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CHAPTER 2

Ultrasonic Rayleigh Scattering by Subsurface
Nanoparticles

Recent experiments in the field of Subsurface Atomic Force Microscopy demon-
strate that it is possible to nondestructively image micro- and even nanoparti-
cles that are embedded deeply within the bulk of a significantly softer sample.
In order to get insight into the contrast formation mechanism, we performed a
finite element analysis and an analytical study, in which we calculate the ampli-
tude and phase variation on the surface of an ultrasonic wave that has travelled
through the sample. Our calculations are performed as closely as possible to the
situation in the experiments to enable a (future) comparison based on our pre-
dictions. We show that Rayleigh scattering of acoustic waves accounts for the
measured contrast and we verify the characteristic Rayleigh dependencies. The
numerical results show that the contrast is independent of the depth at which a
particle is buried, whereas the analytical study reveals a 1/depth dependence. In
addition, we find a large deviation in the width of the particle in the contrast at
the surface when applying the numerical or the analytical calculation, respec-
tively. These results indicate the importance of both the reflections of sound
waves at the sample interfaces and bulk damping, as both are treated differently
in our two models.

Most of this chapter is published in [28]
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26 2.1. Introduction

2.1 Introduction

For many fields and applications it has always been a desire to image be-
neath the surface of a sample, especially in a nondestructive way. However, it
also has always been a challenge in microscopy to obtain subsurface informa-
tion. The ongoing progress in many research areas, such as nanotechnology,
material science, thin film technology, medical science, biology, and the semi-
conductor industry, increases the desire to obtain subsurface information in a
nondestructive way, while simultaneously pushing the demands on the resolu-
tion even further, as one wishes to image buried micro- and even nanostruc-
tures.

By combining ultrasound technology with Atomic Force Microscopy, Kolosov
and Yamanaka invented Ultrasonic Force Microscopy [4] and later Yamanaka
and Nakano introduced the waveguide Ultrasonic Force Microscopy [5]. In an
Ultrasonic Force Microscope (UFM) an ultrasonic wave is launched from the
bottom of the sample and picked up by the AFM-tip at the sample surface and
in a waveguide-UFM the sound wave is directly launched through the AFM-
cantilever (tip). An UFM gives access to some subsurface information, whereas
the waveguide-UFM provides mainly access to the elasticity in the near sur-
face region. In 2000 the Kolosov group tried to obtain quantitative subsurface
information by combining the UFM and the waveguide-UFM and thereby in-
venting the Heterodyne Force Microscope (HFM) [2, 3]. Making use of the
nonlinear tip-sample interaction, this technique relies on the frequency mixing
of the ultrasonic wave that travels trough the sample with an ultrasonic wave
at a different frequency that is launched via the AFM-cantilever. By tuning
the nonlinear difference frequency to a (higher) eigenmode of the cantilever, the
signal amplitude is amplified [13]. From the nonlinear difference frequency that
can be measured with the AFM, one can extract the amplitude and the phase
of the usually not directly accessible ultrasonic wave that travelled through the
sample. As buried objects or voids alter the propagation of the sound wave,
both the amplitude and the phase must contain quantitative information on
subsurface features. Alternatively, the subsurface scatterer induces variations
in the local elastic response of the sample [29,30], which can lead to variations
in the nonlinear tip-sample interaction, and thus in the amplitude and phase
of the difference frequency.

Although several experiments have been performed with this technique
[3, 6, 8–12, 14, 31], a quantitative understanding of the contrast mechanism,
which depends on the wave propagation in the samples in combination with
the tip-sample interaction, is still missing. Recent studies investigate the work-
ing principle of this technique [3, 32, 33]. Cuberes [3] points out the increased
phase sensitivity in the difference frequency due to the mixing, and Cantrell
and Cantrell [32] show that the phase of the sound wave that travelled through
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the sample measured on the surface corresponds one-to-one with the phase of
the nonlinear difference frequency. This tells us that the phase at the sample
surface is measured more accurately on the lower difference frequency than on
the original, higher ultrasonic frequency [34, 35]. A recent paper by Tetard et
al. [33] addresses the generation of the nonlinear difference frequency by the
tip-sample interaction. They show that the amplitude is maximal in the region
where the Van-der-Waals interaction is dominant.

Pushing the resolution, Shekhawat and Dravid reported in 2005 on the de-
tection of gold nanoparticles with a diameter of only ∼ 17.5 nm embedded
500 nm deep in a polymer (poly(2-vinylpyridine)) [6]. In the same paper they
also report on the detection of voids in copper interconnect lines. Although
they simply used Heterodyne Force Microscopy, they called their technique
Scanning Near-Field Ultrasound Holography. To prevent further confusion, we
would like to officially introduce Subsurface-AFM [14], referring to all ultra-
sonic AFM techniques that give access to quantitative information on objects
below a surface. In 2007 Cantrell and Lillehei [8] published that it is even
possible to detect gold nanoparticles with a diameter of ∼ 12.5 nm embedded
7 µm deep in the polymide LaRCTM-CP2.

In order to enable a quantitative understanding and to gather new insight
in the physics of the detection mechanism, a theory is urgently needed that
predicts the amplitude and the phase on the sample surface of an ultrasonic
wave that has travelled through a sample with embedded nanoparticles. We
studied the acoustic wave propagation in a polymer containing spherical gold
particles of different sizes and at different depths using both an analytical cal-
culation and a finite element analysis (FEA). To enable a comparison with
reported experiments [6, 8, 9], we calculate our results for ultrasonic waves of
a few Megahertz (MHz) and nanoparticles with a radius between 10 and 100
nm.

