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Chapter 3

Scattering theory of
topological insulators and
superconductors

3.1 Introduction

Given a Hamiltonian H(k) of a band insulator or a superconductor and
its symmetries as a function of the momentum k in d-spatial dimensions,
a topological invariant Q(H) can be defined. It counts the number of
surface states insensitive to disorder which are present at an interface
between the system and the vacuum. In each spatial dimension exactly
5 out of 10 Altland-Zirnbauer symmetry classes (distinguished by time-
reversal symmetry T , particle-hole symmetry P , and chiral/sub-lattice
symmetry C) [1] allow for a nontrivial topological invariant [2, 3].

The evaluation of the topological invariant conventionally involves
an integral over a d-dimensional Brillouin zone of some function of the
Hamiltonian. Recently, various approximations to the topological invari-
ant have been developed which require only the knowledge of eigenval-
ues and eigenvectors of the Hamiltonian at one point in momentum
space (rather than in the entire Brillouin zone) [4–6].

Despite the fact that these approximations are more efficient, we ar-
gue that they do not use one important property of a topological invari-
ant. By definition, the topological invariant describes the properties of
the system at the Fermi level, namely the number of edge states. This
observation suggests that it should be possible to calculate the topologi-
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cal invariant without knowing the full spectrum of the Hamiltonian, but
rather calculating only properties of the system at its Fermi energy. For
one-dimensional (1D) systems, this was demonstrated in Ref. 7. Here,
we show that for any dimensionality the topological invariant can be ob-
tained from the scattering matrix of the system at the Fermi level.

Our results offer two benefits. Firstly, since the scattering matrix
contains less degrees of freedom than the Hamiltonian, the computation
of the topological invariant is much more efficient. Secondly, the scat-
tering matrix relates the topological invariant to transport properties,
suggesting ways to probe the topological phase by electrical or thermal
conduction measurements [8, 9].

The approach is based on dimensional reduction: We relate the scat-
tering matrix in d dimensions to a Hamiltonian in d− 1 dimensions. Our
scheme of dimensional reduction does not preserve the symmetry, un-
like the field theory based scheme of Ref. 10. Instead our dimensional
reduction preserves the topological invariant, similarly to the dimen-
sional reduction of clean Dirac-like Hamiltonians of Ref. 11.

In the remainder of the introduction we first illustrate our approach
by revisiting the familiar example of the integer quantum Hall effect.
Subsequently, we present a brief outline of the paper.

3.1.1 Dimensional reduction in the quantum Hall effect

A 2D system exhibiting the integer quantum Hall effect is a topological
insulator in the symmetry class A (all symmetries broken). It is char-
acterized by a quantized transverse conductance σxy = ng0 with n ∈ Z

and g0 = e2/h. The quantum number n is a topological invariant (the so-
called Chern number) of the Hamiltonian [12]. It equals the number of
protected chiral edge states at the Fermi level, each of which contributes
e2/h to the transverse conductance [13, 14].

Charge pumping provides an alternative way to relate the topolog-
ical invariant to a quantized transport property: inserting a flux quan-
tum inside a quantum Hall sample rolled-up to a cylinder adiabatically
pumps n electrons across the sample [15]. There exists a scattering ma-
trix formulation of charge pumping [16, 17], which allows to express
pumped charge per cycle (in units of e),

Q =
1

2πi

ˆ 2π

0
dϕ

d
dϕ

log det r(ϕ), (3.1)
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through the flux dependence of the reflection block r(ϕ) of the scat-
tering matrix of one lead [18]. Here ϕ denotes the dimensionless flux
Φ = h̄ϕ/e and the system is assumed to be insulating such that the re-
flection matrix r(ϕ) is unitary. Equation (3.1) is nothing but the winding
number of det r(ϕ) when ϕ is varied from 0 to 2π, which is a topological
invariant.

The winding number occurs in a different context in the theory of
topological insulators. The topological invariant of a one-dimensional
Hamiltonian H(k) with chiral/sub-lattice symmetry

H(k) =
(

0 h(k)
h†(k) 0

)
, (3.2)

is expressed via the winding number given by [19, 20]

Q(H) =
1

2πi

ˆ 2π

0
dk

d
dk

log det h(k). (3.3)

Here momentum k is measured in units of h̄/a, with a the lattice con-
stant. We see that upon the identification h ≡ r and k ≡ ϕ we are able to
express the topological invariant in a 2D system without any symmetries
as the topological invariant of an effective Hamiltonian in 1D with chiral
symmetry. We will show that a similar dimensional reduction applies to
all topological invariants in all dimensions.

3.1.2 Outline of the paper

As a prerequisite for the dimensional reduction, we have to open up
the system to obtain a scattering matrix from a given Hamiltonian. Sec-
tion 3.2 explains how this can be done. This section may be skipped
on first reading. The dimensional reduction proceeds along the follow-
ing lines: First we form out of a scattering matrix S a reflection block
r(k) from one surface of the system, when all the dimensions except one
are closed by twisted periodic boundary conditions. Then, the effective
Hamiltonian Hd−1(k) in one dimension lower is defined according to
the simple rule

Hd−1(k) ≡ r(k), with chiral symmetry, (3.4a)

Hd−1(k) ≡
(

0 r(k)
r†(k) 0

)
, without chiral symmetry. (3.4b)
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In Sec. 3.3 we show how to evaluate r(k) given the scattering matrix S
of the initial system and prove that the reduced Hamiltonian Hd−1 has
the same topological invariant as the original H, i.e. Q(Hd−1) = Q(H).

After the general proof we turn to the particular ways to evaluate
the topological invariant in 1–3 dimensions in Sec. 3.4. In 1D we show
that our expressions coincide with the ones derived in Ref. 7 in a differ-
ent way, without using dimensional reduction. For 2D we formulate the
evaluation of the topological invariant as a generalized eigenvalue prob-
lem. For 3D topological insulators in class AII the topological invariant
reduces to a product of 2D invariants, while the other symmetry classes
require usage of a Bott index [6]. We also mention how weak topological
invariants fit into our approach.

