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Chapter 1

General Introduction






From the initial stage of life, children display gméficent abilities to learn the
structure of events they hear and see. From theeraum bits of information present in
their environment, they are capable to learn ieféinient way, even if the information is
sometimes degraded, noisy and ambiguous. For egathgly quickly learn that crying is
followed by mother’s attention, and also that,tia phrase “doggy barks”, “doggy” refers
to the animal they see, and “barks” refers to vihatanimal does. Through experience and
exposure, children can acquire even highly compkeierns and structures in various
domains: e.g., concept formation (Mandler & Mcdomot993; Starkey, 1981), language
comprehension and production (Schiller, 2008; $ah& Meyer, 2003), stimulus
generalization and categorization (Cohen & Stral889; Quinn, Eimas, & Rosenkrantz,
1993), action-effect learning (Eenshuistra, Weidegnelommel, 2004; Karbach, Kray, &
Hommel, 2011), motor skill learning (Newell, 198hapiro & Schmidt, 1982), and early
social communication (Ayoub, Vallotton, & Mastergge, 2011; Helmers & Patnam,
2011).

Among all the skills of early childhood learningyeoof the most prominent is
natural language acquisition, and especially granmintauction (Chater & Vitanyi, 2007;
Chomsky, 1957, 1965; Gold, 1967; Skinner, 1957% gihestion about how children
perceive, comprehend and produce language in sstipédced manner has been the subject
of one of the most well known debates in (psychg)listics since the fifties, and has
intrigued researchers across various discipling) as psychology, linguistics, biology
and philosophy (Bates, 1976; Chomsky, 1980; Clarstn & Chater, 2008; Friederici,
2004; Pinker, 1989; Tallerman et al., 2009; Tonas@000). Especially, understanding the
capacity to produce and understand an infiniteetgof possible messages with a limited
number of words and a limited set of sequentia@ss still a scientific challenge.

A crucial property of language that underlies iasverful productivity is
recursion. This characteristic is considered thibaly abstract and complex from a
computational and cognitive point of view. It hdaygd a major role in fundamental
theoretical debates about the status of language te distinguish humans from non-
human primates, and in empirical psycholinguistarkwabout the learnability of complex

syntax. It is against this background that theeseoif studies presented in this thesis have



been designed. In particular, we looked at feataféise linguistic input and at semantic
influences that might facilitate cognitive learniagd processing recursion. We assume that
this learning is usage based (Christiansen & Maelf?009; Tomasello, 2000) and
discuss whether the learning can be explained gétieral learning mechanisms and
working memory.

In the present introduction, the background oftttesis is sketched. First, the
principle of center-embedded (CE) recursion is aixgld. Next, we briefly discuss animal
studies on recursion learning, followed by a sectiith theories and experimental
evidence about human learning. Here, the compl@fitiie principle is contrasted with
pragmatic learning strategies. Then, we discus$ethteires of the input that might help
recursion learning. Finally, we discuss the methagioal issues regarding the use of

artificial language to study aspects of naturagjlaage learning.

CE recursion

A recursive rule is self referential: the rule aatl upon itself to form a new legal
instantiation of the rule. Sentences with CE clausenatural language are applications of
linguistic recursion. For example, in the sentetidee dog the man walks eats a bontle
grammatical Subject-Verb-Object (SVO) constructitire man walks the dogis inserted
in another SVO constructioritfe dog eats a bonefnaking a new well formed English
sentencgFitch, 2011; Hauser, Chomsky, & Fitch, 2002). Reimn is a characteristic of
almost all natural grammars (Fitch, Hauser, & ChHom&005). In languages like English
and Dutch, CE recursion occurs, though not frequeBentences with more than two
levels-of-embedding (2-LoE) occur rarely in writtfemms of natural language, and even
less in oral forms (Karlsson, 2010). Recently, hesveresearchers have described a
language, i.e. Pirah& that has no recursive ridesrétt, 2005).