This chapter is organized as follows. Firstly, we present some general re-
marks, definitions and boundary conditions used in our calculations. Then we
explain the analytical and the FEA model, respectively, including their va-
lidities. Using both models, we verify the usual Rayleigh dependencies and
predict the amplitude and the phase of the sound wave that travelled through
the sample evaluated at the sample surface. The next part addresses the depth
dependence and the lateral resolution. We compare our results with experi-
ments reported in literature, before we end with the main conclusions.

2.2 General Considerations and Definitions

In Subsurface-AFM, the typical frequency of the wave that travels through
the sample, is in the order of a few MHz. The size of subsurface particles
and voids observed in experiments range typically between 20 and 350 nm
and the thicknesses of the used samples are between 0.1 and 25 µm. For
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sound speeds between 2350 m/s for a polymer, like polymethyl methacrylate
(PMMA), and 3900 m/s for copper, the longitudinal wavelength of a MHz
sound wave ranges between 2.4 and 3.9 mm, which is not only more than 10000
times larger than the size of the biggest defects studied (200 nm) but also more
than 5000 times larger than the used sample thicknesses (500 nm). Based on
these length scales one expects Rayleigh scattering for sound waves, with the
following dependencies of the (complex) amplitude, As, of the scattered wave:

As ∝ f2, As ∝ ∆ρ/ρ, and As ∝ R3 (2.1)

where f stands for frequency, ∆ρ/ρ for the relative density difference between
the particle and the medium, and R for the particle’s radius1.

Figure 2.1 shows a cross section of the geometry to be calculated, in which
we also define the variables that we will use in the rest of this chapter. Table 2.1
provides an overview on the material properties that we used in the calculations.
In addition, we define ∆ρ as the density difference between the nanoparticle
and the bulk and ∆K as the difference in bulk moduli. We use ∆ρ and ∆K to
study the dependence on the material properties.

In order to define an amplitude contrast, CA, and a phase contrast, Cϕ,
we need a reference value of the (complex) amplitude A(r⃗1) at the surface for
a sample without embedded scatterer. As this amplitude is equivalent to the
amplitude on the surface far away from the scatterer, A(|r⃗1| → ∞), we define

CA(r⃗1) =
|A(r⃗1)| − |A(|r⃗1| → ∞)|

|A(|r⃗1| → ∞)|
(2.2)

Cϕ(r⃗1) = ϕ(r⃗1)− ϕ(|r⃗1| → ∞) (2.3)

The effect of scattering on the contrasts is largest directly above the scat-
terer. Therefore we usually calculate CA and Cϕ for r⃗0. An exception is the
evaluation of the contrasts on the surface as a function of the distance away
from the scatterer; here we explicitly calculate Cϕ(|r⃗1 − r⃗0|).

In both the analytical calculation and the finite element analysis we have
to deal with sample boundaries, at which, in general, sound waves are partly
reflected, but also partly transmitted into the surrounding medium. It will
turn out that the amount of reflection and transmission plays an important
role in the formation of the contrasts. In the analytical calculation we used
the acoustic impedance mismatches at the interfaces to calculate the amount
of reflection and transmission at the boundaries for the incoming wave from
the bottom of the sample. As this approach is impossible for the scattered
sound waves in the applied model, the boundaries in the analytical calculation
are treated fully transparent for the scattered waves. In other words, the scat-
tered sound waves are completely transmitted into the surrounding medium. In

1Note that the scattered intensity is given by the |As|2.
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Figure 2.1: Cross section of the geometry to be calculated. We define the following
variables. |r⃗0|: minimal distance from the center of the nanoparticle (in gray) to the
sample surface; |r⃗1|: distance from the nanoparticle to a position somewhere on the
sample surface; |r⃗2|: distance from the nanoparticle to a position somewhere in the
sample; θi: angle between r⃗0 and r⃗i (i = 1,2); R: radius of the nanoparticle; d: depth
of the nanoparticle; t: sample thickness; and Aext, f : amplitude and frequency of the
excitation. Note also the definition of our Cartesian coordinate system.

Property ρ E K G vL Lα(3 MHz)
Units kg/m3 GPa GPa GPa m/s m
Au 19700 78 220 27 3240 5.3

PMMA 1200 2.4 5.91 2.25 2350 0.033

Table 2.1: The material properties used in the models: ρ is the density, E is the
Young’s modulus, K is the bulk modulus, G is the shear modulus, vL is the longitu-
dinal sound velocity, and Lα is the attenuation length.

the finite element analysis we used fully reflective conditions for all boundaries,
as it is technically very difficult to take into account also the effect of acousti-
cal impedances. We attribute the significant different results of the analytical
calculations and FEA to the differences in the treatment of the boundary con-
ditions.
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2.3 Analytical Calculation

In order to derive an analytical model that also accounts for reflections on
both the top and the bottom of the sample (see Fig. 2.1), we first calculate
an effective incident wave from the interference of all reflected waves of the
original excitation at the top and bottom interface taking into account damp-
ing in the sample material in the form of the attenuation length (Lα). This
results in an unscattered wave with a frequency dependent amplitude Aeff

(see Appx. 2.A). Using this effective incident wave at the position of the par-
ticle as an input, we then calculate the scattered waves for all positions on
the sample surface by applying scattering theory in the Rayleigh limit [36,37].
Finally, the addition of the effective incident wave and the scattered waves (at
the sample surface) describes the interference pattern at the sample surface:
A(r⃗1) = Aeff + As(r⃗1). It is important to notice that we introduce two ap-
proximations with this approach. Firstly, as the theory for the scattered waves
is valid only for an infinitively large sample, we neglect all reflections of the
scattered waves at the sample interfaces. Secondly, the effective amplitude,
Aeff , will be smaller in the close vicinity above the particle, due to the energy
loss that is transferred into the scattered wave. However, we expect this loss
to be negligible, as the scattering cross section 2 for a sound wave of 3 MHz at
a gold spherical nanoparticle with a radius of 50 nm embedded in PMMA is in
the order of 10−54 m2.