We consider the numerical efficiency of our method and show ex-
amples of its application in Sec. 3.5. We also compare the finite size
effects of different approximations to the topological invariant, and in-
troduce the ‘fingerprint’ of phase transitions between different topolog-
ical phases in 2D. Finally, we conclude in Sec. 3.6.

3.2 Scattering matrix from a Hamiltonian

This section contains the necessary preliminaries: the definition of scat-
tering matrix and a proof that the shape of the Fermi surface can be
calculated from the scattering matrix.

While the formulas in this section are needed for the actual imple-
mentation of our method of dimensional reduction, the method itself
can be understood without them. This section can thus be skipped at
first reading.

Any Hamiltonian H(k) of a translationally invariant system with a
finite range hopping can be brought to the tight-binding form by choos-
ing a sufficiently large unit cell

H(k) = H +
d

∑
i=0

tieiki +
d

∑
i=0

t†
i e−iki . (3.5)

Here k is a d-dimensional vector of Bloch momenta, H is the on-site
Hamiltonian, and ti are the hoppings in positive i-direction. We start
our consideration from opening the system and attaching 2d fictitious
leads to it. First we attach d sites to the original system without on-site
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Figure 3.1. Sketch of the tight binding model used to attach leads in order to
open-up the Hamiltonian H(k) of (3.5). In 2D we introduce four leads shown
as circles labeled by 1, 1̄, 2, and 2̄. The on-site terms (boxes) are connected by
hoppings (lines). The additional trivial hoppings 1 and −1 are introduced such
that the lead properties drop out when twisted periodic boundary conditions
are applied. For the Mahaux-Weidenmüller formula (3.8), the three nodes form
the on-site Hamiltonian H̃ which is then connected via the trivial hoppings to
ideal leads.

Hamiltonian, and connect them with hoppings ti to the system. The
Hamiltonian of this ‘unfolded’ system becomes

H̃ =

(
H t†

t 0

)
, (3.6)

t = (t1, t2, . . . td)
T. (3.7)

In the next step we attach the fictitious leads to the unfolded system, as
illustrated in Fig. 3.1 for the case of two dimensions. The hopping to
the leads in positive i-direction is chosen to be equal to +1, and in the
negative i-direction to be equal to −1.

We are now ready to construct the scattering matrix of the open
system by using the Mahaux-Weidenmüller formula [21] (see also Ap-
pendix 3.7.1)

S = 1 + 2πiW†(H̃ − iπWW†)−1W. (3.8)

The coupling W between the lead and the system is equal to w
√

ρ, with
w the hopping from the lead to the system, and ρ the density of states
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in the lead. We choose ρ = 1/wπ, such that

W =
1√
π


1 0 1 0 · · · 1 0
0 −1 0 0 0 0
0 0 0 −1 0 0
...

. . .
...

0 0 0 0 · · · 0 −1

 ; (3.9)

here, we have set w = 1 for convenience. The values of hopping and the
lead density of states are chosen such that in the process of rolling-up,
the fictitious leads drop out.

The scattering matrix (3.8) relates the incoming states in the leads to
the outgoing ones: 

ψ1
ψ1̄
ψ2
ψ2̄
...

ψd
ψd̄


out

= S



ψ1
ψ1̄
ψ2
ψ2̄
...

ψd
ψd̄


in

. (3.10)

To prove that the scattering matrix contains all of the information about
the Fermi level at energy EF = 0, we impose twisted periodic boundary
conditions on the scattering states:

ψ1
ψ1̄
ψ2
ψ2̄
...

ψd
ψd̄


in

= Z(k)



ψ1
ψ1̄
ψ2
ψ2̄
...

ψd
ψd̄


out

, (3.11)

with the twist matrix Z(k) given by

Z(k) ≡



0 eik1 0 · · · 0

e−ik1 0
...

0
. . . 0

... 0 eikd

0 · · · 0 e−ikd 0


. (3.12)
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We show that Eqs. (3.10) and (3.11) have a solution for a given k if and
only if the equation H(k)ψ = 0 has a nontrivial solution. The condition
for the nontrivial solution of Eqs. (3.10) and (3.11) to exist is

det[S− Z(k)] = 0. (3.13)

Performing block-wise inversion of H̃ − iπWW† yields

S = 1 + 2iW†
(

J −i Jt†

−itJ i− tJt†

)
W, (3.14)

J = (H0 − id− it†t)−1. (3.15)

We simplify this expression further by noting that

S = γz + 2iγzU† JU, U =
(
1 −it†)W, (3.16)

with γz the third Pauli matrix in the direction space. We now write

det[S− Z(k)] = det
[
1 + γzZ(k) + 2iU† JU

]
(3.17)

= det J det[1 + γzZ(k)]

× det
(

J−1 + 2iU[1 + γzZ(k)]U†
)

= det J det[1 + γzZ(k)]det H(k).

Since both J and 1 + γzZ(k) are nonsingular, the last identity means
that det[S− Z(k)] and det H(k) can only be zero simultaneously, which
is what we set out to prove.

