
Scattering theory of topological phase transitions
Fulga, I.C.

Citation
Fulga, I. C. (2013, November 21). Scattering theory of topological phase transitions. Retrieved
from https://hdl.handle.net/1887/22343
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/22343
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/22343


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/22343 holds various files of this Leiden University 
dissertation 
 
Author: Fulga, Ion Cosma 
Title: Scattering theory of topological phase transitions 
Issue Date: 2013-11-21 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22343


Chapter 2

Scattering formula for the
topological quantum number
of a disordered multi-mode
wire

2.1 Introduction

The bulk-boundary correspondence in the quantum Hall effect equates
the number Q of occupied Landau levels in the two-dimensional bulk
to the number of propagating states at the edge, which is the quantity
measured in electrical conduction [1, 2]. Thouless et al. identified Q as
a topological quantum number [3], determined by an invariant integral
of the Hamiltonian H(k) over the Brillouin zone.

One-dimensional wire geometries can also be classified by a topolog-
ical quantum number, which then counts the number of stable (“topo-
logically protected”) bound states at the end points. Examples exist in
chiral insulators (such as a dimerized polyacetylene chain [4]) and in
superconductors (such as a chiral p-wave wire [5]). In the former case
the end states are half-integer charged solitons, in the latter case they
are charge-neutral Majorana fermions.

Following the line of thought from the quantum Hall effect, one
might ask whether the number Q of these end states can be related to a
transport property (electrical conduction for the insulators and thermal
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conduction for the superconductors). The basis for such a relationship
would be an alternative formula for Q, not in terms of H(k) [5–10], but
in terms of the scattering matrix S of the wire, connected at the two ends
to electron reservoirs.

This analysis was recently carried out for the superconducting p-
wave wire [11], which represents one of the five symmetry classes with
a topologically nontrivial phase in a wire geometry [12, 13]. In this paper
we extend the scattering theory of the topological quantum number to
the other four symmetry classes, including the polyacetylene chain as
an application.

The outline is as follows. In the next section we show how to con-
struct a topological invariant Q from the reflection matrix r (which is a
subblock of S). Depending on the presence or absence of particle-hole
symmetry, time-reversal symmetry, spin-rotation symmetry, and chiral
(or sublattice) symmetry, this relation takes the form of a determinant,
Pfaffian, or matrix signature (being the number of negative eigenvalues),
see Table 2.1. In Sec. 2.3 we demonstrate that this Q indeed counts the
number of topologically protected end states. The connection to elec-
trical or thermal conduction is made in Sec. 2.4, where we contrast the
effect of disorder on the conductance in the superconducting and chiral
insulating symmetry classes. We conclude in Sec. 2.5 with the applica-
tion to polyacetylene.

2.2 Topological quantum number from reflection
matrix

The classification of topological phases is commonly given in terms of
the Hamiltonian of a closed system [14]. For the open systems consid-
ered here, the scattering matrix provides a more natural starting point.
In an N-mode wire the scattering matrix S is a 2N × 2N unitary ma-
trix, relating incoming to outgoing modes. The presence or absence, at
the Fermi energy EF, of particle-hole symmetry, time-reversal symmetry,
spin-rotation symmetry, and chiral (or sublattice) symmetry restricts S to
one of ten subspaces of the unitary group U (2N). In a one-dimensional
wire geometry, five of these Altland-Zirnbauer symmetry classes [15]
can be in a topological phase, distinguished by an integer-valued quan-
tum number Q.

The symmetries of the scattering matrix in the five topological sym-
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symmetry class D DIII BDI AIII CII
topological phase Z2 Z2 Z Z Z

particle-hole symmetry S = S∗ × S = ΣyS∗Σy
time-reversal symmetry × S = −ST S = ST × S = ΣySTΣy
spin-rotation symmetry × X X or × ×
chiral symmetry × S2 = −1 S2 = 1
reflection matrix r = r∗ r = r∗ = −rT r = r∗ = rT r = r† r = r† = ΣyrTΣy

topological quantum number sign Det r sign Pf ir ν(r) ν(r) 1
2 ν(r)

Table 2.1. Classification of the symmetries of the unitary scattering matrix S at
the Fermi level in an N-mode wire geometry, and relation between the topo-
logical quantum number Q and the reflection submatrix r. For Z2 topological
phases Q is given in terms of the sign of the determinant (Det) or Pfaffian
(Pf) of r. For Z topological phases the relation is in terms of the number ν of
negative eigenvalues of r.

metry classes are summarized in Table 2.1. For each class we have cho-
sen a basis for the incoming and outgoing modes at the Fermi level in
which the symmetry relations have a simple form. (In the next sec-
tion we will be more specific about the choice of basis.) Notice that
the chiral symmetry operation is the combination of particle-hole and
time-reversal symmetry (if both are present).

