phase
change of the nonlinear mixing frequency.
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constant of the fundamental mode is only 2 N/m. Therefore, the cantilever
starts bending (resulting in a deflection, see Fig. 3.4) before the tip-sample
stiffness reaches a value that is comparable to the stiffness of the 5th eigen-
mode. As a consequence, the high frequency tip excitation effectively does not
feel the sample and maintains its free amplitude At. In other words, even if
the tip gets into full contact with the sample, the high frequency tip vibration
is maintained and the cantilever bends. This explains why we do not observe
a second maximum in the repulsive regime. This result is rather unexpected,
because experimentally At decreases with further indentation into the sample,
i.e. in a tapping-mode approach curve of a cantilever driven at its first mode or
higher modes the amplitude eventually goes down. The second point to realize
is that As is constant by choice.

Keeping these two issues in mind, we can understand the different plateau
values as a function of the sample amplitude As, as visible in Fig. 3.3.
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Figure 3.4: The amplitude (black) of the difference frequency and the corresponding
cantilever deflection (gray) as a function of the height of the cantilever’s base zb (that
determines tip-sample distance z). Note that the x-axis is not linear in z due to the
involved cantilever deflection δ. zb = 0 defines the border between the attractive and
the repulsive regime, at which the effective force on the cantilever is zero. As is 0.1
nm and At is 10 nm. The dotted vertical line indicates the point where the repulsive
part of the tip-sample interaction is first felt by the cantilever. We see that a local
maximum of the mixing amplitude is in the attractive Van-der-Waals regime of the
tip-sample interaction, whereas an even higher plateau is reached in the repulsive
regime.
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The cantilever is oscillating in/on a surface, which is vibrating at a slightly
different frequency. The sample surface is thus at a different z-position for
each high frequency oscillation of the cantilever. This results in a beating (and
not nonlinear mixing) of the cantilever’s deflection at the difference frequency.
The amplitude of the beating is found from the following mathematical identity

As cos(ωst+ ϕs) +At cos(ωtt+ ϕt) = (3.16)√
A2

t +A2
s + 2AtAs cos(ωdifft+ ϕs − ϕt)×

cos

(
ωs + ωt

2
+

ϕs + ϕt

2
+ tan

{
As −At

As +At
arctan

[
ωdiff

2
+

ϕs − ϕt

2

]})
≡

√
A2

t +A2
s + 2AtAs cos(ωdifft+ ϕs − ϕt)g(ωh)

, where |g(ωh)| ≤ 1 is a harmonic function oscillating at a single angular fre-
quency ωh (ωt ≤ ωh ≤ ωs). The low frequency amplitude of this beating Amax

diff

is derived from Eq. 3.16:

Amax
diff = At +As −

√
A2

t +A2
s (3.17)

In Tab. 3.1 we compare the simulation values of the plateaus, Aplateau, de-
rived from Fig. 3.3 with the theoretical values Amax

diff . We find a very good
agreement except for intermediate values of At and As. The good agreement
between Amax

diff and the values of the plateaus indicates the linearity of the tip-
sample interaction deep in the repulsive regime and, therefore, the importance
of beating for the generation of the signal at the difference frequency (as will be
addresses in detail in Chap. 6). Now we can also understand why the plateau’s
in Fig. 3.3 are reached earlier for small As. With a smaller amplitude As, the
cantilever is sooner, during the approach, probing only the most nonlinear part
of the tip-sample interaction, which effectively results in the plateau, due to
beating.

As mentioned above, in experiments we do not observe a plateau. The rea-
sons are the following. Firstly, significant damping between the tip and the
sample, especially at high frequencies, ensures that both At and As decrease
and do not remain constant, in contrast to our simulations. Secondly, the sam-
ple is also influenced by the tip motion, thereby possibly changing As locally.
Thirdly, as soon as the tip is indented As+At, the cantilever is in contact with
the sample during the complete ultrasonic motion. As a consequence, the tip-
sample interaction approaches a more linear dependence (as it is deeper in the
repulsive regime). This implies that the generation of the nonlinear heterodyne
signal, Adiff , starts to decrease to zero, as ∂Fts/∂z approaches zero causing also
that I2 in Eq. 5.27 as well as Adiff in Eq. 5.24 approach zero. Due to these
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three reasons, one expects that the difference amplitude, Adiff , decreases to
zero for sufficiently deep indentations. This converts the plateau into a second
maximum, this time in the repulsive regime. We confirm the decrease of the
difference amplitude Adiff in Figs. 6.3, 6.12, and 6.14. These figures show that
for indentations approximately equal to As+At, the difference amplitude Adiff

decreases to zero, due to the decrease of I2 to zero.