To implement the scattering of sound, we need an analytical theory that is
valid at the desired length scales. Although phonon scattering in the Rayleigh
limit at atomically sized features has been described analytically [38], the use of
simple, classical continuum theory of elasticity is fully justified in our case, as
the considered particle and void sizes are larger than 20 nm, which significantly
exceeds the interatomic distance. Using the equation of motion in an isotrop-
ically elastic solid medium, the scattering at a spherical particle (or void) in
an infinitely large sample has been solved analytically [36, 37]. Both deriva-
tions reflect the typical Rayleigh dependencies of Eq. 2.1: the cross section
for scattering on a spherical object with different mass and elasticity than the
surrounding material scales with f4 and R6. Following Ying and Truell [36],
we write the scattered fields for the longitudinal and shear mode waves outside
the spherical nanoparticle as:

Ψs(r⃗2) =
∞∑

m=0

Amhm(k1|r⃗2|)Pm(cos(θ2)) (2.4)

Πs(r⃗2) =
∞∑

m=0

Bmhm(κ1|r⃗2|)Pm(cos(θ2)) (2.5)

2The scattering cross section is the scattered intensity divided by the incoming intensity,
which is proportional to A2

s/A
2
eff .
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where Am and Bm are the amplitude of the mth longitudinal and shear wave
mode respectively, hm(x) is the spherical Hankel function of the first kind,
and Pm(x) is the Legendre polynomial of degree m. r⃗2 and θ2 are defined as
in Fig. 2.1. k1 and κ1 are the wave numbers in the bulk corresponding to

the longitudinal and shear wave velocity, respectively: k1 = 2πf/

√
K+

4
3G

ρ and

κ1 = 2πf/
√

G
ρ . G, K, and ρ are given in Tab. 2.1.

In order to account for attenuation (damping) for both the scattered waves
and effective incident wave, we treat the wave numbers complex by adding an
imaginary part that equals 1/Lα.

In the following we evaluate the analytical description on the Rayleigh de-
pendencies of Eq. 2.1. It is shown in [36] that, in the Rayleigh limit, the
expansion coefficients A0, A1 and A2 (and corresponding B0, B1 and B2) scale
in the same way as the square root of the scattering cross section, and that
all higher order coefficients, m > 2, can be neglected in Eqs. 2.4 and 2.5, as
k1R and κ1R are much smaller than 1 and all terms with m > 2 scale with
(k1R)2m−1 or (κ1R)2m−1 . Please note that we took order coefficients up to m
= 10 into account when calculating the amplitude and phase contrasts shown
in the graphs of Sect. 2.5. When evaluating the coefficients up to m = 2 on the
dependencies of the radius R, the wave number k1, and the density difference
∆ρ, we find:

A0 ∝ k21R
3, B0 = 0 (2.6)

A1, B1 ∝ i
∆ρ

ρ
k21R

3 (2.7)

A2, B2 ∝ k21R
3 (2.8)

On the surface far away from the scatterer (|r⃗1| → ∞), we only have a
contribution from the effective incident wave, Aeff . Right above the particle,
at r⃗0, we have the interference of the effective incident wave, Aeff , and the
scattering wave, As, of which the main amplitude coefficients are provided in
Eqs. 2.6, 2.7, and 2.8. Assuming a small scattering amplitude (As << Aeff ),
we can make a Taylor expansion of the expected contrasts (see Appx. 2.B):

CA ∝ Re(AeffAs)

|Aeff |2
(2.9)

Cϕ ∝ Im(AeffAs)

|Aeff |2
(2.10)

Since the amplitude Aeff of the unscattered, effective incident wave is
constant everywhere for a fixed frequency, both the amplitude and the phase
contrast show the Rayleigh dependencies of the scattered amplitude, As, of
which the coefficients are given in Eqs. 2.6, 2.7, and 2.8. This implies that
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both contrasts at the surface scale with the volume of the particle and the
density difference: R3 and ∆ρ/ρ, respectively, reflecting the standard Rayleigh
dependencies of Eq. 2.1. The frequency dependence is not as obvious, as both
the effective incident amplitude, Aeff , and the values of the Hankel function
in Eqs. 2.4 and 2.5 do depend on the frequency in a non-trivial way.

However, if a frequency range exists where Aeff as well as the Hankel func-
tions can be regarded constant, we expect to observe a f2 behavior according
to Eqs. 2.9 and 2.10. Therefore also the frequency dependence follows the
standard Rayleigh dependence, but only for a certain frequency range.