Topological phases are characterized by a resonance at the Fermi
level, signaling the presence of one or more quasi-bound states at the
end-points of the wire with vanishingly small excitation energy. (If the
wire is superconducting, these excitations are Majorana fermions [5].)
It is therefore natural to seek a relation between the topological quan-
tum number Q and the reflection matrix, which is an N × N submatrix
relating incoming and reflected modes from one end of the wire,

S =

(
r t′

t r′

)
. (2.1)

The wire has two ends, so there are two reflection matrices r and
r′. Unitarity ensures that the Hermitian matrix products rr† and r′r′†

have the same set of reflection eigenvalues tanh2 λn ∈ (0, 1), numbered
by the mode index n = 1, 2, . . . N. The real number λn is the socalled
Lyapunov exponent. The transmission eigenvalues Tn = 1− tanh2 λn =
1/ cosh2 λn determine the conductance G ∝ ∑n Tn of the wire. (De-
pending on the system, this can be a thermal or an electrical conduc-
tance.) The topological phases have an excitation gap, so the Tn’s are
exponentially small in general, except when the gap closes at a transi-
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tion between two topological phases. A topological phase transition can
therefore be identified by a sign change of a Lyapunov exponent [16–19].

The Lyapunov exponents are the radial variables of the polar decom-
position of the scattering matrix, given by [20]

S =

(
O1 0
0 O2

)(
tanh Λ (cosh Λ)−1

(cosh Λ)−1 − tanh Λ

)(
O3 0
0 O4

)
(2.2a)

in class D,

S =

(
O1 0
0 O2

)(
(tanh Λ)⊗ iσy (cosh Λ)−1 ⊗ iσy
(cosh Λ)−1 ⊗ iσy −(tanh Λ)⊗ iσy

)(
OT

1 0
0 OT

2

)
(2.2b)

in class DIII,

S =

(
O1 0
0 O2

)(
tanh Λ (cosh Λ)−1

(cosh Λ)−1 − tanh Λ

)(
OT

1 0
0 OT

2

)
(2.2c)

in class BDI,

S =

(
U1 0
0 U2

)(
tanh Λ (cosh Λ)−1

(cosh Λ)−1 − tanh Λ

)(
U†

1 0
0 U†

2

)
(2.2d)

in class AIII,

S =

(
Q1 0
0 Q2

)(
(tanh Λ)⊗ σ0 (cosh Λ)−1 ⊗ σ0
(cosh Λ)−1 ⊗ σ0 −(tanh Λ)⊗ σ0

)(
Q†

1 0
0 Q†

2

)
(2.2e)

in class CII, in terms of a real diagonal matrix Λ = diag (λ1, λ2, . . .)
and complex unitary matrices Up (satisfying U−1

p = U†
p), real orthogonal

matrices Op (satisfying O−1
p = O†

p = OT
p), and quaternion symplectic

matrices Qp (satisfying Q−1
p = Q†

p = ΣyQT
pΣy). The matrices Σi = σi ⊕

σi ⊕ · · · ⊕ σi are block diagonal in terms of 2× 2 Pauli matrices σi (with
σ0 the 2× 2 unit matrix). There are N distinct λn’s in classes D, BDI, and
AIII, but only N/2 in classes DIII and CII (because of a twofold Kramers
degeneracy of the transmission eigenvalues).

The transmission eigenvalues only determine the Lyapunov expo-
nents up to a sign. To fix the sign, we demand in class D and DIII that
Det Op = 1, so Op ∈ SO(N). Then the λn’s can be ordered uniquely as
[19] |λ1| < λ2 < λ3 < · · · , so there can be at most a single negative
Lyapunov exponent. In the other three classes there is no sign ambi-
guity since tanh λn is an eigenvalue of the reflection matrix r itself —
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which is a Hermitian matrix in classes BDI, AIII, and CII. There is then
no constraint on the number of negative Lyapunov exponents [16].

