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Chapter 5

Thermal metal-insulator
transition in a helical
topological superconductor

5.1 Introduction

Gapped electronic systems are topological states of matter, subject to
phase transitions in which a topological invariant Q changes its value
[1]. For noninteracting electrons in two spatial dimensions, Q ∈ Z is
integer valued in the absence of time-reversal symmetry, and Q ∈ Z2
is binary in its presence. Two familiar examples from semiconductor
physics are quantum Hall (QH) insulators in a strong magnetic field and
quantum spin-Hall (QSH) insulators in zero magnetic field [2, 3]. The
topological invariant Q determines the number of electrically conduct-
ing edge states, which changes by ±1 at a topological phase transition.
The edge states are chiral (unidirectional) in the QH effect and helical
(counterpropagating) in the QSH effect.

Superconductors can also have an excitation gap, with topologically
protected edge states in two dimensions. The edge states carry heat
but no charge, so superconducting analogues of the quantum (spin)-
Hall effect refer to the thermal rather than the electrical conductance.
The thermal quantum Hall effect (Q ∈ Z) appears in the absence of
time-reversal symmetry, for example, in a single layer of a chiral p-wave
superconductor [4–7]. Time-reversal symmetry is restored in two layers
of opposite chirality px ± ipy, producing the thermal analogue of the
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quantum-spin Hall effect (Q ∈ Z2) [8–11]. The edge states in both effects
are Majorana fermions, chiral for the thermal QH effect and helical for
the thermal QSH effect.

There is a large literature on topological phase transitions in QH and
QSH insulators, as well as in chiral superconductors [12], but the ther-
mal QSH effect in helical superconductors has remained largely unex-
plored. This is symmetry class DIII, characterized by the absence of spin-
rotation symmetry and the presence of both time-reversal and electron-
hole symmetry. Here we present a study of the phase diagram and
critical behavior in helical superconductors. We use a network model in
symmetry class DIII for a numerically efficient approach.

We find that the main qualitative effect of time-reversal symmetry is
that the transition between two topologically distinct thermal insulators
goes via a thermal metal phase, for finite but arbitrarily weak disorder.
In contrast, without time-reversal symmetry (in class D) the value of
Q changes directly without an intermediate metallic phase for weak
disorder. For strong disorder both chiral and helical superconductors
have a thermal metal-insulator transition, but the critical behavior is
different: We find a localization length exponent ν ≈ 2.0, about twice as
large as the known value for chiral p-wave superconductors [13].

The outline of this paper is as follows. To put our results for helical
superconductors in the proper context, in the next section we first sum-
marize known results for chiral p-wave superconductors. In Sec. 5.3 we
introduce the network model of a helical superconductor, constructed
out of two coupled chiral networks [14]. To identify topologically dis-
tinct phases we apply a scattering formulation of the topological quan-
tum number [15], as described in Sec. 5.4. In Sec. 5.5 we then present
the results of our investigation: the phase diagram with the thermal
metal-insulator transition, the scaling of the thermal conductivity at the
transition, and the critical exponent for the diverging localization length.
We conclude in Sec. 5.6.

5.2 Chiral versus helical topological superconduc-
tors

According to the Altland-Zirnbauer classification [16], superconductors
without spin-rotation symmetry are in class D or DIII depending on
whether time-reversal symmetry is broken or not. In two dimensions
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both symmetry classes can be in thermally insulating phases which are
topologically distinct (with or without edge states). In this section we
summarize what is known for the phase diagram in class D, before turn-
ing to the effects of time-reversal symmetry in class DIII.

A simple model Hamiltonian in class D represents a chiral p-wave
superconductor in the x-y plane,

HD = v∆(pxτx + pyτy) +

(
p2

2m
+ U − µ

)
τz. (5.1)

The Pauli matrices τi (with τ0 the 2 × 2 unit matrix) operate on the
electron-hole degree of freedom, coupled by the pair potential v∆(px ±
ipy). The Fermi energy is µ and U(x, y) describes a random disorder
potential (zero average).