As [nm] 0.1 0.5 1.0 2.0 5.0 10.0
Amax

diff [nm] 0.095 0.382 0.586 0.764 0.901 0.950
Aplateau [nm] 0.085 0.414 0.729 0.851 0.898 0.913

Table 3.1: The comparison between the theoretical values Amax
diff for beating and the

values of the plateau’s, Aplateau, obtained from the simulation in Fig. 3.3 for different
As. At is fixed and equal to 1.0 nm.
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Figure 3.5: The amplitude Adiff (black) and the phase ϕdiff (grey) of the difference
frequency as a function of the height of the cantilever’s base zb (that determines
tip-sample distance z). Note that the x-axis is not linear in z due to the involved
cantilever deflection δ. zb = 0 defines the border between the attractive and the
repulsive regime, at which the effective force on the cantilever is zero. As is 0.1 nm
and At is 10 nm. The dotted vertical grey line indicates the point where the repulsive
part of the tip-sample interaction is first felt by the cantilever. We observe a 180
degrees phase shift, when the cantilever gets into contact with the sample.
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Figure 3.5 displays the amplitude Adiff (black) of the difference frequency
with its corresponding phase ϕdiff (grey) for the off-off resonance case. Again,
the dotted vertical line indicates the point, where the repulsive part of the tip-
sample interaction is first felt by the cantilever. The oscillations in the phase
for z > 0.55 nm are a numerical artifact, as the mixing amplitude is too small
for an accurate phase determination.

We observe a phase shift of 180 degrees while approaching the surface and
attribute this to a change of the sign of the drive force. In the attractive regime
the sample effectively pulls the cantilever towards the surface (at the point of
closest approach), whereas in contact the sample pushes the cantilever away.
Effectively, this results in a 180 degrees phase shift in the excitation at the
difference frequency. Another important observation is that the phase shift of
180 degrees has a certain width: it does not shift instantaneously at a certain
z-position. The width increases with increasing amplitudes As and At of the
high frequency vibrations.

Let us now discuss the on-on resonance case and compare this with the
off-off resonance case. Figure 3.6 shows the amplitude of the free fundamen-
tal mode (1st resonance) of the cantilever in the off-off resonance case (black,
lower panel) and Adiff at the first resonance in the on-on resonance case (grey,
upper two panels). In the black line of the off-off resonance case, one sees two
maxima (approach and retract) that barely stick out over the oscillations of the
noise level, which are caused by the error in the amplitude calculation of the
lock-in. These maxima occur when, firstly, the cantilever’s tip moves into con-
tact and effectively slows down with respect to the overall approach movement
and, secondly, when the tip moves out of contact and effectively accelerates
during its movement away from the surface to keep up with the overall retract
movement. Both, this effectively slowing down and the acceleration of the can-
tilever, excite resonance frequencies and, therefore, give rise to a shock in the
amplitude of the fundamental resonance.

In contrast to the off-off resonance case, where the shock barely excites
the fundamental mode of the cantilever, the oscillations in the on-on reso-
nance case (upper two panels in Fig. 3.6) are real and not caused by the
error of the lock-in (please note that the scales differ a factor 100). When
approaching the surface, the resonance frequency of the fundamental mode
of the cantilever continuously shifts to lower frequencies due to the attrac-
tive part of the tip-sample interaction, while the difference frequency remains
constant. This leads to a transient behavior of the cantilever motion: the
cantilever is driven slightly off resonance, but each period with a different
drive phase due to the continuous shifting. The varying drive phase results
in an effective decrease or increase of the signal at the difference frequency.
The frequency of the oscillation at the difference frequency should be approx-
imately equal to the frequency shift of the resonance frequency. We observe
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Figure 3.6: The amplitude (black, lower panel) of the fundamental mode of the
cantilever in the case of the off-off resonance scheme and the mixing amplitude (gray,
upper panels) in the case of the on-on resonance scheme as a function of the height
of the cantilever’s base zb (that determines tip-sample distance z). Note that the
x-axis is not linear in z due to the involved cantilever deflection δ. zb = 0 defines the
border between the attractive and the repulsive regime, at which the effective force
on the cantilever is zero. As is 0.1 nm and At is 10 nm for both curves. The black
arrows indicate which oscillations belong to the approach curve and which ones to
the retract curve. The correspondence in the z-position between the maxima of the
black line and the oscillations of the gray line indicate that the oscillations in the
mixing amplitude are related to getting in and out of contact with the surface.

oscillations with a maximum frequency of ∼1.5 kHz, which corresponds to
the maximum frequency shift caused by the attractive Van-der-Waals interac-
tion. The time scale, at which these oscillations should damp out, is equal to
Q/πf0 ≈ 0.65 ms, or at our rate of approaching the sample corresponds to
0.02 nm, which is approximately the distance between the peak at z = 0.40
nm and z = 0.38 nm. We determine the amplitude of the oscillation by tak-
ing the average of the peak maximum and the valley to the right of the peak.
The amplitude of the peak at z = 0.40 is then ≈ 0.043 nm, while the peak at
z = 0.38 nm has an amplitude of ≈ 0.015 nm. These two amplitudes differ
approximately a factor e as one expects. Similar arguments hold for the case
where the cantilever is retracted from the surface, which explains the oscilla-
tions in the retract curve. In conclusion, the oscillations in the amplitude are
a result of the transient behavior of the cantilever, in which it is driven slightly
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off resonance.
Let us now focus on the phase ϕdiff of the difference frequency in the on-on