Finally, we would like to summarize the important limitations of this an-
alytical model explicitly, as these shortcomings are expected to explain any
deviations with experimentally determined contrast values. Firstly, the top
and bottom interfaces are treated fully transparent for the scattered waves.
Reflections at these interfaces are considered only for the external, incoming
wave leading to the effective incident wave. Finally, we also neglect the de-
crease in intensity of the effective incident wave caused by the scattering at the
particle.

2.4 Finite Element Analysis (FEA)

In a second approach, we apply FEA to calculate the frequency response of a
sample with an embedded particle to an ultrasonic excitation from the bottom
of the sample (see Fig. 2.1). We used the commercially available multi-physics
package of COMSOL [39] and chose the isotropic model that determines the
displacement vector s⃗ for each isotropically elastic solid medium by solving the
equation of motion for s⃗:

k−2
1 ∇∇ · s⃗+ κ−2

1 (∇2s⃗−∇∇ · s⃗) + s⃗ = 0 (2.11)

The material parameters used, the Young’s moduli (E), the shear moduli
(G), the attenuation length (Lα), and the densities (ρ) are provided in Tab.
2.1. The forces on the system can be specified separately for each boundary.
Plane acoustic waves are generated at the bottom interface by applying a small
sinusoidal displacement perpendicular to this interface. This boundary condi-
tion leads to a full reflection of the incoming wave at a ”fixed-end”. The top
surface of the sample is free to move, thereby following the acoustic oscillations
that arrive there and leading to a full reflection at a ”free-end”. Using FEA
we calculate the displacements of the sample for a specified frequency, (f), re-
sulting in the amplitude and phase at each point in the sample from which we
determine CA and Cϕ on the surface.

The FEA calculation requires the division of the sample into a finite num-
ber of small elements, which is called meshing. The limited number of meshing
elements prevents us from modelling samples with realistic dimensions. It is
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A

B

Figure 2.2: The mesh simulation box (A) with a magnification of the corner (B), in
which the particle (indicated by the gray circle) is situated.

impossible to account for lateral (x, y) sample dimensions of several cm’s and
simultaneously retain sufficient resolution to calculate the scattering from in-
clusions smaller than 100 nm. The number of elements is reduced by using the
internal symmetries of the sample, as we only need to calculate one quarter of
the sample (see Fig. 2.2). A further reduction in the number of elements is
achieved by changing the element size within the mesh according to the desired
accuracy: the mesh is kept sufficiently fine close to the scatterer and gets much
coarser further away from the particle (see Fig. 2.2). Still we also had to re-
duce the lateral sample size. This introduces another problem: scattered waves
(with horizontal components) will repeatedly reflect at the sides of the sample
(fully reflecting boundaries), especially as the attenuation length in PMMA at
3 MHz is as large as 3.3 cm [40].

These reflective boundary conditions effectively produce a lattice of scat-
terers with a lattice constant a, which is equal to the sample size and twice
the simulation box size LB (a = 2LB). In order to investigate (and finally to
remove) the artificially created lattice effect, we had to reduce the attenuation
length. As it is possible to define different attenuation lengths along the differ-
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ent directions in the FEA, we denote the attenuation length in the horizontal
direction of the sample with Lα,xy and the attenuation length in the z-direction
with Lα,z.

In order to determine the minimal required horizontal sample size that sup-
presses interference effects arising from the reflections at the sample sides, we
calculated Cϕ as a function of simulation box size and attenuation length (see
Fig. 2.3). LB is varied from 500 nm to 0.1 mm and Lα is varied from realistic
(Lα = 3.3 cm) to 100× stronger attenuation. Different symbols indicate differ-
ent attenuation lengths and the calculations were performed with Lα,z = Lα,xy

except for the most right points that lie within in the dotted black box. These
data points were determined by applying a perfectly matched layer (PML) in
the horizontal direction of the sample. A PML constantly increases the atten-
uation as a function of the distance from the scatterer such that sound waves
are not reflected back from the edges of the sample. The PML covers the entire
width of the sample except for a small cylindrical region around the scatterer.
It turned out that, even with a PML, it is not possible to reduce the attenua-
tion length below 0.014 cm, which has to be compared to Lα = 3.3 cm.

Inspecting the phase contrast in Fig. 2.3, one notices that, initially, Cϕ(r⃗0)
increases linearly with LB/Lα. When the width of the sample is large enough
or the damping is sufficiently strong (at LB/Lα ≃ 0.1), reflections at the sample
sides are suppressed and interference effects vanish. The remaining contrast is
solely generated by a single scatterer in a very wide sample. A further increase
of the sample size or damping is without any effect leading to a constant value
of Cϕ(r⃗0). This is verified also by the data points that refer to the application
of a PML (dotted box in the graph).

This picture is confirmed by the phase contrasts on the sample surface that
are calculated for different ratios of LB/Lα and that are shown in Fig. 2.3B,
2.3C, and 2.3D. The absence of any interference effects in Fig. 2.3B is because
the lateral sample size becomes comparable to the width of the scatterer: this
results in a three layer system without significant scattering to the sides. Alter-
natively, one can describe this low ratio of LB/Lα by considering a very small
damping (large Lα). Scattered waves with a horizontal component bounce back
and forth between the sample sides leading to a homogeneous background with-
out interference and a decreased phase contrast directly above the scatterer.
When increasing the simulation box size the data points start to deviate from
the linear dependence, because interference effects occur in the sample (see
Fig. 2.3C). Finally, at large box sizes or sufficiently large damping interference
effects vanish, as can be seen in Fig. 2.3D.