By adding a spin degree of freedom (with Pauli matrices σi and unit
matrix σ0), one can extend HD to the Hamiltonian of a helical supercon-
ductor in class DIII,

HDIII = v∆(pxτxσz + pyτyσ0) +

(
p2

2m
+ U − µ

)
τzσ0 + Kτyσy. (5.2)

Both Hamiltonians have electron-hole symmetry, τx H∗τx = −H, but
only the Hamiltonian (5.2) has time-reversal symmetry, σyH∗DIIIσy =
HDIII. The term Kτyσy in HDIII couples the two spin directions to ze-
roth order in momentum. Higher-order terms, such as pτzσy, can be
included as well.

The phase diagram of the chiral p-wave superconductor was calcu-
lated for a lattice model in Ref. 13, by discretizing the Hamiltonian (5.1)
on a lattice. A similar phase diagram was obtained earlier [18–20] for a
class-D network model (Cho-Fisher model) [14]. As shown in Fig. 5.1,
there are two insulating phases plus a metallic phase at strong disorder.
The two insulating phases are topologically distinct, one is with and the
other without chiral edge states. The disorder-induced thermal metal
(Majorana metal) arises because of resonant transmission through zero
modes (Majorana fermions), pinned to potential fluctuations where U
changes sign [21–23].

The I-I phase boundary separating the two insulating phases and M-I
phase boundary separating insulating and metallic phases meet at a tri-
critical point. In the insulating phases the thermal conductivity decays
exponentially ∝ e−L/ξ with system size L. The localization length ξ
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Figure 5.1. Solid curves (red): Phase boundaries of a chiral p-wave supercon-
ductor, symmetry class D, calculated in Ref. 13 from a lattice model based on
the Hamiltonian (5.1) [17]. The system is a thermal metal (Majorana metal) for
strong disorder and a thermal insulator for weak disorder. The dashed (green)
lines show qualitatively the effect of time-reversal symmetry in class DIII: the
transition between two topologically distinct insulators then goes via an inter-
vening metallic phase. The critical exponents for the various phase transitions
are indicated: the value for νII is exact [24], the values for νMI in class D (red,
from Ref. 13) and in class DIII (green, from this work) are numerical estimates.

diverges ∝ |µ − µc|−ν on approaching a phase boundary at µ = µc.
The critical exponent on the I-I phase boundary (at µc = 0) is known
analytically [12, 24], νII = 1. The numerically obtained value [13] νMI =
1.02± 0.06 on the M-I phase boundary is very close to νII. Indeed, one
would expect [25] νMI = νII if the phase boundaries at the tricritical point
meet at nonzero angle, which they seem to do.

So much for a summary of known results for chiral superconductors
in class D, without time-reversal symmetry. The time-reversally sym-
metric Hamiltonian HDIII in (5.2) is just two uncoupled copies of HD
if K = 0. Upon increasing the coupling strength K, the time-reversal
symmetry starts to qualitatively modify the phase diagram. As we will
show in what follows (as is indicated schematically in Fig. 5.1), a metallic
phase develops in between the two insulating phases at weak disorder
for K 6= 0.
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5.3 Class DIII network model

For numerical efficiency we use a network representation of the class
DIII Hamiltonian (5.2). Network models [26] exist for quantum (spin)-
Hall insulators [27, 28] and for chiral superconductors [14, 29]. A net-
work model for helical superconductors was still missing and is pro-
vided here.

5.3.1 Construction

The network is defined on a two-dimensional bipartite square lattice,
see Fig. 5.2. Helical Majorana modes propagate along the bonds and
are scattered at the nodes. The helicity of the modes signifies that the
direction of motion is tied to the spin degree of freedom, ↑ and ↓, rep-
resented by dashed and solid lines in the figure. The modes encircle
local maxima and minima of the electrostatic potential (indicated by ±
in the figure), in a clockwise or counterclockwise direction depending
on the spin. The Majorana character of the modes signifies that there is
no separate electron or hole mode, but one single charge-neutral mode
per spin direction.