If we start from an initial state with all λn’s positive, then the number
Q of (distinct) negative Lyapunov exponents in a final state counts the
number of topological phase transitions that separate initial and final
states. In class D this produces the relation Q = sign Det r from Refs. 18,
11, relating topological quantum number and determinant of reflection
matrix.

In class DIII the determinant of r is always positive, but we can use
the Pfaffian of the antisymmetric reflection matrix to count the num-
ber of negative λn’s, so we take Q = sign Pf r. [In view of the iden-
tity Pf XYXT = (Det X)(Pf Y), one has Pf r = (Det O1)Pf (Λ ⊗ iσy) =

∏n tanh λn.]
In classes BDI and AIII the matrix signature Q = ν(r) of the Her-

mitian matrix r gives the number of negative eigenvalues, equal to the
number of negative λn’s. In class CII we take Q = 1

2 ν(r) to obtain the
number of distinct negative λn’s, because each eigenvalue is twofold
degenerate.

These topological quantum numbers are defined relative to a par-
ticular reference state, chosen to have all positive Lyapunov exponents.
We would like to relate Q to the number of end states at zero excitation
energy, and then chose a reference state such that this relationship takes
a simple form. This is worked out in the next section, with the resulting
expressions for Q given in Table 2.1.

2.3 Number of end states from topological quantum
number

We consider first the superconducting symmetry classes D and DIII and
then the chiral symmetry classes BDI, AIII, and CII. The symmetry class
D was treated in detail in Ref. 11 and is included here for completeness
and for comparison with class DIII.

2.3.1 Superconducting symmetry classes

Electron-hole symmetry in a superconductor relates the energy - depen-
dent creation and annihilation operators by γ†(E) = γ(−E). Since there-
fore γ† = γ at E = 0, an excitation at zero energy is a Majorana fermion,
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Figure 2.1. Superconducting wire (S) connected to a normal-metal lead (N)
which is closed at one end. A bound state at the Fermi level can form at the
NS interface, characterized by a unit eigenvalue of the product rNrNS of two
matrices of reflection amplitudes (indicated schematically by arrows).

equal to its own antiparticle. The end states in symmetry classes D and
DIII are socalled Majorana bound states [5]. In the open systems consid-
ered here, where the superconducting wire is connected to semi-infinite
normal-metal leads, the end states are actually only quasi-bound states,
but they still manifest themselves as a resonance in a conduction exper-
iment [21, 22].

The topological quantum number in class D should give the parity
of the number N of Majorana bound states at one end of the wire: N is
even (Q = 1) in the topologically trivial phase, whileN is odd (Q = −1)
in the topologically nontrivial phase. In class DIII all states are twofold
Kramers degenerate so N is to be replaced by N/2.

Let us now verify that the determinant and Pfaffian expressions for
the topological charge in Table 2.1 indeed give this bound state par-
ity. We transform the quasi-bound states into true bound states by ter-
minating the normal-metal lead at some distance far from the normal-
superconductor (NS) interface (see Fig. 2.1). For the same purpose we
assume that the superconducting wire is sufficiently long that transmis-
sion of quasiparticles from one end to the other can be neglected. The
reflection matrix rNS from the NS interface is then an N×N unitary ma-
trix. The number of modes N = 2M is even, because there is an equal
number of electron and hole modes.

The condition for a bound state at the Fermi level is

Det (1− rNrNS) = 0, (2.3)

where rN is the reflection matrix from the terminated normal-metal lead.
In the electron-hole basis the matrix rN has the block-diagonal form

rN =

(
UN 0
0 U∗N

)
. (2.4)

The matrix UN is an M×M unitary matrix of electron reflection ampli-
tudes. The corresponding matrix for hole reflections is U∗N because of
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particle-hole symmetry at the Fermi level.
The reflection matrix from the NS interface has also off-diagonal

blocks,

rNS =

(
ree reh
rhe rhh

)
. (2.5)

Particle-hole symmetry relates the complex reflection matrices rhe = r∗eh
(from electron to hole and from hole to electron) and ree = r∗hh (from
electron to electron and from hole to hole).

Class D

A unitary transformation,

r = ΩrNSΩ†, Ω =

√
1
2

(
1 1
−i i

)
, (2.6)

produces a real reflection matrix r = r∗. This is the socalled Majorana
basis used for class D in Table 2.1. The determinant is unchanged by the
change of basis, Det rNS = Det r.