This proof shows that the Fermi surfaces as defined by the original
Hamiltonian and the scattering matrix are identical. This is the reason
why it is at all possible to determine the topological invariant using
solely the scattering matrix S. Even though the scattering matrix only
describes scattering at the Fermi level, it contains information about the
complete Brillouin zone, and thus cannot be obtained from a long wave-
length or low energy expansion of the Hamiltonian, but requires the
complete Hamiltonian. Note however that the scattering matrix at a sin-
gle energy contains less information about the system than the Hamilto-
nian: in order to determine the Hamiltonian from the scattering matrix,
the inverse scattering problem has to be solved which requires knowl-
edge of the scattering matrix at all the energies.
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The size of the scattering matrix (3.8) is 2d-times larger than the
size of Hamiltonian. However, if the Hamiltonian is local on a large d-
dimensional lattice with size Ld, the hoppings ti are very sparse. This al-
lows to efficiently eliminate all of the modes except the ones that are cou-
pled to the hoppings. The resulting scattering matrix is of size 2dLd−1,
and accordingly for large systems it is a dense matrix of much smaller
dimensions than the Hamiltonian.

3.3 Dimensional reduction

The aim of this section is to provide a route to the topological classifica-
tion of scattering matrices by elimination of one spatial dimensions. This
approach of dimensional reduction is inspired by the transport proper-
ties of topological systems. When applied to 1D systems it reproduces
the results of Ref. 7, and in quantum Hall systems it reproduces the rela-
tion between adiabatic pumping and the Chern number of Refs. 15, 18.

We begin from substituting the first 2(d − 1) equations from (3.11)
into (3.10). This is equivalent to applying twisted periodic boundary
conditions to all of the dimensions except the last one, which is left
open. Then we study the reflection from the d-direction back onto itself.
The reflection is given by

ψd,out = r(k)ψd,in, (3.18)

r(k) = D− C[A− Zd−1(k)]−1B, (3.19)

with Zd−1 given by Eq. (3.12) in d− 1 dimensions. The matrices A, B, C,
and D are sub-blocks of S given by

A =

 S1,1 · · · S1,d−1
...

. . .
...

Sd−1,1 · · · Sd−1,d−1

 , B =

 S1,d
...

Sd−1,d

 ,

C =
(
Sd,1 · · · Sd,d−1

)
, D =

(
Sd,d
)

. (3.20)

To study topological properties of r(k) we construct an effective
Hamiltonian Hd−1(k) which has band gap closings whenever r(k) has
zero eigenvalues. In classes possessing chiral symmetry one may choose
a basis such that r(k) = r†(k). If chiral symmetry is absent, there is no
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Hermiticity condition on r, so we double the degrees of freedom to con-
struct a single Hermitian matrix out of a complex one. The effective
Hamiltonian is then given by

Hd−1(k) ≡ r(k), with chiral symmetry, (3.21a)

Hd−1(k) ≡
(

0 r(k)
r†(k) 0

)
, without chiral symmetry. (3.21b)

It is straightforward to verify that in both cases the Hamiltonian Hd−1(k)
has band gap closings simultaneously with the appearance of vanishing
eigenvalues of r(k).

If r(k) has chiral symmetry, Hd−1(k) does not have it. On the other
hand, if r(k) has no chiral symmetry, then

Hd−1(k) = −τzHd−1(k)τz, (3.22)

with τz the third Pauli matrix in the space of the doubled degrees of
freedom. This means that in that case Hd−1(k) acquires chiral symmetry.

The way in which the dimensional reduction changes the symme-
try class is summarized in Fig. 3.2. The transformation of symmetries of
r(k) into symmetries of Hd−1(k) is straightforward in all of the cases, ex-
cept the time-reversal symmetry in symmetry classes AII and AI. There
we have r(k) = ±rT(−k), and hence

Hd−1(k) ≡
(

0 r(k)
r†(k) 0

)
=

(
0 ±r(−k)T

±[rT(−k)]† 0

)
= ±τx H∗d−1(−k)τx. (3.23)

The details of the symmetry properties of r and H, as well as the rela-
tions between these symmetries are given in App. 3.7.1.

The way the symmetry class of the d-dimensional Hamiltonian trans-
forms into the symmetry class of Hd−1(k) expresses the Bott periodicity
of the topological classification of symmetry classes [2]. Namely, sym-
metry classes A and AIII transform into each other, and the other 8
classes with anti-unitary symmetries are shifted by one, as shown in Ta-
ble 3.1. This reproduces the natural succession of symmetry classes that
appears in the context of symmetry breaking [22] (see also Appendix
3.7.1). The combined effects of the change in dimensionality and in sym-
metry class is that the Hamiltonians H(k) and Hd−1(k) have the same
topological classification.
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Figure 3.2. Symmetry properties of r(k) and H(k) in the ten symmetry classes.
Time-reversal symmetry is denoted by T , particle-hole symmetry by P . The
signs at the top and left of the table denote either the absence (×) of a cor-
responding symmetry, or the value of the squared symmetry operator. The
entries of the table with a gray background have an additional chiral symme-
try C, which always has the form shown in the AIII entry of the table. In
particular, we always chose a basis such that r(k) = r†(k) in the chiral sym-
metry classes. The way symmetry classes transform under our definition of
Hd−1, cf. (3.21), is denoted by the arrows; the double arrow implies a doubling
of degrees of freedom as in Eq. (3.21b). Going along an arrow, the symmetry of
the reflection block r(k) (marked by a solid box) transforms into the symmetry
of the reduced Hamiltonian (marked by a dashed box). In the chiral classes,
there is an additional symmetry (not marked by a box) which can be obtained
from the other by combining it with the chiral symmetry, H(k) = −τz H(k)τz
and r(k) = r†(k), respectively.

We now turn to prove that for localized systems topological invari-
ants Q(H) and Q(Hd−1) are identical. This correspondence was proven
in 1D in Ref. 7, so here we accomplish the proof in higher dimensions.

