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Chapter 1

Introduction

1.1 Preface

In 1958 Anderson showed that a quantum particle may be localized by
disorder, due to the presence of impurities for instance, even if classically
localization does not occur [1]. At fixed disorder strength and energy,
all quantum states are either localized or delocalized. This insight pro-
vides one of the fundamental ingredients for understanding metals and
insulators, as well as the transitions that can take place between these
states of matter, now known as Anderson transitions [2].

In the decades that followed, metal-insulator transitions were as-
sociated with second-order phase transitions by the advent of field-
theoretical descriptions of localization [3, 4], as well as the development
of one-parameter scaling theory [5]. The latter assumed the existence of
a single variable which would describe both the metallic and the insu-
lating properties of a system close to the phase transition. These prop-
erties were expected to fall within certain universality classes, in which
the behavior of the conductivity and localization length at the critical
point would only depend on the dimensionality and symmetries of the
system, irrespective of microscopic details.

Besides providing a means of describing the way in which metals
turn insulating or vice versa, the scaling theory of localization was also
applied to the quantum Hall effect [6]. Systems showing this effect are
not metals, but they are not insulating either, exhibiting localized bulk
states and extended edge states at the same time. It was nevertheless
understood that the transition between different Hall plateaus was a
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localization-delocalization transition, which made scaling theory a use-
ful tool in its description. This was unexpected at the time, since the
theory in its original form predicted the absence of extended states in
two-dimensional systems [5].

In recent years it was realized that the quantum Hall effect is not
the only example of a system with an insulating bulk and a conducting
edge [7]. In 2005, Kane and Mele showed that graphene in the presence
of spin-orbit interaction has robust, extended edge states, protected by
time-reversal symmetry [8]. Many proposals followed, making use of
spin-orbit interaction, superconductivity, magnetism, and combinations
thereof, leading to the rapid development of what is now known as the
field of topological insulators and superconductors [9, 10].

Such systems have been predicted to exist in any spatial dimension
and are protected by a variety of symmetries, ranging from the originally
proposed one, time-reversal, to crystallographic symmetries of the un-
derlying lattice [11], and even symmetries which are not exact, but only
present on average (Chapter 7 of this thesis). Several examples have
been experimentally observed [12, 13], and the search for potential ap-
plications is one of the most active areas of condensed matter research
today. Perhaps the most tantalizing is the possibility of using Majo-
rana fermions, edge states which appear in one-dimensional topological
superconductors, as the building blocks for decoherence-free quantum
computers [14–16].

The discovery of such a wide range of novel phases of matter calls
for the characterization of their physical properties, and of the condi-
tions under which they can appear. Transport signatures are experi-
mentally accessible observables, intensely investigated in the search for
Majorana fermions [17–19]. Given this connection, it is natural to make
use yet again of the scaling theory of localization to describe the na-
ture and universality classes associated with transitions to and between
topological phases of matter.

On a more general level, the correspondence between the presence
of a bulk insulating gap and conducting boundary states in topological
insulators was initially understood in terms of topological band theory
[8, 20], which is based on translational symmetry. More often than not
however, this symmetry is broken by the presence of impurities, result-
ing in a disordered system. It is therefore meaningful to seek alternative
descriptions, one of which, scattering theory, is the main focus of this
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thesis.
In the following, we will provide a brief description of the main tools

used throughout this work, such as the scattering matrix, the topological
invariant and the scaling theory of localization. While not aiming to
be self-contained, it will provide the basic concepts, as well as relevant
references.

1.2 The scattering matrix

The scattering matrix is one of the central objects of study in this thesis.
It can be used to describe many transport features at low temperatures,
voltages, and frequencies, whenever interactions between particles are
either absent, or treated at the mean-field level [21, 22]. Electronic con-
duction through a mesoscopic sample can be understood in terms of the
transmission probabilities of electrons through a that sample, probabili-
ties which can be determined from the scattering matrix [23–27].

Figure 1.1. Central disordered region connected by means of ideal leads to
electron reservoirs (not shown). The modes in the left and right leads are
labeled with coefficients l± and r±, depending on their propagation direction.