The condition (2.3) for a bound state reads, in terms of r,

Det (1 + ONr) = 0, (2.7)

with ON = −ΩrNΩ† an orthogonal matrix. The number N of bound
states is the number of eigenvalues −1 of the 2M× 2M orthogonal ma-
trix ONr, while the other 2M − N eigenvalues are either equal to +1
or come in conjugate pairs e±iφ. Hence Det ONr = (−1)N and since
Det ON = 1 we conclude that Det r = (−1)N , so indeed the determinant
of the reflection matrix gives the bound state parity in class D.

Class DIII

Time-reversal symmetry in class DIII requires

ANS ≡ iΣyrNS = −AT
NS, (2.8)

with Σy = σy ⊕ σy ⊕ · · · ⊕ σy. Instead of Eq. (2.6) we now define

r = ΩANSΩT. (2.9)
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(The matrix Σy acts on the spin degree of freedom, hence it commutes
with Ω, which acts on the electron-hole degree of freedom.) In this basis
r = r∗ is still real, as required by particle-hole symmetry, while the time-
reversal symmetry requirement reads r = −rT. This is the basis used for
class DIII in Table 2.1.

The Pfaffians in the two bases are related by

Pf r = (Det Ω)(Pf ANS) = (−1)N/4 Pf ANS.

Each electron and each hole mode has a twofold Kramers degener-
acy, so the total number of modes N is an integer multiple of four. The
relation can be written equivalently as

Pf ir = Pf ANS. (2.10)

This identity is at the origin of the factor i appearing in the class DIII
expression for the topological quantum number in Table 2.1.

The condition (2.3) for a bound state can be rewritten as

Det (AN − r) =
[
Pf (AN − r)]2 = 0, (2.11)

where AN ≡ Ω(iΣyr†
N)Ω

T, as well as r, are antisymmetric orthogonal
matrices. In App. 2.6.1 we show that the multiplicity N of the number
of solutions to Eq. (2.11) satisfies

(−1)N/2 = (Pf AN)(Pf r). (2.12)

Since, in view of Eq. (2.4),

Pf AN = (Det Ω)|Pf (iΣyU†
N)|2 = (−1)N/4, (2.13)

we conclude that (−1)N/4 Pf r ≡ Pf ir gives the parity of the number
N/2 of Kramers degenerate bound states. This is the topological quan-
tum number for class DIII listed in Table 2.1.

2.3.2 Chiral symmetry classes

In the chiral symmetry classes BDI, AIII, and CII we wish to relate the
number ν(r) of negative eigenvalues of the reflection matrix r to the
number of quasi-bound states at the end of the wire. As before, we
transform these end states into true bound states by terminating the wire
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and assume that the transmission probability through the wire is neg-
ligibly small (so r is unitary). While in the superconducting symmetry
classes we could choose a normal metal lead as a unique termination, in
the chiral classes there is more arbitrariness in the choice of the unitary
reflection matrix r0 of the termination.

Since reflection matrices in the chiral classes are Hermitian (see Table
2.1), we can decompose

r0 = U0Sn0U†
0 , Sn0 =

(
11N−n0 0

0 −11n0

)
, (2.14)

where U0 is an N × N unitary matrix, n0 = ν(r0), and 11n0 is an n0 × n0
unit matrix. (Unitarity restricts the eigenvalues to ±1.) Similarly,

r = U1Sn1U†
1 , (2.15)

with ν(r) = n1.
Time-reversal symmetry with (without) spin-rotation symmetry re-

stricts the unitary matrices U0 and U1 to the orthogonal (symplectic)
subgroup, but to determine the number of bound states we only need
the unitarity.

The condition Det (1− r0r) = 0 for a zero-energy bound state takes
the form

Det (1− Sn0USn1U†) = 0, (2.16)

with U = U†
0 U1. We seek the minimal multiplicity N of the solutions

of this equation, for arbitrary U. (There may be more solutions for a
special choice of U, but these do not play a role in the characterization
of the topological phase.)