resonance case, which also shows oscillations as depicted in the lower panel
of Fig. 3.7. The upper panel shows the amplitude Adiff of the difference fre-
quency as a reference. As discussed above, the cantilever is driven slightly
off resonance with a varying drive phase (transient behavior). This varia-
tion is, therefore, also reflected in the phase of the difference frequency, re-
sulting in similar oscillations as in the amplitude. In addition, we observe a
global 90 degrees phase shift between being far away from the surface and
getting into contact. This is in correspondence with an intermitted contact
mode (or tapping mode) AFM and is caused by the frequency shift of the
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Figure 3.7: The amplitude Adiff (gray, upper panel) and phase ϕdiff (black, lower
panel) of the difference frequency as a function of the height of the cantilever’s base
zb (that determines tip-sample distance z) for the on-on resonance excitation scheme.
Note that the x-axis is not linear in z due to the involved cantilever deflection δ.
zb = 0 defines the border between the attractive and the repulsive regime, at which
the effective force on the cantilever is zero. As is 0.1 nm and At is 10 nm. The black
arrows indicate which oscillations belong to the approach curve and which ones to
the retract curve. Note that the oscillations, which are caused by the shifting of the
resonance frequency and the driving of the oscillator slightly off resonance (transient
behavior), are observed in both the phase and mixing amplitude. In addition to the
oscillations, we observe an overall 90 degrees phase shift between far away from the
sample and getting into contact.
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fundamental mode of the cantilever: far away from the surface the cantilever is
driven at its resonance frequency, which shifts to higher frequencies (see above)
when getting into contact thereby changing the phase exactly 90 degrees.

Finally, we stress that in the calculations discussed here the amplitude and
phase of the sample vibration are kept constant. In reality, the cantilever might
influence and disturb the sample vibration.

3.4 Conclusion

In order to quantify the mixing amplitude and phase in Heterodyne Force
Microscopy, which can contain subsurface information, we performed numerical
calculations of the response of a cantilever that is vibrating at an ultrasonic
frequency ωt in the vicinity of a sample, which vibrates at a slightly different
ultrasonic frequency ωs, to determine the amplitude and phase of the difference
frequency ωdiff = |ωs −ωt| as a function of the tip-sample distance. In analogy
to reported HFM experiments, we calculated the results for two excitations
schemes: the off-off resonance scheme and the on-on resonance scheme.

In the off-off resonance excitation scheme, we have shown that the ampli-
tude of the difference frequency has a local maximum in the attractive Van-
der-Waals regime, which is in agreement with [33]. In addition, we have found
a plateau in the repulsive regime. This unexpected behavior is the result of two
effects. Firstly, the high stiffness of the higher cantilever eigenmodes ensures
that At is constant: the cantilever bends, thereby leaving the high frequency
motion unaltered. Secondly, the constant high-frequency cantilever motion to-
gether with the constant high-frequency sample motion causes a beating in the
deflection at a low difference frequency, which is smaller than the fundamental
mode of the cantilever. The combination of these two effects explains why the
height of the plateau is equal to the beating amplitude of the two ultrasonic
vibrations with amplitudes At and As.

Furthermore, we have shown the existence of an optimal combination of
At and As, which maximizes the peak in the attractive Van-der-Waals regime.
Also we have shown that the amplitude of the difference frequency reaches the
plateau sooner for smaller As.

The results of the on-on resonance scheme are similar to the results of the
off-off resonance scheme. In addition, the on-on resonance scheme shows oscil-
lations in both the amplitude and the phase of the difference frequency. These
oscillations are the result of effectively driving the cantilever slightly off reso-
nance, which leads to a transient behavior of the cantilever. The phase of the
effective drive force is varying, resulting in an effective damping or amplifica-
tion of the signal at the difference frequency. The variations in the drive phase
are reflected in oscillations of the phase of the difference frequency.

In the off-off resonance excitation scheme, the phase of the difference fre-
quency shows a 180 degrees phase shift when one gets in contact with the
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surface. This shift is caused by a change of the sign in the effective drive force
at the difference frequency. The width (or z-range), over which this phase shift
occurs, increases with increasing amplitudes As and At of the high frequency
signals. In the on-on resonance scheme the phase shift is only 90 degrees; it is
caused by the frequency shift of the fundamental mode similar to the shift in
intermitted contact mode operation.

The presented numerical study sets the stage to understand reported and
future HFM measurements, as a quantitative understanding that combines the
cantilever dynamics with different tip-sample interactions, is still missing. A
study that takes into account both the altered tip-sample interaction above
buried nanoparticles and the cantilever dynamics, might explain the reported
subsurface contrasts.