To introduce it we will closely follow Ref. [22]. Consider a disor-
dered, phase coherent region connected to two electron reservoirs by
means of ideal leads, as shown in Fig. 1.1. Far away from the disordered
region, in the translationally invariant ideal leads, the wave function of
a particle at the Fermi energy EF can be written in terms of the basis
states

ψ±n = φn exp(iknx),

where φn is the transversal component, k is the momentum along the
translationally invariant direction of the lead, and n = 1, . . . , N indexes
the states, also known as propagating modes, or scattering channels.
Particles incident on the disordered region both from the left and right
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leads of Fig. 1.1, can be expressed in this basis in terms of coefficients,
which we group in the vector

ψin = (l+1 , . . . , l+N , r−1 , . . . , r−N)
T.

Here, ± denotes the sign of the state’s velocity, and T stands for
transposition. In an analogous fashion, particles leaving the disordered
region can also be characterized by a vector of coefficients:

ψout = (l−1 , . . . , l−N , r+1 , . . . , r+N)
T.

The scattering matrix relates the vectors ψin and ψout:

ψout = Sψin.

It is common to express it in terms of its block structure,

S =

(
r t
t′ r′

)
, (1.1)

where r (r′) contain the probability amplitudes for a particle to be re-
flected back into the left (right) lead, and t′, t are composed of prob-
ability amplitudes for transmission from left to right and vice versa.
The matrix S is unitary, meaning that its adjoint is equal to its inverse,
S† = S−1, owing to current conservation. It is also subjected to other
constraints depending on the symmetries of the scattering region, many
of which are highlighted in Chapters 2 and 3.

Conductance at zero temperature can be written in terms of the
transmission probability of electrons through a sample

G = G0tr tt† = G0tr t′t′†, (1.2)

where the second equality sign is a consequence of the unitarity of S, and
G0 is the conductance quantum, which in the case of electrical transport
is e2/h.

Expressions like Eq. (1.2) carry over also to the case of superconduc-
tors, where charge is not a good quantum number, and G then refers to
heat conductance through the sample. Finally, the block structure of S
can be further exploited to analyze specific scattering processes.

An example used in this thesis is Andreev conductance [28], the
charge transfer process by which a current in the metallic lead is con-
verted to a supercurrent in the superconducting region. To express it
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in terms of the scattering matrix, it is convenient to introduce an addi-
tional grading and consider scattering processes of electrons and holes
separately. Each of the reflection blocks in Eq. (1.1) then reads

r =
(

ree reh
rhe rhh

)
, (1.3)

where ree(hh) represent the usual electron (hole) reflection. The off-
diagonal blocks reh(he) describe the process of Andreev reflection, by
which an incoming electron is converted into a Cooper pair inside the
superconductor, and a hole is reflected back out. Given this grading, the
Andreev conductance is written as [29, 30]

G/G0 = N − tr reer
†
ee + tr rehr†

eh, (1.4)

with N the number of propagating modes in the metallic lead.
In Chapter 6, Andreev conductance is used to adaptively tune a sys-

tem to a spot in parameter space where the topologically non-trivial
phase is most robust.

1.3 Topological invariants

A system is called a topologically non-trivial insulator (or supercon-
ductor) whenever it is insulating in the bulk, but has a fixed number
of gapless states at its surface. These conducting boundary states are
topologically protected, which means that deformations of the system or
its parameters will not remove any of them as long as the bulk stays
insulating, and as long as certain symmetries are preserved.

The first known example of such a system is the integer quantum
Hall effect [31]. When a two-dimensional electron gas is subjected to
a strong magnetic field, the quantized electron cyclotron orbits lead to
the formation of highly degenerate energy levels, called Landau levels.
Whenever the Fermi energy lies between two levels, the bulk of the sys-
tem is insulating. However, the edges are not. one way to visualize
this behavior is to imagine classical trajectories of electrons close to the
boundary, called skipping orbits (see Fig. 1.2).