We divide U into four rectangular subblocks,

U =

(
MN−n0,N−n1 MN−n0,n1

Mn0,N−n1 Mn0,n1

)
, (2.17)

where Mn,m is a matrix of dimensions n×m. Since

1− Sn0USn1U† = 2
(

0 MN−n0,n1

Mn0,N−n1 0

)
U†, (2.18)

in view of unitarity of U, the bound state equation (2.16) simplifies to

Det
(

0 MN−n0,n1

Mn0,N−n1 0

)
= 0. (2.19)
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For any matrix Mn,m with n < m there exist at least m− n indepen-
dent vectors v of rank m such that Mn,mv = 0. Therefore Eq. (2.19) has
at least |n0 + n1 − N| independent solutions, hence

N = |ν(r) + ν(r0)− N|. (2.20)

This is the required relation between the topological quantum number
Q = ν(r) (in class BDI, AIII) or Q = 1

2 ν(r) (in class CII) and the minimal
number of bound states N at one end of the wire, for arbitrary termina-
tion of the wire. In the special case of termination by a reflection matrix
r0 = −11N ⇒ ν(r0) = N, the relation takes the simple form N = Q (in
class BDI, AIII) and N = 2Q (in class CII).

So far we considered one of the two ends of the wire, with reflection
matrix r. The other end has reflection matrix r′ = −r [see Eq. (2.2)],
so ν(r′) = N − ν(r). Termination of that end by a reflection matrix r′0
produces a minimal number N ′ of bound states given by

N ′ = |ν(r)− ν(r′0)|. (2.21)

For r′0 = 11N ⇒ ν(r′0) = 0 we have the simple relation N ′ = Q (in
class BDI, AIII) and N ′ = 2Q (in class CII). The (minimal) number of
bound states at the two ends is then the same, but in general it may
be different, depending on how the wire is terminated [23, 24]. This
arbitrariness in the chiral symmetry classes is again in contrast to the
superconducting classes, where Majorana bound states come in pairs at
opposite ends of the wire.

2.4 Superconducting versus chiral symmetry classes

As a first application of our general considerations, we contrast the effect
of disorder and intermode scattering on topological phase transitions in
the superconducting and chiral symmetry classes. We focus on the sym-
metry classes D and BDI, which in the single-mode case are identical, so
that the effect of intermode scattering is most apparent.

In both these classes there is particle-hole symmetry, which implies
that we can choose a basis such that the Hermitian Hamiltonian H sat-
isfies

H∗ = −H. (2.22)
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Figure 2.2. Conductance G (top panels) and topological quantum number
Q (bottom panels) in the superconducting class D (left panels) and the chiral
class BDI (right panels). The black and blue curves are calculated from the
Hamiltonian (2.23), for a single disorder realization in a wire with N = 5
modes. The red dotted curve show the universal line shape (2.28) of an isolated
conductance peak. Energies ∆0 and U0 are measured in units of h̄vF/δL for
δL = L/10.

We assume for simplicity that the N right-moving and left-moving
modes all have the same Fermi velocity vF. To first order in momentum
p = −ih̄∂/∂x the Hamiltonian then takes the form

H = vF p 11N ⊗ σz + ∆011N ⊗ σy

+ U0[iA(x)⊗ σz + iB(x)⊗ σx + C(x)⊗ σy], (2.23)

with 11N the N × N unit matrix. The N × N matrices A and B are real
antisymmetric, while C is real symmetric. (For N = 1 this model Hamil-
tonian was used in Ref. 11.)

The Hamiltonian (2.23) respects all the symmetries present in class
D, but in class BDI the additional chiral symmetry requires

σx Hσx = −H. (2.24)
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This implies that the matrix B ≡ 0 in class BDI.
The transfer matrix M relates the wave function Ψ(x) at the two

ends of the disordered wire (of length L): Ψ(L) =MΨ(0). At the Fermi
level (zero energy) M follows upon integration of the wave equation
HΨ = 0 from x = 0 to x = L,

M = T exp
{

1
h̄vF

ˆ L

0
dx
(
−∆011N ⊗ σx

+ U0[A(x)⊗ σ0 + iB(x)⊗ σy − C(x)⊗ σx]

)}
. (2.25)

The symbol T indicates the ordering of the noncommuting matrices in
order of decreasing x.

The Pauli matrices in Eq. (2.25) define a 2× 2 block structure for the
2N× 2N transfer matrix. The N×N reflection matrix r and transmission
matrix t follow from this block structure by solving(

t
0

)
=M

(
1
r

)
. (2.26)

The reflection matrix gives the topological quantum number,
Q = sign Det r in class D and Q = ν(r) in class BDI. The transmission
matrix gives the conductance

G = G0 Tr tt†. (2.27)

In class D this is a thermal conductance (with G0 = π2k2
Bτ0/6h, at tem-

perature τ0), while in class BDI this is an electrical conductance (with
G0 = 2e2/h).