The nodes of the lattice are saddle points between the local poten-
tial maxima and minima, alternating between adjacent plaquettes in a
checkerboard pattern. Scattering at the nodes is described by 4× 4 uni-
tary scattering matrices S and S′ that alternate between adjacent nodes
(black and white dots in the figure). The amplitudes anσ, bnσ of incoming
and outgoing modes are related by

b1↓
b2↑
b4↑
b3↓

 = S


a1↑
a2↓
a4↓
a3↑

 ,


b1↑
b2↓
b4↓
b3↑

 = S′


a1↓
a2↑
a4↑
a3↓

 . (5.3)

(The labels σ =↑, ↓ and n = 1, 2, 3, 4 refer to Fig. 5.2.)
A class DIII scattering matrix S at zero excitation energy is con-

strained by both particle-hole symmetry and time-reversal symmetry.
In the basis (5.3) (which relates time-reversed Majorana modes) the uni-
tarity and symmetry constraints read [30]

S = S∗ = −ST, S2 = −1, (5.4)
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Figure 5.2. Illustration of the network model described in the text.

so the scattering matrix is real orthogonal and antisymmetric. (The su-
perscript T indicates the transpose.)

The most general parameterization contains two real angles α, ϑ ∈
(0, 2π) and one Z2 index η ∈ {+1,−1} [31],

S =

(
A cos α −OT sin α
O sin α −η A cos α

)
, (5.5)

O =

(
− cos ϑ −η sin ϑ

sin ϑ −η cos ϑ

)
, A =

(
0 1
−1 0

)
. (5.6)

The corresponding parameterization for S′ is obtained upon a permuta-
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tion of the basis states,

S′ = PSPT, with P =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 , (5.7)

which amounts to a 90◦ rotation.
The angle α characterizes the scattering at a node for each of the

two spin directions separately, while the angle ϑ couples them. For
ϑ = 0 we have two independent, time-reversed, copies of the Cho-Fisher
model [14], representing a pair of uncoupled chiral superconductors of
opposite chirality. The orthogonal matrix O couples the two copies and
produces a network model for a helical superconductor, in much the
same way that Obuse et al [28], obtained a network model for a quantum
spin-Hall insulator by coupling a pair of Chalker-Coddington models
[27] for quantum Hall insulators in opposite magnetic fields.

5.3.2 Vortices

One difference between the superconducting network model considered
here and the insulating model of Ref. 28, is that here the coupling of
time-reversed networks is via real orthogonal rather than complex uni-
tary matrices. This difference expresses the Majorana character of the
modes, which have real rather than complex wave amplitudes. Another
difference is the appearance of the Z2 index η, which determines the
parity of the number of (time-reversally invariant) vortices in a plaque-
tte.

To see this, we take α = 0 or α = π, when the network consists
of isolated plaquettes. Denoting the value of η for S and S′ by ηS and
ηS′ , the phase factor acquired by the Majorana mode as it encircles a
plaquette is ηSηS′ . A bound state at zero excitation energy (doubly de-
generate because of time-reversal symmetry) results if ηSηS′ = 1. Since
such Majorana zero-modes come in pairs, and each time-reversally in-
variant vortex in a helical superconductor traps one (doubly-degenerate)
zero mode [32], we conclude that the Majorana mode encircles an odd
number of vortices for ηSηS′ = 1.

In what follows we will assume that the system contains no vortices
at all in the absence of disorder, so we choose ηS = 1, ηS′ = −1. The
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scattering matrices then take the form

S =


0 r t cos ϑ −t sin ϑ
−r 0 t sin ϑ t cos ϑ

−t cos ϑ −t sin ϑ 0 −r
t sin ϑ −t cos ϑ r 0

 , (5.8a)

S′ =


0 −t cos ϑ −r −t sin ϑ

t cos ϑ 0 t sin ϑ −r
r −t sin ϑ 0 t cos ϑ

t sin ϑ r −t cos ϑ 0

 , (5.8b)

where we have abbreviated r = cos α, t = sin α.