A remarkable feature of these systems is that the existence and ro-
bustness of the conducting edge states is actually a property of the in-
sulating bulk. This bulk-boundary correspondence ensures that even
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Figure 1.2. Two-dimensional electron gas placed in a strong magnetic field
~B. The electrons in the center of the sample have localized, classical cyclotron
orbits, whereas those close to the boundary reflect off of it, forming so called
skipping orbits which contribute to transport.

if the system is cut into multiple pieces, as long as the bulk gap is not
closed, then each individual piece will behave just like the whole, having
conducting states along its surface.

It is natural to ask whether one can write down an expression which
counts the number of edge states starting only from the bulk. In 1982,
Thouless, Kohmoto, Nightingale, and den Nijs did just that [32], de-
riving a quantity now known as the TKNN invariant. Given a trans-
lationally invariant two-dimensional bulk characterized by Bloch wave
functions |uα(k)〉, this integer, also known as the Chern number, reads

nα =
1

2π

ˆ
d2k ∇× i〈uα(k)|∇k|uα(k)〉. (1.5)

Physically, the above quantity may be understood in terms of the
Berry phase [33] of the wave functions |uα(k)〉. When adiabatically
evolved over a closed loop in momentum space, they acquire a geo-
metric phase given by

γα =

˛
C

dk · i〈uα(k)|∇k|uα(k)〉.

When the contour of integration C extends over the entire Brillouin
zone, one can use Stokes’ theorem to express it as a surface integral over
the Brillouin zone, which leads to the expression (1.5).

It is now known that the quantum Hall effect is but one of multi-
ple possible topological insulators. This has triggered an active interest
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in finding new expressions for topological invariants which would ap-
ply to these new systems, in finding more efficient expressions, or even
approximations. The main focus of Chapters 2 and 3 is to write down
expressions for topological invariants which can be efficiently evaluated,
and which do not require translational invariance.

1.4 Finite size scaling

According to the single parameter scaling hypothesis [5], the conduc-
tance of a system having a linear size L depends on all microscopic
details through a single quantity, ξ. This parameter is called correla-
tion length, or localization length, depending on whether one describes
a metal or an insulator. The dimensionless conductance is a function
of the ratio between these lengths, g(L/ξ), given a dimensionality and
a set of symmetries obeyed by the system. With varying system size,
the flow of the dimensionless conductance can be described within the
scaling theory of localization by the equation

d ln g
d ln L

= β(g). (1.6)

In other words, the logarithmic derivative of the conductance de-
pends on the conductance itself, and the functional form of this depen-
dence is given by the beta function, β(g).

In metals, larger samples will exhibit more conductance, meaning
β > 0, while in insulators g ∼ exp(−L/ξ) (and therefore β < 0), since
all wave functions are localized as

|ψ(r)|2 ∼ exp(−|r− r0|/ξ). (1.7)

This implies that exactly at the transition between an insulating and
a metallic phase, β = 0 and the conductance of the system, called crit-
ical conductance, is scale invariant. Additionally, the localization length
ξ of Eq. (1.7) must diverge at the transition point, its behavior being
parametrized by a critical exponent, ν. For a system parameter α (strength
of disorder, chemical potential, etc.) that tunes between a metallic and
an insulating phase, with a transition at the critical point αc, the local-
ization length diverges as one approaches the transition as

ξ ∼ |α− αc|−ν. (1.8)
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One expects the critical exponent ν to be universal, meaning that
for a given dimensionality and set of system symmetries, it should not
depend on microscopic details.

Figure 1.3. Conductance of the model studied in Chapter 5 as a function of
a parameter tuning through a metal to insulator phase transition, α. On the
left side of the plot, the conductance decreases with system size, β < 0, so the
system is in an insulating phase, whereas on the right side it shows the opposite
behavior, β > 0, indicating a metallic phase. The curves do not intersect at the
same point on the plot due to finite size corrections. This apparent shift in the
value of the transition point needs to be taken into account when fitting the
data (black lines).

The single parameter scaling hypothesis however is only valid in the
limit of large system sizes, and in practice finite size corrections can oc-
cur [34]. They may manifest themselves as apparent shifts in the values
of the critical point αc and of the critical conductance as a function of L
(see Fig. 1.3). Whenever they appear, an accurate determination of the
universal properties of a phase transition requires systematically taking
these corrections into account. This should be done by considering both
the effect of non-linearities on the relevant scaling variable, and the pres-
ence of irrelevant scaling variables, which vanish in the large L limit.