We model a disordered wire in class D by taking a Gaussian distribu-
tion (zero average, unit variance) of the independent matrix elements of
A(x), B(x), C(x), piecewise constant over a series of segments of length
δL� L. In class BDI we use the same model with B ≡ 0.

In Fig. 2.2 we plot the conductance and topological quantum number
as a function of ∆0 for different values of U0, calculated in class D and
BDI for a single realization of the disorder. A change in Q is accompa-
nied by a peak in G, quantized at G0 if the topological phase transitions
are well separated [11]. The difference between the Z2 superconducting
topological phase and the Z chiral topological phase becomes evident
when conductance peaks merge: In the superconducting class D the
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conductance peaks annihilate, while in the chiral class BDI a maximum
of N conductance peaks can reinforce each other.

Also shown in Fig. 2.2 is that a single isolated conductance peak at
∆0 = ∆c has the same line shape as a function of δ = (∆0 − ∆c)/Γ,

Gpeak(δ) =
G0

cosh2 δ
, (2.28)

in both the superconducting and chiral symmetry classes. (The width
Γ of the peak is not universal.) We have checked that the line shape in
the other three symmetry classes also has the same form (2.28), so this
is a general statement. One cannot, therefore, distinguish the Z2 and Z

topological phases by studying a single phase transition. This is a mani-
festation of the super-universality of Gruzberg, Read, and Vishveshwara
[19].

2.5 Application to dimerized polymer chains

We conclude with an application in a physical system. Such an appli-
cation was given for the superconducting symmetry class D in Ref. 11,
so here we concentrate on the chiral classes. We consider a dimerized
polymer chain such as polyacetylene, with alternating long and short
bonds, described by the Su-Schrieffer-Heeger Hamiltonian [25]. This
is a tight-binding Hamiltonian, which in the continuum limit takes the
form of the class BDI Hamiltonian (2.23) [26]. Our goal is to obtain the
Z topological quantum number of N coupled polymer chains from the
reflection matrix.

The single-chain electronic Hamiltonian is [25–27]

H = −
NL

∑
n=1

tn+1,n(c†
n+1cn + c†

ncn+1), (2.29a)

tn+1,n = t0 − α(un+1 − un), (2.29b)

with t0 and α nearest-neighbor (real) hopping constants and cn the elec-
tron annihilation operator at site n. (The spin degree of freedom plays
no role and is omitted.) Chiral (or sublattice) symmetry means that
H 7→ −H if cn 7→ −cn on all even-numbered or on all odd-numbered
sites. We take NL even, so that the chain contains an equal number of
sites on each sublattice.
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Figure 2.3. Conductance (black dotted line, left axis) and topological quantum
number (blue solid line, right axis) of N = 3 coupled polymer chains (each
containing NL = 300 sites). These curves are calculated from the reflection
and transmission matrices, obtained from the Hamiltonian (2.29) for t0 = 1,
α = 1, and tinter = 0.1, for a single realization of the random δun’s (having a
Gaussian distribution with zero average and standard deviation 0.2). The red
dotted curve shows the universal line shape (2.28) of an isolated conductance
peak.

Following Jackiw and Semenoff [26] we ignore the atomic dynamics,
assuming that the electrons hop in a prescribed atomic displacement
field of the dimerized form un = (−1)nu0 + δun. Disorder is accounted
for by random displacements δun, chosen independently on N parallel
chains. Nearest neighbors on adjacent chains are coupled by an inter-
chain hopping constant tinter, which we take non-fluctuating for simplic-
ity.

The reflection and transmission matrices r and t were computed from
the Hamiltonian (2.29) via the transfer matrix, as outlined in App. 2.6.2.
In Fig. 2.3 we show the topological quantum number Q (equal to the
number ν(r) of negative eigenvalues of the Hermitian reflection matrix
r), as well as the electrical conductance G = G0 Tr tt† (with G0 = 2e2/h).
These two quantities are plotted as a function of the dimerization pa-
rameter u0, to illustrate the topological phase transition, but unlike the
excitation gap ∆0 in a superconducting wire this is not an externally
controllable parameter.
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The case N = 3 plotted in Fig. 2.3 is a Z topological phase, and each
change in the topological quantum number is accompanied by a peak
of quantized conductance. The lineshape again has the universal form
(2.28).