5.3.3 Vortex disorder

Disorder is introduced in the network model by varying the scattering
parameters in a random way from one node to the other. We choose
to keep the coupling strength ϑ the same for each node and to vary
α. Following the same procedure as for the Cho-Fisher model [18], we
draw αi at each node i independently from a distribution P(αi) given by

P(αi) = (1− q)δ(αi − α) + 1
2 qδ(αi + α) + 1

2 qδ(αi + α− π). (5.9)

The parameter q ∈ [0, 1] plays the role of disorder strength.
This is a form of vortex disorder [18]: with probability q two time-

reversally invariant vortices are inserted in the plaquettes adjacent to the
i-th node, one vortex in one plaquette and another one in the diagonally
opposite plaquette. The diagonally opposite plaquettes are themselves
chosen with equal probability 1/2 from the two ± sublattices in Fig. 5.2.

We use vortex disorder instead of purely electrostatic disorder [as in
the Hamiltonians (5.1) and (5.2)], because it scatters more effectively and
allows us to localize wave functions in smaller systems. Both forms of
disorder can produce Majorana zero-modes [21, 33], so we do not expect
qualitatively different features.

5.4 Topological quantum number and thermal con-
ductance

A class DIII topological superconductor in two dimensions has a Z2
topological quantum number Q = ±1. Formulas for Q exist based on
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the Hamiltonian [35] or on the scattering matrix [15]. Since the network
model is described in terms of a scattering matrix, we use the latter
formulation.

We consider a rectangular geometry in the x-y plane, of length L =
N ′a in the x-direction and width W = N a in the y-direction, where
a is the lattice constant and N , N ′ are even integers (see Fig. 5.2).
In the transverse direction we impose either periodic boundary condi-
tions, ψ(x, 0) = ψ(x, W), or antiperiodic boundary conditions, ψ(x, 0) =
−ψ(x, W), on the wave functions. In the longitudinal direction we have
absorbing boundary conditions [36], corresponding to normal - metal
reservoirs at x = 0 and x = L.

The scattering matrix S of the entire structure has N ×N reflection
and transmission blocks,

S =

(
R −T T

T R′
)

. (5.10)

The reflection block is a real antisymmetric matrix. Its Pfaffian [34] de-
termines the topological quantum number [15],

Q = sign Q, Q = (PfRpbc)(PfRapbc), (5.11)

where the labels pbc and apbc refer to the periodic and antiperiodic
boundary conditions. (It does not matter if one takes R or R′, they give
the same Q.)

The use of periodic (or antiperiodic) boundary conditions is conve-
nient to minimize finite-size effects and is sufficient to study bulk prop-
erties. To study edge properties, one can impose reflecting boundary
conditions by terminating the lattice as described in Ref. 37. Depend-
ing on how the lattice is terminated, one would then find that either
Q = +1 or Q = −1 produces a helical edge state along the boundary,
and therefore represents a topologically nontrivial phase. In the present
study, without reflecting boundaries, we can distinguish different topo-
logical phases — but we cannot decide which phase is trivial and which
nontrivial.

In addition to the topological quantum number we calculate the two-
terminal thermal conductance G of the strip. This transport property is
determined by the transmission matrix T ,

G = G0 Tr T T †, (5.12)
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with G0 = π2k2
BT0/6h the thermal conductance quantum and T0 the

temperature of the normal-metal reservoirs. The dimensionless thermal
conductivity g is defined by

g = (L/W)(G/G0). (5.13)

For the calculation of the thermal conductivity we take periodic bound-
ary conditions in the y-direction and a large aspect ratio W/L = 4, so
that the choice of boundary conditions in the transverse direction has
only a small effect.

5.5 Topological phase transitions

5.5.1 Phase diagram without disorder

In the absence of disorder the location of the topological phase transi-
tions can be determined exactly using a duality relation, see App. 5.7.1.
We find that the topological quantum number switches sign at critical
points αc, ϑc that satisfy

| sin αc cos ϑc| = | cos αc|. (5.14)

The phase boundaries are plotted in Fig. 5.3 (left panel), together with
the values of the topological quantum number (5.11) at the two sides of
the transition. For ϑc = 0 we recover the known value αc = π/4 of the
critical point in the chiral Cho-Fisher model [14]. This is as expected,
since for ϑ = 0 our helical network model consists of two independent
chiral copies.