Among all varieties of recursion in language, the dle stands out as the focus of
psycholinguistic research, because it is assumpdde most cognitive difficulties. The
reason for these difficulties is that the CE ruleduces (multiple) long distance
dependencies, which can not be processed in a livega(Chomsky, 1957; Christiansen &
Chater, 1999). In the English sentend&é student that the teacher helped imprdya:



sub-clausethe teacher helpéds inserted in the main claus@te student improvédThis
operation results in dependencies between relateghanents that are pushed apart from
each other (e.gthe studeritand ‘improved). To comprehend this sentence, the cognitive
processor has to keep an initial element in meraady further in time, relate it with its
counterpart at the end of the sentence. Meanwiel@,components have to be stored in
memory and bound as well. CE recursion requirgglalevel of mental processing; both
in terms of memory and computation (Gibson, 1998).

The learnability of recursion has not only evokedrdgensive theoretical debate
on the evolution and the status of language, bsialeo spurred behavioral studies with
human and non-human species (Gentner, Fenn, Masol& Nusbaum, 2006; Hauser et
al., 2002; Lai & Poletiek, 2011; Rey, Perrucheti-&got, 2012). Here, the main aspects of
this debate and related data are summarized. Arrgagstion in the debate about recursion
in language is whether it explains the borderlisneen human and non-human
communication systems, and how it has emergecdeietblution of human language.
Regarding the evolution of recursion, there areigas: the “saltationist” and the
“gradualist” view (Coolidge, Overmann, & Wynn, 2Q1The saltationists regard the
emergence of recursion as a “genetic change”, wikieldaptive to non-language related
functions (Reuland, 2010). In a seminal paper, Haasal. (2002) proposed a “recursion-
only” framework (Pinker & Jackendoff, 2005), in whithey define recursion as a unique
attribute of language, which could distinguish theulty of language in the broad sense
(FLB) from the faculty of language in the narromse (FLN). The key difference between
FLB and FLN is proposed to be biologically-basethiea sense that FLB is common to both
human and non-human primates, while FLN is avadlaisiquely to human beings
(Corballis, 2007; Friederici, 2004). Hence, thaa#nists regard the emergence of
recursion to be all of a sudden and they propaseRhbN, which includes recursion as the
crucial distinctive component, may have emergegtoposes other than communication,
such as navigation, social interaction, etc.

On the contrary, the gradualists indicate thatnrgon emerged gradually and that
the evolutionary purpose of language actuallyiseal for communication (Coolidge et al.,

2011). For instance, Pinker and Jackendoff (200Sgg a strong opposition to the



“recursion-only claim” by stating that the saltatists overweighed the recursive
component of human language, overlooking othernecorsive aspects, such as phonology
and morphology, which are also unique to humanudagg. Gradualists dispute the theory
that recursion-only underlies the distinction betwé&uman and animal communication
systems, pointing at various other non-syntactibaracteristics of human language that

have changed gradually along with the evolutiothefhuman species.

Can birds and monkeys learn CE recursion?

The debate on the origin of human language wastbeddxy findings from studies
with non-human species. Animal studies on recurkire investigated two main questions.
First, does the ability to process the specificsfrictures belong uniquely to human beings
or not?; Secondf animals show the ability to process CE, does #réopmance reflect true
detection of CE structures, or does it merely otflee application of simple substitute
strategies? The findings are far from conclusiveclgrs, Bolhuis, Okanoya, & Berwick,
2012). For instance, Fitch and Hauser (2004) shdheidcotton-top tamarins were only
able to learn an artificial finite state (linearagimar, but not a recursive phrase structure
grammar, while human beings could learn both grarenitch and Hauser therefore
proposed that this result indicates that the ghilitprocessing CE recursion distinguishes
humans from nonhumans.