2.6 Appendix

2.6.1 Calculation of the number of end states in class DIII

We wish to prove that the multiplicity N of the number of solutions of
the bound state equation (2.11) satisfies Eq. (2.12), for arbitrary antisym-
metric orthogonal matrices AN and r of dimension N×N, with N = 2M
and M an even integer.

We use that any antisymmetric orthogonal matrix can be factorized
as AN = ONiΣyOT

N, r = ONSiΣyOT
NS, in terms of orthogonal matrices

ON and ONS. These factorizations relate a Pfaffian to a determinant,
Pf AN = Det ON, Pf r = Det ONS.

We seek the multiplicity N of the number of solutions of

[Pf (AN − r)]2 = 0⇔
[
Pf (iΣy −OiΣyOT)

]2
= 0, (2.30)

with O = OT
NONS an orthogonal matrix.

We consider the secular equation for the twofold degenerate eigen-
values zn of the matrix iΣyOiΣyOT,

0 = Det (z− iΣyOiΣyOT) = Det (ziΣy + OiΣyOT)

=
[
Pf (ziΣy + OiΣyOT)

]2
=

[
M

∏
n=1

(z− zn)

]2

⇔

0 = Pf (ziΣy + OiΣyOT) = c
M

∏
n=1

(z− zn) = 0. (2.31)

The value c = 1 of the prefactor follows by sending z to infinity. By
filling in z = 0 we find that

Pf (OiΣyOT) = Det O =
M

∏
n=1

zn. (2.32)
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The N/2 bound state solutions have zn = −1, the remaining M −
N/2 solutions have either zn = 1 or conjugate pairs zn = e±iφ. Hence

M

∏
n=1

zn = (−1)N/2 = Det O = (Pf AN)(Pf r), (2.33)

as we set out to prove.

2.6.2 Computing the topological quantum number of a dimer-
ized polymer chain

To simplify the notation we outline the calculation of the topological
quantum number for the case N = 1 of a single polymer chain, when
the transmission matrix r is a scalar and we may take Q = 1

2 (1−Q′)
with Q′ = sign r ∈ {−1, 1}. (The multi-chain case, with Q = ν(r) ∈
{0, 1, 2, . . . N}, is analogous.)

From the tight-binding Hamiltonian (2.29) we directly read off the
zero-energy transfer matrix M̃ in the site basis,(

tn+1,nψn
ψn+1

)
= M̃n

(
tn,n−1ψn−1

ψn

)
, (2.34)

M̃n =

(
0 tn+1,n

−1/tn+1,n 0

)
. (2.35)

The normalization factors in Eq. (2.34) have been inserted so that the
current operator has the site-independent form I = σy.

To obtain the scattering matrix we need to transform from the site
basis to a basis of left-movers and right-movers, in which the current
operator equals σz rather than σy. This change of basis is realized by the
matrix Ω from Eq. (2.6),

ΩTσyΩ∗ = σz. (2.36)

Multiplying the transfer matrices we find for the entire chain (con-
taining an even number of sites NL):

M̃ = M̃NLM̃NL−1 · · · M̃2M̃1 =

(
X 0
0 1/X

)
, (2.37)

M = ΩTM̃Ω∗ =
1

2X

(
X2 + 1 X2 − 1
X2 − 1 X2 + 1

)
, (2.38)
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with the definition

X = (−1)NL/2
NL/2

∏
n=1

t2n+1,2n

t2n,2n−1
. (2.39)

We obtain the reflection and transmission amplitudes from M with
the help of Eq. (2.26). The result is

r =
1− X2

1 + X2 , t =
2X

1 + X2 , (2.40)

so the topological quantum number is given by

Q′ = sign (1− X2)

= sign

(
NL/2

∏
n=1

t2
2n,2n−1 −

NL/2

∏
n=1

t2
2n+1,2n

)
. (2.41)

If all hopping constants are close to t0 > 0 we may simplify this
expression to

Q′ = sign

(
NL/2

∑
n=1

[t2n,2n−1 − t2n+1,2n]

)
. (2.42)

In the absence of disorder, when t2n,2n−1 = t0 − 2αu0, t2n+1,2n = t0 +
2αu0, this reduces further to Q′ = − sign αu0, so we recover the original
criterion that the dimerized polymer chain has bound states at the ends
if the weaker bond is at the end [25].
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