We can explain the initial linear dependence of the phase contrast on LB/Lα

for small box sizes. The number of times a wave passes by at a (surface) loca-
tion is in the order of Lα

2LB
. As the sum of phases of the waves arriving at this

location has to be divided by the number of waves, the total phase contrast
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scales with
(

Lα

2LB

)−1

∝ LB

Lα
. The signal scales linearly with LB/Lα up to the

point where LB becomes about one tenth of the size of Lα. On the basis of
this result, we expect damping to play a critical role.

By choosing the largest possible horizontal sample size with proper attenu-
ation length, we are able to approximate a sample of realistic dimensions while
simultaneously ensuring that we simulate the scattering mechanism correctly.
These simulations had approximately 15.000 mesh elements and took a few
minutes on a decent desktop computer.

The FEA calculations in the rest of this chapter are performed with a hor-
izontal simulation box size LB of 0.1 mm and a thickness t = 500 nm. The
radius of the scatterer R is 50 nm (except for Fig. 2.6); the depth of the scat-
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Figure 2.3: (A) The phase contrast as a function of LB/Lα. The four curves represent
different damping within the material: = realistic attenuation (Lα = 3.3 cm),
▽ = 10× stronger, △ = 30× stronger and • = 100× stronger. The data points
located in the dotted black box are obtained with a perfectly matched layer (see text)
and Lα = 0.014 cm. The grey lines are a guide to the eye. The figures (B), (C), and
(D) show Cϕ at the surface for different box sizes and attenuation lengths indicated
with the arrows in (A). The half-width-half-max of the phase contrast is indicated
with a tick below the figure.
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terer is 200 nm (except for Fig. 2.6 and 2.7); the excitation frequency f is 3
MHz (except in Fig. 2.4); and we chose ∆ρ = ρAu − ρPMMA (except for Fig.
2.5). The attenuation lengths had to be chosen such that Lα,xy = 0.14 mm
and Lα,z = 0.33 mm (100× stronger damping).

2.5 Results and Discussion

To investigate the Rayleigh dependencies we calculated the amplitude and
phase contrast as a function of the excitation frequency, density difference and
particle radius (see Fig. 2.4, 2.5 and 2.6).

Figure 2.4 shows CA(r⃗0) and Cϕ(r⃗0) for both the analytic calculations and
the FEA as a function of the excitation frequency. Only for the special case
of ∆ρ = 0, we observe a quadratic frequency dependence in the FEA results,
which is characteristic for Rayleigh scattering, for frequencies ranging from 2 to
100 MHz. For the realistic case of ∆ρ = ρAu−ρPMMA the quadratic frequency
dependence breaks down, which is in accordance with our expectations, as
explained in Sect. 2.3. In addition, both CA(r⃗0) and Cϕ(r⃗0) are up to 4
orders of magnitude larger than in the case of ∆ρ/ρ = 0. Therefore, a main
contribution to the contrast comes from the density difference between the
scattering particle (or void) and the bulk of the sample.

Figure 2.5 shows CA(r⃗0) and Cϕ(r⃗0) as a function of the density difference
between the particle and bulk of the sample. Please note that ∆ρ starts at
-1. ∆ρ = −1 represents a void in PMMA. The linear dependence of the FEA
results confirms the Rayleigh dependence and verifies our expectation. Please
note that we varied the density of the particle and not the density of the bulk.
The reason for this is that an increase in the bulk density would lead to a
deviation from a linear dependence, as k1 would change and thus the values of
the Hankel functions as well as the effective incident wave Aeff (see Sect. 2.3).
When comparing the FEA with the analytical results, one notices the different
slopes. This is caused by the multiple reflections of the external incoming
wave as well as the scattered wave As (in the direction of ±r⃗0) at the top and
bottom interfaces of the sample. This process involves also multiple (higher
order) scattering at the particle of both the external incoming wave as well
as the scattered waves. As the boundary conditions for reflections are treated
differently in the FEA and the analytical calculations, the contrast in the FEA
will be higher or lower depending on the thickness of the sample. Realizing that
the amount of reflections is independent of ∆ρ, one expects a linear dependence
of the contrast on ∆ρ, but with different slopes for the different models.

Figure 2.6 shows CA(r⃗0) and Cϕ(r⃗0) as a function of both the particle
radius R and the particle depth d. The first thing one notices is that all curves
obtained by FEA (solid lines) fall on top of each other in both the amplitude
and the phase contrast. The FEA results show no depth dependence of the
particle. This is in contrast to the analytical results (dashed lines), which
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Figure 2.4: The amplitude contrast (A) and the phase contrast (B) calculated as
a function of the excitation frequency. The plots in black show the case for a gold
particle with radius R = 50 nm embedded d= 200 nm deep in PMMA taken into
account ∆ρ = ρAu − ρPMMA. The gray plots are calculated for the specific case of
∆ρ = 0 to verify the Rayleigh dependence of f2 for low frequencies.

show a 1/d dependence for both the amplitude and the phase contrast. This
dependence can be understood when considering that, in general, the intensity
of a scattered wave is distributed over a sphere with a radius that equals the
distance to the scatterer. Therefore, the scattered intensity, |As|2, decreases
with d2. As the amplitude and phase contrast for small scattering amplitudes
are given by Eqs. 2.9 and 2.10 respectively, both contrasts are expected to be
inversely proportional to the depth, which is indeed the case for the analytic
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Figure 2.5: The amplitude contrast (A) and the phase contrast (B) calculated as
a function of ∆ρ. The plots are calculated for a particle with radius R = 50 nm
embedded d= 200 nm deep in PMMA with ∆ρ = ρParticle − ρPMMA and excited
with a frequency of f = 3 MHz. Please note that ∆ρ starts at -1. ∆ρ = −1 represents
a void in PMMA.