5.5.2 Scaling of the critical conductivity

At the phase boundaries the excitation gap of the system closes. In
the chiral network model this produces a scale-invariant thermal con-
ductivity g = 1/π, regardless of whether the system is disordered or
not [13], but in our helical model the conductivity at the critical point
scales ballistically ∝ L in the absence of disorder. The ballistic scaling
is demonstrated in Fig. 5.4 and can be understood by examining the
long-wave length Hamiltonian corresponding to the network model.

The calculation of this Hamiltonian proceeds entirely along the lines
of the analogous calculation for the quantum spin-Hall insulator [38], so
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Figure 5.3. Left panel: Phase diagram of the DIII network model without
disorder. The solid curves, given by Eq. (5.14), separate helical topological su-
perconductors with different values Q of the Z2 topological quantum number.
The red dot (at ϑ = 0, α = π/4) marks the critical point in the Cho-Fisher
model [14] of a chiral topological superconductor (class D). Right panel: Phase
diagram in the presence of disorder (q = 0.07), when the topologically distinct
phases are separated by a thermal (Majorana) metal.

we only give the result. To first order in the deviation from the Cho-
Fisher critical point (α, ϑ) = (π/4, 0), we find

H = U †[pxτxσz + pyτyσ0 + 2(α− π/4) τzσ0 +
√

2 ϑ τyσy
]
U

= (pxτx + pyτy)σ0 + 2(α− π/4) τzσz +
√

2 ϑ τ0σx, (5.15)

U = 1
2 (τ0 + iτy)σ0 +

1
2 (τ0 − iτy)σz. (5.16)

Up to a unitary transformation U , and to first order in (dimensionless)
momentum p, this Hamiltonian has the form of HDIII in Eq. (5.2), with α
playing the role of the chemical potential µ and ϑ playing the role of the
spin coupling strength K.

The gap closes at α = π/4 on a (twofold degenerate) circle p2
x +

p2
y = 2ϑ2 in momentum space (inset in Fig. 5.4). The Fermi wavevector

kF =
√

2|ϑ|/a corresponds to a ballistic conductance G/G0 = 2kFW/π.
Hence we find the ballistic critical conductivity

gc =
2
√

2|ϑ|L
πa

, |ϑ| � 1. (5.17)

The ballistic scaling of the critical conductivity is a signature of the
appearance of a Fermi circle at the phase transition, which is a spe-
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Figure 5.4. Data points (with dashed line as a guide to the eye): conductivity
as a function of system size (at fixed aspect ratio W/L = 4) of the DIII network
model without disorder, at criticality for ϑ = 0.4. The ballistic scaling g ∝ L
results from the Fermi circle of the long-wavelength Hamiltonian (5.15) (red
dotted circle in the inset).

cial property of our model (chosen to maximize the coupling between
the two opposite chiralities). More generally, the gap in a class-DIII
Hamiltonian will close at four isolated points in momentum space [39],
resulting in a scale-invariant critical conductivity.

5.5.3 Phase diagram with disorder

As disorder is introduced in the system, a metallic phase develops in
between the insulating phases, so that the switch from Q = +1 to Q =
−1 goes via two metal-insulator transitions. In the metallic region Q has
a random sign, averaging out to zero (see Fig. 5.5, where we averaged
Q rather than Q = sign Q to reduce statistical fluctuations). The phase
diagram is shown in Fig. 5.3 (right panel) for a fixed disorder strength q
in the α-ϑ plane and in Fig. 5.6 for fixed ϑ in the α-q plane. The metallic
regions become broader and broader with increasing disorder, and for
q & 0.2 no insulating phase is left.

Fig. 5.7 shows the sample-size dependence of the average conductiv-
ity, both at the metal-insulator transition and in the metallic phase. (The
exponential decay ∝ exp(−L/ξ) in the insulating phase is not shown.)
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Figure 5.5. Disorder average of Q, defined in Eq. (5.11) as a function of α
for fixed ϑ = 0.5, q = 0.1, and different values of L = W/4. The topological
quantum number switches from −1 to +1 in the insulating phases via a plateau
of zero average in the metallic phase.