In Chapters 4 and 5, two transitions are considered, and the critical
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exponent is computed for each one.

1.5 This thesis

In the following, we will give a brief summary of the contents of each
thesis chapter.

1.5.1 Chapter 2

The topological quantum number Q of a superconducting or chiral in-
sulating wire counts the number of protected bound states at the end
points. We determine Q from the matrix r of reflection amplitudes from
one of the ends, generalizing the known result in the absence of time-
reversal and chiral symmetry to all five topologically non-trivial sym-
metry classes.

The formula takes the form of the determinant, Pfaffian, or matrix
signature of r, depending on whether r is a real matrix, a real antisym-
metric matrix, or a Hermitian matrix. We apply this formula to calcu-
late the topological quantum number of N coupled dimerized polymer
chains, including the effects of disorder in the hopping constants.

The scattering theory relates a topological phase transition to a con-
ductance peak of quantized height and with a universal (symmetry class
independent) line shape. Two peaks which merge are annihilated in the
superconducting symmetry classes, while they reinforce each other in
the chiral symmetry classes.

1.5.2 Chapter 3

The topological invariant of a topological insulator (or superconductor)
is given by the number of symmetry-protected edge states present at the
Fermi level. Despite this fact, established expressions for the topological
invariant require knowledge of all states below the Fermi energy.

Here we propose a way to calculate the topological invariant employ-
ing solely its scattering matrix at the Fermi level, without knowledge of
the full spectrum. Generalizing the work done in Chapter 2 for quan-
tum wires, we provide a dimensional reduction recipe which allows to
compute topological invariants in higher dimensions.
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The approach based on scattering matrices requires much less in-
formation than Hamiltonian-based approaches (surface versus bulk), so
it is numerically more efficient. Since our formulation is not based on
translational symmetry, as is the case when using topological band the-
ory, it is also more naturally suited to the study of disordered systems.
Additionally, it provides a direct connection between the topological in-
variant of a system and its transport properties, leading to novel signa-
tures of topological phase transitions, as will be discussed in the next
chapter.

Finally, this method provides us with a new way of visualizing topo-
logical phase transitions. In many cases, the invariant can be determined
by examining the zeros and poles of the reflection matrix determinant,
det r, when applying twisted boundary conditions to the system. Across
the phase transition, capturing the evolution of the zeros and poles, in
movie format for instance [35], allows to determine “by eye” the sym-
metries of the system, the point at which the invariant changes, as well
as possible re-entrant behavior.

1.5.3 Chapter 4

The conductance of a two-dimensional electron gas at the transition from
one quantum Hall plateau to the next has sample-specific fluctuations
as a function of magnetic field and Fermi energy. Here we identify a
universal feature of these mesoscopic fluctuations in a Corbino geome-
try: The amplitude of the magnetoconductance oscillations has an e2/h
resonance in the transition region, signaling a change in the topological
quantum number of the insulating bulk.

One way of understanding how this occurs relates back to the pre-
vious chapter. The change of invariant across the plateau transition can
be visualized in terms of the evolution of the zeros and poles of det r
under twisted boundary conditions. A zero implies the existence of a
fully transmitted bulk mode, which passes through the system exactly
at the phase transition point, for the right twist angle.

In a Corbino geometry, varying the magnetic field and Fermi en-
ergy, besides tuning through plateau transitions, also has the effect of
winding the twist angle. Therefore, along each line separating different
quantum Hall phases there is a quasi-periodic conductance resonance,
corresponding to the fully transmitted bulk mode.
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This resonance also provides a scaling variable for the critical expo-
nent of the phase transition. By looking at det r and its zeros, one can
determine when the phase transition happens and on which side of the
transition the system is. Using this information, we construct a scaling
variable which is signed, in contrast to the positive-definite ones usually
studied in the context of the quantum Hall effect (the conductance or
Lyapunov exponents). Remarkably, the scaling variable yields a value
for the critical exponent consistent with previous work, but without the
need to correct for finite size effects in the form of irrelevant exponents.