calculations.
The absence of a depth dependence in the FEA results is unexpected, and

can only be explained by the different boundary conditions for reflections at
the interfaces. The number of reflections in the FEA is enormous and can
be estimated by the ratio Lα,z/t ≈ 700. These reflections diminish the depth
dependence in the FEA calculations. More specifically, it can be shown that
the depth dependence comes solely from the contribution of the scattered wave
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Figure 2.6: The amplitude contrast (A) and the phase contrast (B) calculated as a
function of particle radius R and particle depth d. The depth d varies from 50 nm
to 450 nm indicated by lines that vary from black to light gray. The FEA results,
indicated with solid lines, show no depth dependence (all curves fall on top of each
other), whereas the analytical results, indicated with dashed lines, do show a 1/d
dependence. The plots show the case for a gold particle with radius R embedded d
nm deep in PMMA with ∆ρ = ρAu − ρPMMA and excited with a frequency of f = 3
MHz.

(in the ±r⃗0 direction) and not from the remaining part of the external incoming
wave (see Appx. 2.C). The multiple (higher order) scattering of the scattered
wave(s) average out the depth dependence. As reflections of the scattered wave
are totally neglected in the analytical calculations, we clearly observe a depth
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Figure 2.7: (A) and (B) show the phase contrast on the surface as a function of
r = |r⃗0 − r⃗1| for different length scales. The plots are calculated for a gold particle
with radius R = 50 nm embedded in PMMA with ∆ρ = ρAu − ρPMMA and excited
with a frequency of f = 3 MHz. The depth d of the particle varies from 100 nm to 400
nm indicated by a gray scale that varies from black to light gray respectively. Notice
the interference pattern in the FEA results for large r as well as the difference in the
widths between the FEA and the analytical calculation at HWHM for r = 0.

dependence in these results.
This effect of multiple reflections is verified also in Fig. 2.7, which shows

the phase contrast 2 on the surface calculated analytically and by FEA as a

2As the amplitude contrast shows smaller values that are more difficult to measure exper-
imentally, we restrict these calculations to the phase contrast only.
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function of r = |r⃗0 − r⃗1| and depth d. In the FEA results, the phase contrast
right above the particle at r = 0, depends on the depth of the particle, but
does so in a non-monotonic way. Please note that the curve at a depth of 300
nm shows a higher contrast than the curve at a depth of 200 nm. For larger
distances r away from the particle, we see oscillations in the phase contrast:
there is a minimum at ∼ 13 µm, a maximum at ∼ 27 µm, and another minimum
at ∼ 42 µm. We attribute this interference pattern to the multiple reflections
at the upper and lower sample interface in the z-direction. In addition to the
interference, we observe that if the width of the peak at r = 0 (right above the
particle) is significantly different for the FEA calculations. The Half Width
Half Maximum (HWHM) of the peak in the FEA result is approximately 4
µm, while the HWHM of the peak in the analytical results is between 100 and
400 nm. Both differences, the interference pattern and the HWHM, are again
due to the multiple reflections in the FEA that are absent in the analytical
calculation.

Considering soft (biological) materials and their much lower elasticities, the
expansion coefficients in Eqs. 2.6, 2.7, and 2.8 are increased and we expect a
larger amplitude and the phase contrast in comparison to PMMA (see Eqs. 2.9
and 2.10). However, the increased damping of these materials might counteract
this dependence.

2.6 Comparison with Experiments

In this section we compare the results of our calculations with experiments
reported in literature.

Firstly, we address the HWHM of the phase contrast on the surface above
a buried particle. For a gold particle with a radius of 50 nm embedded 400 nm
deep in PMMA, the HWHM is 4.25 µm in the FEA results and 400 nm in the
analytical results. Both widths are significantly larger than the radius of the
particle. In reality we expect the measured width to lie in between these two
values, as the analytical results underestimate the amount of reflections and the
FEA results overestimate them. The prediction of a significantly larger width
stands in contrast to the observations reported in literature [3, 6, 8, 9, 11, 12],
which all show a HWHM width that is comparable to the radius of the particle.
Based on a width estimation of the phase contrast image of reference [6], this
is even true for gold particles with a diameter of only ∼ 17.5 nm embedded 500
nm deep in a polymer.

In experiments described by Shekhawat and Dravid [6], the phase contrast
above an individual embedded particle seems to be independent of the distance
to other particles. In contrast to this, we have seen in Sect. 2.4 that lattice
effects, which are equivalent to the presence of nearby scatterers, averages
out the phase contrast. However, if there is a large loss of amplitude of the
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scattered waves during reflections at the top and bottom interfaces (on the basis
of acoustical impedances), we expect the lattice effect to be greatly reduced.