While without disorder the conductivity scales ballistically ∝ L at the
critical point (see Fig. 5.4), disorder restores the scale invariance that is
the hallmark of criticality. In the metallic phase we find a logarithmically
increasing conductivity 〈g〉 = c ln(L/a), characteristic for a Majorana
metal [5, 12, 13], with c = 1/π (dotted line in Fig. 5.7).

5.5.4 Critical exponent

The metal-insulator transition is associated with a diverging localization
length ξ ∝ |x − xc|−ν, where x can be any of the control parameters
α, ϑ, q and xc is the value of x at the critical point. To determine the crit-
ical exponent ν we perform a finite-size scaling analysis of the thermal
conductivity, in a manner analogous to the work of Slevin and Ohtsuki
[40].

Typical data is shown in Fig. 5.8, where we follow the thermal con-
ductivity through the metal-insulator transition upon varying the disor-
der strength q at fixed α and ϑ. The dimensions L and W of the system
are increased at fixed aspect ratio W/L = 4. The curves are fits of the
data to the scaling law, as described in App. 5.7.2. Results are given in
Table 5.1.
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Figure 5.6. Phase diagram of the disordered DIII network model for fixed
ϑ = 0.785.

control parameter ν gc

x ≡ q, α = 1.2, ϑ = 0.5 2.04 [1.89, 2.15] 0.75 [0.68, 0.81]
x ≡ α, q = 0.1, ϑ = 0.785 1.93 [1.78, 2.24] 0.73 [0.69, 0.76]

Table 5.1. Critical exponent ν and critical conductivity gc, with ±3σ confidence
levels indicated by square brackets, extracted from a finite-size scaling analysis
with x = q or x = α as control parameter to drive the system through a metal-
insulator transition. The two cases correspond to transitions into a topological
phase with opposite value of Q.

5.6 Conclusion

In conclusion, we have presented a network model of a two-dimensional
helical p-wave superconductor and used it to investigate the topological
phase transitions. The presence of time-reversal symmetry (class DIII)
leads to differences with the more familiar chiral p-wave superconduc-
tors (class D), of a qualitative nature (the appearance of a thermal metal
separating the thermally insulating phases) and also of a quantitative
nature (an approximate doubling of the critical exponent). Helical su-
perconductors have not yet been convincingly demonstrated in experi-
ments, but there is an active search and a variety of candidate materials
[48–52].
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Figure 5.7. Scaling of the conductivity in the disordered DIII network model
(α = 1.2, ϑ = 0.5), at the metal-insulator transition (blue data points, q = 0.175)
and in the metallic phase (red data points, q = 0.2). The dotted lines indicate
the scale-invariance of the critical conductivity and the logarithmic scaling of
the metallic conductivity.

This study fills in the last missing entry in the list of critical expo-
nents of two-dimensional topological phase transitions (see Table 5.2),
completing a line of research on network models that started with the
seminal work of Chalker and Coddington on the quantum Hall effect
[27]. It is intriguing that the effect of time-reversal symmetry is close to
a doubling of the critical exponent (from ν ≈ 1.0 in class D to ν ≈ 2.0 in
class DIII), but this may well be accidental.

symmetry time-rev. spin-rot. topological insul.-insul. metal-insul. Refs.
class symmetry symmetry quantum nr. transition transition

quantum Hall insulator A × × Z ν ≈ 2.6 — 27, 41
quantum spin-Hall insul. AII X × Z2 — ν ≈ 2.7 42, 43, 28, 44, 45
chiral d-wave supercond. C × X Z ν = 4/3 — 46, 47
chiral p-wave supercond. D × × Z ν = 1 ν ≈ 1.0 13, 24
helical p-wave supercond. DIII X × Z2 — ν ≈ 2.0 this work

Table 5.2. Overview of the critical exponents in the five symmetry classes that
exhibit a topological phase transition in two dimensions.
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Figure 5.8. Disorder-averaged conductivity as a function of disorder strength
for various system sizes L = W/4 at fixed α = 1.2, ϑ = 0.5. Solid curves are a
fit to the scaling law, as described in App. 5.7.2.