First of all, we observe that a topologically trivial Hamiltonian can
be deformed into a bunch of completely decoupled localized orbitals
without closing its gap. In a sufficiently large system, this also means
that the gap of Hd−1(k) does not close during this process. For a system
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Table 3.1. (Color online) Topological classification of the ten symmetry classes
in different dimensions. Combinations of symmetry class and dimensionality
which support non-trivial topological invariants are indicated by the type of the
topological invariant (Z or Z2). Classes which support only trivial insulators
are denoted by ‘-’. The arrows indicate the change of symmetry class upon
dimensional reduction as discussed in the main text. The topmost symmetries
A and AIII (which do not have any anti-unitary symmetries) transform into
each other, whereas the remaining 8 classes (with anti-unitary symmetries)
exchange cyclically. The dimensional reduction changes the symmetry class,
but preserves the topological invariant (‘-’, Z, or Z2).

of decoupled orbitals, r(k) and accordingly Hd−1(k) are momentum-
independent (and hence Hd−1(k) is topologically trivial). This means
that a sufficiently large system with trivial H(k) maps onto a trivial
Hd−1(k) under the scheme of dimensional reduction outlined above.

Let us now consider an interface between two systems with different
bulk Hamiltonians H and H′, shown in Fig. 3.3. If the Hamiltonians
Hd−1 and H′d−1 constructed out of reflection blocks of the two systems
have different topological invariants, a topologically protected zero en-
ergy edge state in d− 1 dimensions must appear at the interface between
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Figure 3.3. A system in d dimensions consisting out of two parts with different
Hamiltonians H and H′. Reflection blocks of the scattering matrix r and r′ are
used to define the lower dimensional Hamiltonians Hd−1 and H′d−1. We prove
the correspondence between topological invariants in d and d− 1 dimensions
using the relation between the surface state at the interface between H and H′

and the edge state at the interface between Hd−1 and H′d−1.

them. Recalling that a zero energy edge state in d − 1 dimension cor-
responds to a perfectly transmitting mode of the original d-dimensional
system, we conclude that H and H′ have different topological invariants.

Conversely, if H and H′ have different topological invariants, there
exists a transmitting mode at the interface between two parts of the sys-
tem, which appears irrespective of system size and microscopic details
of the interface. This means that it is not possible to construct an inter-
face between Hd−1 and H′d−1 which would be completely gapped.

Finally, the edge states in d − 1 dimension have to have the same
group properties as the surface states in d dimensions, leading us to the
conclusion that Q(H) = Q(Hd−1), as we set out to prove. The topology-
preserving property of our dimensional reduction procedure is the same
as that of the mapping from a general d-dimensional Hamiltonian to a
d + 1-dimensional Hamiltonian presented in Ref. 23.

At this point one might wonder why we apply the dimensional
reduction only once. Indeed, the reduced Hamiltonian Hd−1 can be
straightforwardly approximated by a tight-binding Hamiltonian on a
d− 1 dimensional lattice using a Fourier transform. This allows to re-
peat the procedure of dimensional reduction until we arrive at a zero
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dimensional Hamiltonian. We stop at the first dimensional reduction
for practical purposes, since the advantage of considering only Fermi
level properties is achieved already at the first step.

3.4 Results for one–three dimensions

3.4.1 Topological invariant in 1D

We begin by verifying that we recover the 1D results of Ref. 7, where
the topological invariant was related to the scattering matrix without
going through the procedure of dimensional reduction. Dimensional re-
duction in this case brings us to a zero-dimensional Hamiltonian. The
topological invariant of a zero-dimensional Hamiltonian without sym-
metry between positive and negative energies (symmetry classes A, AI,
and AII) is given just by the number of states below the Fermi level. In
class AII Kramers’ degeneracy makes this number always even. In addi-
tion, in 0D there exist two Z2 topological insulators in symmetry classes
D and BDI. The topological number is in that case the ground state
fermion parity, or the Pfaffian of the Hamiltonian in the basis where it
is antisymmetric. To summarize,

Q(H) = ν(H), for A, AI, and AII, (3.24a)
Q(H) = Pf iH, for D and BDI, (3.24b)

where ν(A) denotes the number of negative eigenvalues of the Hermi-
tian matrix A. Substituting H from Eqs. (3.21) yields

Q = ν(r), for AIII, BDI, and CII (3.25a)
Q = Pf ir, for DIII, (3.25b)

Q = Pf
(

0 ir
−irT 0

)
= det r, for D. (3.25c)

We confirm that the Eqs. (3.25) are in agreement with Ref. 7.

3.4.2 Topological invariant in 2D

Starting from 2D, the dimensional reduction brings us to a 1D Hamil-
tonian. In this subsection we first review the known expressions for
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the topological invariants of 1D Hamiltonians, and then describe how to
efficiently evaluate it for the effective Hamiltonian (3.21). The Z topo-
logical insulators in 1D (classes AIII, BDI, and CII) are characterized by
a winding number [19, 20]

H(k) ≡
(

0 h(k)
h†(k) 0

)
, (3.26)

Q(H) =
1

2πi

ˆ 2π

0
dk

d
dk

log det h(k),

for AIII, BDI, and CII. (3.27)

The topological invariant for the Hamiltonian in class D is given by
Kitaev’s formula [24]

Q(H) = sign
[

Pf H(0)
Pf H(π)

]
, for D. (3.28)

Finally, in class DIII the expression for the topological invariant was
derived in Ref. 25:

Q(H) =
Pf[UT h(π)]

Pf[UT h(0)]
exp

[
− 1

2

ˆ π

0
dk

d
dk

log det h(k)

]

=
Pf[UT h(π)]

Pf[UT h(0)]

√
det h(0)√
det h(π)

, for DIII, (3.29)

where the square root is defined through analytic continuation over the
first half of the Brillouin zone, h is defined by Eq. (3.26), and UT is the
unitary part of the time reversal operator T = UT K.