Finally, a phase contrast of ≈ 50 mdeg is reported by Shekhawat and Dravid
[6] for buried voids in interconnect copper lines. To compare this value, we
used our FEA model to calculate the phase contrast of a spherical void with a
radius of 50 nm buried 200 nm deep in copper. We received a phase contrast of
1 mdeg at an excitation frequency of 3 MHz. This value is 50× smaller than the
experimental value and could be explained by a combination of the following
effects. One reason for this discrepancy might be the fully reflecting boundary
conditions in our FEA model, in which we neglect the partial emission into
the air above the sample or into the material underneath it. Such losses can
increase contrast. Another explanation could be the excitation of planar sample
resonances in the experiment, as these modes are in the order of a few MHz
for realistic samples (∼ 5 mm). Also one should consider that the void in the
experiment was not spherical and much larger than 50 nm. In addition, on the
basis of the results of Chap. 6, we expect that the contrast in these systems is
caused by variations in the local effective elastic response of the sample, which
is induced by the presence of the subsurface (gas) voids.

The above described discrepancies result in open questions that should be
carefully addressed in future experiments to further clarify the mechanism of
the contrast formation in Heterodyne Force Microscopy experiments.

2.7 Conclusion

In conclusion, we have used finite element analysis and analytical calcula-
tions to quantitatively predict both the amplitude and the phase contrast for
Subsurface-AFM measurements. We found that the contrasts are generated
by Rayleigh scattering at embedded particles or voids. We verified the typical
Rayleigh dependencies of the amplitude and phase contrasts on the density
difference between the bulk and the scattering particle, on the radius of the
particle and, with some restrictions, on the frequency of the external incoming
wave. The deviation of the latter dependence is due to the nontrivial frequency
dependence of the Hankel functions and the effective incident field Aeff .

For a typical gold particle with a radius of 50 nm embedded 200 nm deep
in PMMA, the expected phase contrast is 5 mdeg at an excitation frequency of
3 MHz. At the same conditions, the expected amplitude contrast is only in the
order of 10−4. These values for both the phase and the amplitude contrast are
rather low and, therefore, very difficult to measure experimentally. We expect
that it is easier to measure the phase contrast, which is probably the reason for
the publication of only phase contrast images [3,6,8–12,14]. As a general rule,
one should try to apply as high as possible frequencies, as this will significantly
increase both contrasts.

An important issue in the field of Subsurface-AFM is the determination of
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the depth of a certain structure. In the case of a buried particle or void, for
which Rayleigh scattering applies, we expect the contrast to vary with 1/depth
according to our analytical calculation. However, this calculation neglects re-
flections of the scattered wave at sample interfaces. In contrast, the FEA results
do not show a depth dependence. This is because the fully reflecting boundary
conditions lead to the interference of many waves that average out the depth
dependence. As one should take into account an amplitude reduction at each
interface reflection according to acoustical impedances, we expect the reality
to be between the analytical and the FEA calculation. As the geometry of the
setup and the specific way of measuring makes it impossible to create interfaces
with matched acoustical impedances, reflections will significantly influence the
contrast and the FEA results should be closer to the reality. However, a depth
dependence is still possible and should be, therefore, addressed experimentally.

Evaluating the lateral resolution by the phase contrast on the surface, we
found that a gold particle with a radius of 50 nm buried 200 nm deep in PMMA
and excited at 3 MHz appears much wider in the FEA calculations (HWHM
∼ 4.25µm) than in the analytical calculations (HWHM ∼ 150 nm). Both
widths are significantly larger than the particle radius, which seems to be in
contradiction to reported experiments where the measured width is similar to
the radius. It seems as the analytical calculations do describe the width in
the phase contrast more accurately than the FEA. This would imply that re-
flections at the interfaces are of less importance in practice and that a depth
dependence might still be possible.

All discrepancies between the analytical calculation and the FEA results
are due to the different treatment of the reflections at the sample interfaces. It
is important to notice that the amplitude of a reflected wave greatly depends
on the acoustical impedances at this interface. The better these impedances
match, the smaller will be the amplitude of the reflected wave. In addition, as
damping within the bulk of the sample also reduces the amplitude of travelling
sound waves, the number of reflections are reduced with high material damping.
Therefore the acoustical impedances, mainly at the lower and upper interface
of the sample, as well as damping in the bulk will significantly influence the
contrast pattern at the surface.

To get a more detailed understanding on the contrast formation, future
experiments are required that can be compared to our predictions.

Appendices of Chapter 2

2.A Calculation of the Effective Amplitude Aeff

We calculate the effective field Aeff using the scalar potential Φ [41]. We
have 3 different materials: Silicon, PMMA, and air, forming a trilayer with 2
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interfaces: Silicon/PMMA and PMMA/Air. Each material has its own com-
plex wave number (damping is included): kSi, kPMMA and kAir. At the Sili-
con/PMMA interface we have an incoming plane pressure wave of angular fre-
quency ω and amplitude Φ0. At this interface the wave is partly reflected (Φ−

Si)
back into the Silicon and partly transmitted into the PMMA layer (Φ+

PMMA).
The wave in the PMMA layer encounters the PMMA/Air interface where it
also gets partly reflected (Φ−

PMMA) back into the PMMA and partly transmit-
ted into the Air (Φ+

Air). The wave transmitted into the air is assumed never to
come back at the interface. We can mathematically express the total potentials
in the materials as follows:

ΦSi(z) = Φ0e
ikSiz +Φ−

Sie
−ikSiz (2.12)

ΦPMMA(z) = Φ+
PMMAe

ikPMMAz

+Φ−
PMMAe

−ikPMMAz (2.13)

ΦAir(z) = Φ+
Aire

ikAirz (2.14)

The continuity of the normal velocity and the continuity of the normal stress
at the 2 interfaces leads to 4 equations with Φ−

Si, Φ
+
PMMA, Φ

−
PMMA, and Φ+

Air

as 4 unknowns.