5.7 Appendix

5.7.1 Location of the critical point in the network model with-
out disorder

The critical point in the clean DIII network model (q = 0) can be ob-
tained from a duality relation: Exchange of the scattering matrices S
and S′ of the two sublattices (black and white nodes in Fig. 5.2) has the
effect of exchanging the trivial and nontrivial phases. This can be seen
most easily for reflecting boundary conditions, when exchange of the
sublattices either creates or removes the helical edge state (see Fig. 7 of
Ref. 37).

The exchange of S and S′ amounts to the transformation of α, ϑ into
α′, ϑ′, given by

cos α′ = − sin α cos ϑ, cos α = − sin α′ cos ϑ′,
sin α′ sin ϑ′ = sin α sin ϑ. (5.18)

Equivalently, the unit vector n̂ = (sin α cos ϑ, sin α sin ϑ, cos α) is trans-
formed into

n′x = −nz, n′y = ny, n′z = −nx, (5.19)
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which amounts to a reflection in the plane x + z = 0. The network is
selfdual if n̂ lies in this plane. Since a selfdual network is at the critical
point, we arrive at a sufficient condition for criticality, nx + nz = 0, or
equivalently

sin αc cos ϑc + cos αc = 0. (5.20)

An alternative condition can be obtained by noting that the transfor-
mation α 7→ −α leaves the reflection matrix R unaffected. The topolog-
ical quantum number (5.11) therefore remains unchanged, so if αc, ϑc is
critical then also −αc, ϑc. We thus have a second sufficient condition for
criticality,

− sin αc cos ϑc + cos αc = 0. (5.21)

Eqs. (5.20) and (5.21) together give the condition (5.14).

5.7.2 Finite-size scaling analysis

control fit parameters irrelevant exp. reduced nr. of degrees goodness
parameter χ2 of freedom of fit

x ≡ q n = m1 = 1, m0 = 3 y = −0.47 1.06 98 0.56
α = 1.2, ϑ = 0.5 qr = 2, qi = 0 [−0.76,−0.31]

x ≡ α n = 1, m0 = m1 = 2 y = −0.67 1.06 128 0.56
q = 0.1, ϑ = 0.785 qr = 3, qi = 1 [−0.78,−0.53]

Table 5.3. Parameters for the nonlinear fitting analysis, giving the critical ex-
ponent and conductivity of Table 5.2.

We determine the critical exponent ν associated with the metal - in-
sulator transitions on both sides of the metallic phase, by an analysis of
the system size L = W/4 dependence of the disorder averaged conduc-
tivity g. Following the general approach of Slevin and Ohtsuki [40], we
take into account finite-size corrections to scaling in the form of nonlin-
earities in the scaling variable u, as well as the presence of an irrelevant
scaling exponent y < 0.

The finite-size scaling law reads

g = F(u0L1/ν, u1Ly), (5.22)

in terms of the relevant scaling variable u0 and the leading irrelevant
scaling variable u1. We perform a Taylor expansion, first up to order n
in powers of u1,

g =
n

∑
k=0

uk
1LkyFk(u0L1/ν), (5.23)
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and then on each of the functions Fk up to order mk in powers of u0,

Fk(u0L1/ν) =
mk

∑
j=0

uj
0Lj/νFkj. (5.24)

We tune through the metal-insulator transition by varying one pa-
rameter x ∈ {α, ϑ, q} through the critical point xc, keeping the other two
parameters fixed. Nonlinearities are taken into account by Taylor ex-
panding the relevant and irrelevant scaling variables in powers of x− xc,
up to orders qr and qi respectively,

u0(x− xc) =
qr

∑
k=1

bk(x− xc)
k, (5.25)

u1(x− xc) =
qi

∑
k=0

ck(x− xc)
k. (5.26)

The expansion of the relevant scaling variable does not contain a zeroth
order term, due to the requirement u0(0) = 0 for a scale-invariant critical
conductivity.

The average conductivity is determined up to a precision between
∼ 0.2% and ∼ 0.07% (error bars much smaller than the size of the sym-
bols in Fig. 5.8). We perform the fit by minimizing the χ2 statistic, and
express the goodness of fit as well as the degree of uncertainty in the fit
parameters through a Monte Carlo resampling technique [53], as appro-
priate for a non-linear fitting function. Results are collected in Tables 5.1
and 5.3.
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