Substituting Eq. (3.21) into the expressions for topological charge we
get

Q =
1

2πi

ˆ 2π

0
dk

d
dk

log det r(k), for A, C, D (3.30a)

Q =
Pf[UT r(π)]

Pf[UT r(0)]

√
det r(0)√
det r(π)

, for AII, (3.30b)

Q = sign
[

Pf r(0)
Pf r(π)

]
, for DIII. (3.30c)

In order to efficiently evaluate the integral given in Eq. (3.27), and
the analytic continuation in Eq. (3.30b) using Eq. (3.19), we define a new
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variable z = eik. Then we perform an analytic continuation of det r(z) to
the complex plane from the unit circle |z| = 1. To find zeros and poles
of det r(z) we use

det r(z) = det
(

A− Z1(k) B
C D

)/
det [A− Z1(k)] , (3.31)

where

Z1(k) =
(

0 eik

e−ik 0

)
=

(
0 z

z−1 0

)
;

Equation (3.31) follows from Eq. (3.19) and the determinant identity

det(D− CM−1B) = det
(

M B
C D

)/
det M. (3.32)

Since both the numerator and the denominator of Eq. (3.31) are fi-
nite at any finite value of z, the roots of the numerator zn are the ze-
ros of det r(z), and the roots of the denominator wn are the poles. In
App. 3.7.2 we show that due to unitarity of the scattering matrix, the
poles of det r(z) never cross the unit circle. By multiplying the second
column of the numerator of Eq. (3.31) by z we bring the problem of find-
ing roots zn of this numerator to the generalized eigenvalue problem,S1,1 −1 S1,2

S1̄,1 0 S1̄,2
S2,1 0 S2,2

ψn = zn

0 −S1,1̄ 0
1 −S1̄,1̄ 0
0 −S2,1̄ 0

ψn, (3.33)

which can be efficiently evaluated. The roots wn of the denominator can
also be found by solving the generalized eigenvalue problem,(

S1,1 −1
S1̄,1 0

)
ψn = wn

(
0 −S1,1̄
1 −S1̄,1̄

)
ψn. (3.34)

Since the poles of det r(z) never cross the unit circle, in classes A, C,
and D the topological invariant is given by

Q = #{zn : |zn| < 1} − N1, for A, C, and D, (3.35)

i.e., the number of zn’s inside the unit circle minus the number of modes
N1 in the direction 1. In class AII (quantum spin Hall insulator) the
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topological invariant is given by

Q =
∏n

√
i 1+zn

1−zn

∏n

√
(−i) 1+wn

1−wn

× Pf UT r(π)

Pf UT r(0)
for AII, (3.36)

with the branch cut of the square root along the negative real axis. Note
that the linear fractional transformation z 7→ i(1 + z)/(1− z) maps the
upper half of the unit circle onto the negative real axis. In symmetry
class DIII the evaluation of the topological invariant is most straightfor-
ward, and yields

Q = sign
[

Pf r(0)
Pf r(π)

]
for DIII. (3.37)

The physical meaning of the topological invariant in class A is quan-
tized pumping of charge as a response to magnetic flux. In the quantum
spin Hall insulator in class AII the invariant can be interpreted either as
time-reversal polarization pumping [26], or as pumping of spin which
is quantized along an unknown axis [27, 28]. In the superconducting
classes C, D, and DIII it is an analogous thermal or gravitational re-
sponse [29, 30].

3.4.3 Topological invariant in 3D

Turning now to 3D, we need to consider topological invariants of 2D
Hamiltonians. The symmetry class with the simplest expression for the
topological invariant in terms of the scattering matrix in 3D is AII. The
2D topological invariant of a system in class DIII (into which AII trans-
forms upon dimensional reduction) is a product [25] of the topological
invariants (3.29) of 1D Hamiltonians obtained by setting one of the mo-
menta to 0 or π,

Q[H(k1, k2)] = Q[H(k1, 0)]Q[H(k1, π)], (3.38)

with Q[H(k1)] given by Eq. (3.29). Substituting Eq. (3.21) into this ex-
pression we obtain

Q =
Pf[UT r(π, 0)]
Pf[UT r(0, 0)]

√
det r(0, 0)√
det r(π, 0)

×

Pf[UT r(π, π)]

Pf[UT r(0, π)]

√
det r(0, π)√
det r(π, π)

, for AII. (3.39)
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Direct evaluation of the Hamiltonian topological invariant in 2D in
classes with nontrivial Chern number (A, C, D), and in class AII is
hard because of the need to fix the gauge throughout the Brillouin zone
[12, 26]. It is usually more efficient to use a method which relies on the
real space structure of H evaluated in a single point in momentum space
[4, 5, 31, 32]. These methods using the Bott index or a similar expression
for the topological invariant require the so-called band-projected posi-
tion operators: xP = P exp(2πix)P and yP = P exp(2πiy)P. Here P is
the projector on the states of the Hamiltonian with negative energies,
and x and y are the coordinate operators in the unit cell of the system.
In order to evaluate these operators in our case we note that the eigen-
values of the effective Hamiltonian in the symmetry classes of interest
approach ±1 when the original system becomes localized. In that case
P = (1− r)/2 [with r ≡ r(0, 0)], and we can avoid the need to calculate
the projector explicitly if we approximate xP and yP by

xP ≈ (1 + r)/2 + (1− r)e2πix(1− r)/4, (3.40)

yP ≈ (1 + r)/2 + (1− r)e2πiy(1− r)/4. (3.41)

Using the 2D Hamiltonian expressions from Ref. 33 we arrive at a scat-
tering formula for the 3D topological invariant,

Q =
1

2π
Im tr log[xPyPx†

Py†
P], for AIII, CI, DIII. (3.42)

The symmetry class CII in 3D transforms upon dimensional reduc-
tion to class AII in 2D. The expressions for the Pfaffian-Bott index re-
quired to calculate the topological invariant for a 2D Hamiltonian in
class AII are quite involved. We do not give them here, but refer the
interested reader to Eqs. (7), (9), and (10) of Ref. 4.