∂ΦSi

∂z
|z=0 =

∂ΦPMMA

∂z
|z=0 (2.15)

∂ΦPMMA

∂z
|z=0 =

∂ΦAir

∂z
|z=0 (2.16)

(KSi + 4GSi/3)
∂2ΦSi

∂2z
|z=t =

(KPMMA + 4GPMMA/3)
∂2ΦPMMA

∂2z
|z=t (2.17)

(KPMMA + 4GPMMA/3)
∂2ΦPMMA

∂2z
|z=t =

(KAir + 4GAir/3)
∂2ΦAir

∂2z
|z=t (2.18)

, where K denotes the bulk modulus and G the shear modulus. We can deter-
mine Φ−

Si, Φ
+
PMMA, Φ

−
PMMA, and Φ+

Air in terms of of Φ0 and the thickness t
of the PMMA layer.

The effective amplitude incoming at the scatterer at position (t−d) is given
by ∂ΦPMMA/∂z|z=t−d. This calculated amplitude is used as the effective inci-
dent amplitude Aeff at the scatterer, from which we determine the scattering
amplitude. The effective amplitude at the surface is given by ∂ΦPMMA/∂z|z=t.



2.B. Expansion of CA and Cϕ 45

2.B Expansion of CA and Cϕ

We start with Eqs. 2.2 and 2.3. Keeping in mind that the amplitude at the
surface is given by Aeff + As and that As is much smaller than Aeff, we expand
CA and Cϕ as follows.

|A| · CA = |A+As| − |A| (2.19)

≈ |A|
(
1 +

Re[A∗As]

|A|2
+

|As|2

2|A|2

)
− |A| (2.20)

≈ |A|Re[A∗As]

|A|2
(2.21)

We used the Taylor expansion of
√
1 + x around x = 0 and we have ne-

glected |As|2, because it scales with f4R6. This leads to

CA =
Re[A∗As]

|A|2
(2.22)

Before expanding Cϕ, we first introduce ϕ0 = tan−1(Im[A]/Re[A]). The
expansion of Cϕ is:

Cϕ = tan−1

(
Im[A+As]

Re[A+As]

)
− ϕ0 (2.23)

≈ tan−1

(
Im[A]

Re[A]
(1 +

Im[As]

Im[A]
)(1− Re[As]

Re[A]
)

)
− ϕ0 (2.24)

≈ tan−1

(
Im[A]

Re[A]
(1 +

Im[As]

Im[A]
− Re[As]

Re[A]
)

)
− ϕ0 (2.25)

≈ Re[A]Im[A]

|A|2

(
Im[As]

Im[A]
− Re[As]

Re[A]

)
(2.26)

=
Im[A∗As]

|A|2
(2.27)

We neglected Re[As]Im[As] and used the following Taylor expansions:

1

1− x
≈ 1 + x (2.28)

arctan (tan(a) · (1 + x)) ≈ a+
tan(a)

1 + tan2(a)
x (2.29)

2.C Depth Dependence of CA and Cϕ in FEA

In this appendix, we calculate the expected depth dependence for the FEA
calculations. We treat two different contributions: the amplitude Aeff on the
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surface, and the amplitude As of the scattered wave. We take into account the
damping length Lα of the sample, the thickness t of the sample, the depth d of
the subsurface scatterer, and the 180 degrees phase shift when the sound wave
reflects at the bottom interface.

Let us first discuss the amplitude of the excitation wave. The amplitude of
the ultrasonic sample excitation is Aext. Before the wave reaches the surface of
the sample, it lost an amplitude equal to σAext according to standard Rayleigh
scattering by the subsurface scatterer. In the end, we have to take into account
all possible reflections between the top and bottom interface, which results
in the following, simplified, expression for the amplitude Aeff on the surface
above the nanoparticle:

Aeff =
∑∞

n=1

[
−(1− σ)e−2t/Lα

]n
Aexte

−t/Lα

= e−t/Lα

[
(1−σ)e−2t/Lα

1+(1−σ)e−2t/Lα

]
Aext (2.30)

Equation 2.30 shows that the amplitude Aeff on the surface does not de-
pend on the depth of the subsurface scatterer. The calculation for the ampli-
tude As of the scattered wave has two contributions: one contribution comes
from the scattered wave in the +r⃗0 direction, and the other one from the scat-
tered wave in the −r⃗0 direction (see Fig. 2.1). A similar calculation as in Eq.
2.30 gives us the following expression for As:

As

Aext
= σ

Aeff

Aext

[
R√
4πd

− R√
4π(d+ 2t)

]
(2.31)

, in which R is the radius of the nanoparticle and a typical distance over which
the depth dependence of the scattered wave diminishes. We observe in Eq.
2.31 that the amplitude As of the scattered wave at the surface does depend on
the depth of the subsurface scatterer. Using the expressions for the amplitude
Aeff and the scattered amplitude As in Eqs. 2.2 and 2.3, we find that the total
difference in amplitude, due to the presence of the nanoparticle, is given by:

Atot =

(
x
√
x

1 + x

)
σ

[(
x

1 + x

)
− 1 +

(
R√
4πd

− R√
4π(d+ 2t)

)]
Aext (2.32)

, in which we used that σ << 0 and we introduced x = exp(−2t/Lα). As
|x| ≈ 1 and d0 < d in the FEA calculations, only the depth independent part
of Eq. 2.32 is left and we do not see a depth dependence.