In a recent experiment, however, Rey, Perruchetragbt (2012) showed that
after having been trained on a basic structurgiofélements, baboons preferred new
sequences with two combined basic structures irsegqaence, which were ordered
according to a CE structure, over sequences faliguwiny other structure. The authors
conclude that CE structures may have evolved uthéeinfluence of very low level
mechanisms, shared by humans and baboons. Theisimmcthat the baboons’ responses
are related to evolutionary pressure favoring Cstraictions in human languages has been
doubted, however (Poletiek & Fitz, submitted). Titheugh it is unclear to what extent
non-human primates can “parse” long distance degp@nes, in some studies, their
behavior superficially correlates with knowledg@abdistant elements depending on each
other.



Findings from bird studies also challenge the uaimss of recursion to humans.
For instance, Abe and Watanable (2011) first detbttat Bengalese finches show a robust
sensitivity to complex syntactic structure with radjacent dependencies that were
generated by an artificial grammar. Successivelsearch of Bloomfield, Gentner and
Margoliash (2011) suggested that songbirds malifkjl use statistical information in
their environment to help themselves in learnimgglalistance matches. Analogously,
European starlings were found to show recognitimhdiscrimination between linear and
embedded structures (Gentner et al., 2006). Howesdn studies with primates, there is
no consensus over the exact “knowledge” that s@dghise when processing center-
embeddings (Berwick, Beckers, Okanoya, & Bolhu@l 2 Coolidge et al., 2011;

Corballis, 2007; Friederici, 2012; Rey et al., 2DFdr instance, van Heijningen, de Visser,
Zuidema, and ten Cate (2009) showed that zebradm¢seven out of eight) were able to
distinguish 1-LoE CE structure. However, the firelfeled to generalize this recursive rule
to new items with the same structure (e.g. AABB}t ttame from another domain of
elements (e.g. CCDD). The only bird, which sucagisfransferred the distinction across
item categories, was later shown to be using atimaple heuristics than the hierarchical
structure. Generally speaking, songbirds may appgnitively simple strategies in
matching acoustic similarities that apparently c@e with the recursive rule to perform
the experimental task (Beckers et al., 2012). ghnhnot be the actual abstract hierarchical
recursive principle that was learned, but the megellarities that looked like or could be
described computationally as recursive CE.

Summing up, animal studies on recursive learniggest that some non-human
beings might have the capability to learn a CEguattHowever, this capacity is limited to
1-LoE and vocabulary learning is limited as welloddover, the actual observed
performance by animals in these studies could mbstlattributed to superficial
mechanisms instead of actual knowledge of the tdkieal positional pattern of recursive
CE. These limits make it problematic to interpneinaal performance in terms of “learning
recursion”. The ambiguous findings about the lebilitg of recursion by animals, now,
raise the question how humans actually processe€&rsion. Do humans learn more and

process more deeply CE structures in the contelengfuage learning and language use



than animals? In other words, do they reach thentisdly higher stage of knowledge that
was referred to by Hauser et al. (2002) as FLNar@tthe learning processes and the usage
of these types of hierarchical structures limitedhie same way as animal learning seems to
be (Perruchet & Rey, 2005)? After all, these stires are, also for humans, quite hard to
process (Abney & Johnson, 1991; Anderson, 1976nBd1993; Christiansen &

MacDonald, 2009; de Vries, Petersson, Geukes, 2udtsd, & Christiansen, 2012; Lai &
Poletiek, 2010; Schlesinger, 1975; Weckerly & EImb902). What explains these

difficulties and how do language users overcomenthe

Human processing of CE recursion

There are various theories accounting for the pgrdifficulty caused by complex
CE recursive structures: for instantiee processing overload theof@ibson & Thomas,
1996; Kimball, 1973; Lewis, 1996) points at theitex cognitive abilities such as working
memory capacity. Long-distance dependencies consuone resources when associating
corresponding elements, than linear right-brancli®ig) recursion. Gibson (1998) pointed
at two kinds of costs in processing CE recursiost,fintegration costs, which are
enhanced along with the increase of distance ambauof related elements; second,
memory costs, which are used for storing all infation until the whole structure is
terminated.