3.4.4 Weak invariants

All of the algorithms described above apply directly to the weak topo-
logical invariants [34, 35, 10]. In order to evaluate a weak invariant one
just needs to eliminate one of the dimensions by setting the momentum
along that dimension to either 0 or π, and to evaluate the appropriate
topological invariant for the resulting lower dimensional system. The
only caveat is that since weak topological indices do not survive dou-
bling of the unit cell, the thickness of the system in the transverse di-
rection should be equal to the minimal unit cell. In the same fashion
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(eliminating one momentum or more) one can calculate the presence of
surface states [36] in chiral superconductors and Fermi arcs [37] in 3D
systems.

3.5 Applications and performance

3.5.1 Performance

The complexity of the Hamiltonian expressions scales with linear sys-
tem size L as L2 in 1D, and as L3d in higher dimensions. In contrast, the
complexity of the scattering matrix expressions scales proportionally to
L in 1D and to L3d−3 in higher dimensions [38, 39]. All the subsequent
operations have the same or a more favorable scaling. We use the algo-
rithm of Ref. 40 to calculate the Pfaffian of an arbitrary skew-symmetric
matrix.

We have verified that using the scattering matrix method allows to
efficiently calculate the topological invariant of a quantum Hall system
and of the BHZ model [41] discretized on a square lattice with a size of
1000× 1000. This improves considerably on previously reported [4, 42]
results of up to 50× 50 lattice sites for the BHZ model.

In 3D the improvement in performance is not as large because the
values of L that we can reach are smaller. Nevertheless, we have con-
firmed that it is possible to calculate the topological invariant of 3D
systems in classes AII and DIII using a 4-band model on a cubic lattice
with system size 50× 50× 50. This is a significant improvement over
the 12× 12× 12 size, reported for Hamiltonian-based methods [6].

In addition to tight-binding models, our method applies very natu-
rally to various network models [43–45], which are favorite models for
the phase transitions. Hamiltonian-based approaches are not applicable
to the network models, since those only have a scattering matrix, and
no lattice Hamiltonian. We have checked that calculating a topological
invariant of the Chalker-Coddington network model of size 1000× 1000
only takes several minutes on modern hardware.

3.5.2 Finite size effects

The expressions for the topological invariant given in terms of the scat-
tering matrix in Sec. 3.4 do not coincide with Q(H) very close to the
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Figure 3.4. The value of the chemical potential µc where the ensemble averaged
topological invariant equals to 0.5, as a function of system size L. Red: topolog-
ical invariant defined in terms of the scattering matrix, from Eq. (3.35). Green:
topological invariant obtained from the Hamiltonian expression of Ref. 4. Lines
represent fits as described in the text.

transition. This is a finite size effect. In order to estimate the impor-
tance of finite size effects we have computed the shift of the transition
point between the n = 0 and n = 1 plateaus of a disordered quantum
Hall system as a function of size. We have used a square lattice dis-
cretization (lattice constant a) of a single band tight binding model with
nearest neighbor hopping t = 1. The magnetic flux per unit cell of the
lattice was fixed at 0.4h̄/e. We used on-site disorder homogeneously
distributed on an interval [−0.05, 0.05].

The transition point is defined as the value of the chemical potential
µc at which the disorder-averaged topological invariant equals 0.5. We
have compared two expressions for the topological invariant: the scatter-
ing matrix expression (3.35) and the Hamiltonian expression from Ref. 4.
The results are shown in Fig. 3.4. We fit the data obtained via the scatter-
ing matrix approach to the function f (L) = c1 + c2/L obtaining a value
c2 ≈ 0.026. In the case of the expression of Ref. 4, the finite size effect are
best fit to the function g(L) = c′1 + c′2 sin(c3L + c4)/L, with c′2 ≈ 0.116.
We conclude that the finite size effects of our algorithm are significantly
lower.
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A AII DIII

Figure 3.5. Top panel: Evolution of the poles (green dots) and the zeros (red
dots) of det r(z) as a function of a parameter α which tunes through the topo-
logical phase transition in classes A, AII, and DIII in 2D. Shown is the complex
plane with the unit circle |z| = 1 indicated in blue. Time-reversal symmetry
in AII and DIII implies that for every zero/pole at z0 there is additionally one
at 1/z0. In DIII, there is additional particle-hole symmetry which additionally
dictates zeros/poles at z∗0 and 1/z∗0 .The phase transition happens when at least
one of the zeros crosses the unit circle. This event coincides with a change of
the topological invariant Q (green) defined by Eqs. (3.35 – 3.37), as shown in
the bottom panels.

3.5.3 Applications

In 2D we illustrate our approach by applying it to network models in
classes A, AII, and DIII. In class A we use the Chalker-Coddington net-
work model [43]. In classes AII and DIII we have used the quantum spin
Hall network model of Ref. 45. In class DIII we have set the link phases
to zero in order to ensure particle-hole symmetry. In each of these cases
the parameter which tunes through the transition is the angle α related
to reflection probability at a node of the network by R = cos2 α.

Our results are summarized in Fig. 3.5. Top panels show the evolu-
tion of zeros and poles of det r(z) across the phase transition — the ‘fin-
gerprint’ of a topological phase transition [46]. There are no symmetry
constraints on this fingerprint in class A. The time-reversal symmetry
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ensures that for every zero or pole at z0 there is another one at 1/z0.
The particle-hole symmetry translates into the mirror symmetry with
respect to the real axis: for every zero or pole at z0 there is one at z∗0 .
The bottom panels show the behavior of the topological invariant and of
the conductance G = tr t†t, with t the transmission matrix through the
system. The simulations were performed on systems of size 300× 300 in
each of the symmetry classes and averaged over 1000 samples. The pres-
ence of plateaus around zero in the curves for the topological invariant
coincides with the presence of a metallic phase in the phase diagram of
symmetry classes AII and DIII.