1.5.4 Chapter 5

Two-dimensional superconductors with time-reversal symmetry have a
Z2 topological invariant, that distinguishes phases with and without
helical Majorana edge states.

In this chapter we perform conductance scaling with varying system
size using a model belonging to symmetry class DIII, in order to map
its phase diagram. The latter consists of insulating regions, where the
thermal conductance decreases with increasing system size, separated
by metallic ones, in which larger samples have more conductance.

Using single parameter scaling theory, we determine the universal
features across the metal-insulator transitions, finding a critical exponent
ν ≈ 2.0, about twice the known value in a chiral superconductor. In
order to give an accurate estimate, we take into account finite size effects
both in the form of non-linearities of the relevant scaling variable, as well
as in irrelevant scaling exponents.

Transport properties determine both the phase diagram, as well as
the universal features of the model. Additionally, given the results of
Chapter 3, they also allow us to compute the topological invariant.
Therefore, the system we study is introduced directly in terms of its
scattering matrix, as opposed to a tight-binding model: it is a network
model.

1.5.5 Chapter 6

As mentioned previously, one of the most sought after applications
of topological superconductors is the use of Majorana fermions, par-
ticles which are their own anti-particles, as building blocks for quantum
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computers. Majoranas were predicted to occur as end states of one-
dimensional topological superconductors, and could be identified by
their transport signature: a conductance peak at zero bias voltage. There
are many theoretical proposals to realize them, and recent experimen-
tal works have observed a zero bias peak in superconducting quantum
wires (see Fig.1.4).
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Figure 1.4. Left panel: experimental setup, showing a nanowire coupled to
a superconductor (S) and subjected to an external magnetic field (B). A nor-
mal metal lead (N) is attached, so that conductance measurements can be per-
formed. Right panel: conductance of the system as a function of bias volt-
age, for different magnetic field strengths. For a range of magnetic fields, the
curves show a zero bias peak, an indicator for Majorana fermions. Taken from
Ref. [17], and reproduced with permission from AAAS.

However, given the complex, hard to tune, disordered nature of the
considered systems, it is hard to identify this peak exclusively with Ma-
jorana physics. Several proposals exist which reproduce similar trans-
port signatures in the absence of topologically protected end states.

We propose a way of overcoming these obstacles by constructing a
one-dimensional topological superconductor in a bottom-up fashion, as
a linear array of quantum dots. In this way, we gain the ability to sep-
arately tune each dot, as well the coupling between them. With a high
degree of control over system sub-components, one can unambiguously
tune the system to a point deep in the non-trivial phase, with well-
localized Majorana fermions at its ends.

In our setup, conductance measurements serve not only to indicate
the presence of Majoranas, but are a vital part of the tuning process.
Andreev conductance spectroscopy tells us how each sub-component



1.5 This thesis 13

behaves, and which parameters to address at every step of the adaptive
tuning procedure.

1.5.6 Chapter 7

The quantum Hall effect studied in Chapter 4 has topologically pro-
tected edge states, in the sense that a perturbation cannot remove these
states as long as the bulk gap is maintained. Such a definition carries
over to other topological insulators, but additionally requires that sys-
tem symmetries be preserved. For example, the model studied in Chap-
ter 5 is protected by both particle-hole and time-reversal symmetry. If
any of the two is broken, then it becomes possible to smoothly deform
the system and remove the edge states.

In this chapter, we study the robustness of edge states when the
symmetries protecting them are broken. The question is of particular
significance in the case of topological insulators protected by symme-
tries of the lattice: translations, mirror, or rotations for instance. In any
realistic experimental setup, impurities will lead to a breaking of lattice
symmetries, and therefore also of edge state protection.

Remarkably, we find that the edge states survive as long as the sym-
metry is preserved on average. This allows us to define a class of in-
sulators with gapless surface states protected from localization due to
the statistical properties of a disordered ensemble, rather than the exact
symmetries of each individual sample.

We show that these insulators are topological, being characterized
by a Z2 invariant, and provide a general recipe for their construction
using an average mirror symmetry. This significantly extends the list
of possible non-trivial phases, as every topological insulator gives rise
to an infinite number of classes of “statistical topological insulators” in
higher dimensions.
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