Although we introduced the topological invariant through transport
properties, it does not always have the same features as the conductance.
The topological invariant characterizes winding of scattering modes in
the transverse direction. Accordingly, in a system with a large ratio of
width W to the length L, the width of the transition of the topological
invariant is reduced. The width of the peak in the conductance, on
the contrary, is reduced if W/L becomes small. This is in agreement
with what we observe in numerical simulations. We have calculated
the topological invariant and conductance averaged over 1000 disorder
realizations in the Chalker-Coddington network model in systems with
W = 300 and L = 60 and vice versa. The results are shown in Fig. 3.6
and they agree with our expectations.

We have also studied a 3D topological system in class AII on a cubic
lattice. We have used a simplified version of the Hamiltonian of Ref. 47:

H =


M(k) vkz 0 vk−

vkz −M(k) vk− 0
0 vk+ M(k) −vkz

vk+ 0 −vkz −M(k)

− µ (3.43)

discretized on cubic lattice with lattice constant a, where k± = kx ± iky,
and M(k) = M− αk2. The Hamiltonian parameters were chosen to be
α = a2, v = a. We chose µ = µ0 + δµ with µ0 = 0.4, and δµ being
a random uncorrelated variable uniformly distributed in the interval
[−2, 2]. The topological invariant defined by Eq. (3.39) as well as the
longitudinal conductance for a 20× 20× 20 system averaged over 100
disorder realizations are shown in Fig. 3.7 as a function of M. We ob-
serve that, analogously to the two-dimensional case, the presence of a
metallic phase is accompanied by a plateau in the topological charge at
a value of zero.
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Figure 3.6. Average topological invariant Q (3.35) and longitudinal conduc-
tance G of a disordered quantum Hall sample for different aspect ratios as a
function of the mixing angle α.

3.6 Conclusion

In conclusion, we have introduced a procedure of dimensional reduction
which relates a scattering matrix of a d-dimensional system to a Hamil-
tonian in d − 1 dimensions with a different symmetry class, but with
the same topological invariant as the original system. When applied re-
peatedly this dimensional reduction procedure serves as an alternative
derivation of the Bott periodicity of topological insulators and supercon-
ductors.

Since our approach uses only Fermi surface properties it is much
more efficient than existing alternatives which require the analysis of
the full spectrum. We have described how to implement our method ef-
ficiently in all the symmetry classes in 1–3 dimensions. We have verified
that it allows to analyze much larger systems than previously possible.

This paper focused on the description of the method and we only
touched on a few applications at the end. More applications can be
envisaged and we believe that the scattering approach will lead to the
discovery of new observable physics at topological phase transitions.
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Figure 3.7. Conductance and topological invariant (3.39) for a disordered 3D
topological insulator in class AII.

3.7 Appendix

3.7.1 Introduction to discrete symmetries

Here we define the three core discrete symmetries, and the correspond-
ing symmetry constraints on the Hamiltonians and on the scattering
matrices. We also specify how to choose the symmetry representation
we used in Fig. 3.2.

Definitions and properties of discrete symmetries

The discrete symmetries are defined as follows: The time reversal sym-
metry operator T is an anti-unitary operator. When it is applied to
an arbitrary eigenstate ψ of the Hamiltonian H at energy ε, returns an
eigenstate of the Hamiltonian at the same energy:

Hψ = εψ⇒ HT ψ = εT ψ (3.44a)

On the other hand, the anti-unitary particle-hole symmetry operator P
returns an eigenstate with opposite energy when applied to any eigen-
state of the Hamiltonian:

Hψ = εψ⇒ HPψ = −εPψ (3.44b)

Chiral symmetry C also reverses energy, but unlike the other two has a
unitary operator.
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All three symmetries T ,P , C are Z2 symmetries, so the symmetry
operators must square to a phase factor.

In an arbitrary basis the symmetry operators are represented by

T = UT K, P = UPK, C = UC , (3.45)

with K denoting the complex conjugation, and UT , UP , and UC unitary
matrices. Since exp(iφ) = T 2 = UT U∗T , and its determinant det UT U∗T
is real, we obtain UT U∗T = ±1; similarly UPU∗P = ±1. In other words,
every anti-unitary symmetry comes in two flavors, squaring either to
+1 or to −1. No such constraint applies to chiral symmetry, which may
square to an arbitrary phase factor exp(iφ). This factor however can
always be set to zero by choosing UC → UC exp(−iφ/2).

The symmetry constraints on the Hamiltonian

H = T HT −1 = UT H∗U†
T (3.46a)

H = −PHP−1 = −UPH∗U†
P (3.46b)

H = −CHC−1 = −UCHU†
C . (3.46c)

follow immediately from the definition of the symmetries, Eq. (3.44).

Relation between discrete symmetries and translational invariance

In addition to the basic properties, the discrete symmetries in periodic
systems are required to commute with the coordinate operator. So for
any Bloch wave written as

ψ(r) = eiprψ(0), (3.47)

with r coordinate in a translationally-invariant system, and ψ(0) the
wave function inside a single unit cell, the action of the symmetry oper-
ators is:

T ψ(r) = e−iprT ψ(0), (3.48a)

Pψ(r) = e−iprPψ(0), (3.48b)

Cψ(r) = eiprCψ(0). (3.48c)

Since the velocity of a Hamiltonian eigenstate at energy ε and momen-
tum p is v = dε/dp, time-reversal and chiral symmetries reverse the
velocity, while particle-hole symmetry keeps the velocity invariant.



3.7 Appendix 63

Symmetry constraints on scattering matrix

In order to figure out what the symmetry constraints on the scatter-
ing matrices are, we first review the basic properties of the scattering
matrices. Scattering matrices act in the space of asymptotic scattering
states outside of the scattering region. This space contains two non-
intersecting subspaces: the subspace of incoming modes and the sub-
space of outgoing modes. The incoming modes are all the plane waves
with velocity in the direction of the scattering region, and the outgo-
ing modes are all the plane waves with velocity pointing away from the
scattering region. Let ψin

n be a basis in the space of incoming modes,
and ψout

n a basis in the space of outgoing modes. Conventionally all the
modes are normalized such that current operator in the basis of ψin is
the identity matrix, and the negative identity matrix in the basis of ψout.

The matrix elements of the scattering matrix S satisfy

(H − ε)

(
ψin

n + ∑
m

Smnψout
m + ψloc

)
= 0, (3.49)

with ψloc a wave-function localized near the scattering region.
As derived in the previous subsection, time-reversal and chiral sym-

metries change the velocity to its opposite, while particle-hole symmetry
leaves the velocity invariant. This means that scattering states transform
under the discrete symmetries in the following manner:

T ψin
n =∑

m
(VT )nm ψout

m ,

T ψout
n =∑

m
(QT )nm ψin

m ,

Cψin
n =∑

m
(VC)nm ψout

m ,

Cψout
n =∑

m
(QC)nm ψin

m ,

Pψout
n =∑

m
(VP )nm ψout

m ,

Pψin
n =∑

m
(QP )nm ψin

m .

(3.50)

The additional constraints on the type of time-reversal, particle-hole,
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and chiral symmetries require

±1 = T 2 = VT Q∗T , (3.51a)

±1 = P2 = VPV∗P = QPQ∗P , (3.51b)

1 = C2 = VCQC . (3.51c)

Applying time-reversal symmetry to Eq. (3.49) and using Eqs. (3.50)
we get

(H − ε)

(
VT ψout

n + ∑
m

S∗mnQT ψin
m + T ψloc

)
= 0, (3.52)

where we have also used that H is time-reversal invariant. Comparing
with Eq. (3.49), we get

S−1 = QT
T S∗VT , (3.53)

which we can be reduced to

S = VT
T STQ∗T . (3.54a)

Similarly, the chiral and the particle-hole symmetry constraints on S are:

S = VT
C S†VT

C , (3.54b)

S = VT
P S∗Q∗P . (3.54c)

Naturally, the constraints imposed by chiral and particle-hole symme-
try only hold at zero excitation energy, since these symmetries anti-
commute with the Hamiltonian. Finally, the symmetry constraints on
the reflection matrix are identical to Eqs. (3.54), since r is a diagonal
sub-block of S.

Choice of symmetry representation and mapping from scattering ma-
trix to Hamiltonian symmetries

The choice of symmetry representation is fully specified by choice of
unitary matrices UO, VO, and QO (O = T ,P , or C). The symmetry rep-
resentations used in the main text were chosen to make the mapping
from the reflection matrix to an effective Hamiltonian most straightfor-
ward. In order to reach this aim, we always choose VO = ±QO for each
of the three symmetries. Whenever chiral symmetry is present, we use

UC = τz, VC = QC = 1. (3.55)
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Our choices of V and Q for the other two symmetries with

VT = VP ≡ V, QT = QP ≡ Q (3.56)

depend on the specific symmetry class. When P2 = −1 (symmetry
classes C, CI, CII) we choose V = σy, and we choose V = 1 in symmetry
classes D, DIII, and BDI, where P2 = 1. The relative sign between V and
Q follows from Eq. (3.51):

Q = P2T 2V. (3.57)

In the remaining two classes AI and AII we choose V = 1, and Q = T 2.
Symmetry representations of the effective Hamiltonians follow immedi-
ately from Eqs. (3.21).

Finally we show how symmetry operators change upon creating an
effective Hamiltonian from a reflection matrix. The effective Hamilto-
nian created from a reflection matrix with chiral symmetry satisfies

H = P2T 2VH∗V, (3.58)

so that the resulting symmetry of the effective Hamiltonian is particle-
hole if P2T 2 = −1, and time-reversal if P2T 2 = 1. The symmetry
operator of this symmetry squares to VV∗. If a reflection matrix has
only time-reversal symmetry, then the time-reversal and particle-hole
symmetry constraints on the effective Hamiltonian have the form

H = ±V ⊗ τx H∗V ⊗ τx, (3.59a)
H = ∓V ⊗ τyH∗V ⊗ τy, (3.59b)

where the sign is determined by the choice of representation of the sym-
metry of r. Hence the symmetries of the effective Hamiltonian satisfy
T 2 = −P2. Finally, for an effective Hamiltonian constructed from a
reflection matrix with only particle-hole symmetry, the resulting sym-
metry constraints on the Hamiltonian are

H = ±V ⊗ τ0H∗V ⊗ τ0, (3.60a)
H = ∓V ⊗ τzH∗V ⊗ τz, (3.60b)

so that both symmetry operators square to the same value.
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3.7.2 Calculation of the number of poles

We prove that the equation

det[A− Z1(k)] = 0 (3.61)

has N1 solutions with z = eik inside the unit circle, and N1 solutions
outside of the unit circle as long as A† A only has eigenvalues less than
one, which is generically the case since A is a sub-block of a unitary
matrix S. Let us assume that ψ is an eigenvector of the corresponding
eigenvalue problem:

Aψ = Z1(k)ψ, (3.62)

with an eigenvalue with |z| = 1. In this case Z†
1(k)Z1(k) = 1. We come

to a contradiction by considering the following inequality:

ψ†ψ > ψ† A† Aψ = ψ†Z†
1(k)Z1(k)ψ = ψ†ψ (3.63)

So we conclude that there are no solutions of det[A− Z1(k)] = 0 with z
on the unit circle. Next, we observe that for A = 0 there are exactly N1
of det[A− Z1(k)] = 0 with z = 0 and N1 solutions with z = ∞. Since
these solutions never cross the unit circle when A is smoothly deformed,
we come to the statement we set to prove.
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