Thestructural configuration theoryChomsky, 1965; Johnson, 1998; Miller &
Isard, 1964) explains processing difficulties bysOE structures are constructed. To
process CE recursion, human parsers solve a complete: they need to relate elements,
which “are bound from the outside in” (Corballi®®) and discover where the new
embedding starts. Finally, some researchers halaiagd the difficulties from a purely
logical point of view. Théncomplete dependency acco@dvhnson, 1998) perceives the
difficulty as “geometric constraints” of a prooftn&@he breakdown of processing occurs
when there are too many unsatisfied relationsftaay A’'s in memory waiting in vein for
a B to be paired with, to clarify the semantic emmtof the sentence) (Morrill, 2000).
Studies from the field of discourse analysis rédethis problem as “unfinished thematic
dependencies” (Hakuta, 1981; MacWhinney, 1987;dtiok & Barry, 1991).



Since CE recursion is so difficult to process bynlans, while even animals seem
able to recognize aspects of the CE structure Sajadly, what exactly do humans know
about these structures when they use or “pars@i?h&hat knowledge is recruited to solve
the CE puzzle? Research on CE recursion learnitigthe artificial grammar learning
paradigm (AGL) shows that several degrees of “abstiess” of knowledge about CE can
be distinguished (de Vries, Monaghan, Knecht, &t&ailood, 2008). Before presenting
the results of this research, we first describeXBé. procedure, and the experimental
grammar stimuli used in this paradigm to test GEcstires.

In AGL, a participant is first exposed to exemplaf the grammar without any
explanation about the rules underlying them. Thisrgnar learning by mere exposure
simulates the situation in which a child is expogetinguistic utterances. In the subsequent
test phase, participants would be tested with rezuesnces, half of which are grammatical
and half ungrammatical. Participants give gramnaditicjudgments for the test items,
judging whether they are governed by the same adele ones underlying the training
items. To analyze the knowledge involved in CE pesing in a lab context, typically, a
reduced version of a CE grammar is used, calf&l Atructures (Fitch & Hauser, 2004).
This grammar has two word categories (A-words aneoBds, for example, referring to
nouns and verbs respectively in natural languaj®.basic structure of the grammar is a
string AiBi, in which a particular A-word can beglly associated with a particular B-word
according to the basic rules of the grammar. Thargdve CE operation involves insertion
of a grammatical AjBj string within an AiBi stringesulting in a grammatical string
AiAjBjBiI. This insertion operation can be applied @finite number of times, resulting in
an infinite output set of grammatical sentences.

First, one of the most superficial characteristitan A'B" grammar is that a
grammatical sequence should have an equal numi#€s @ind B’s. If this rule is learned
only, distinguishing grammatical from ungrammatisatjuences would boil down to
counting A’s and B’s. De Vries et al. (2008) fouthat participants in an artificial grammar
learning task could easily learn this feature @farule. Another superficial characteristic
of CE can be induced from exemplars with repeatedisy For example, repeated A-word

in the beginning of an A\,B,B; structure (AA, being the same word) and repeated B-



words provide a strong cue that A-words are difiefeom B-words, and that the equality
of the A-words might be related to the equalityhaf B-words. Learners focusing on this
feature might judge the grammaticality of a newtseece, by checking whether the B-
words are grammatically related to the A-wordshwitt any consideration of the
sequential order of the B’s. The use of these digi@rcharacteristics has been found in
several studies on CE processing (see e.g. Rohmreie& Dienes, 2012, for a review).
Indeed, previous studies, which suggest that ppatnts could recognize the'® type of
sequences (Bahlmann, Gunter, & Friederici, 200&derici, Bahlmann, Heim, Schubotz,
& Anwander, 2006), used test items such as AAABhB&nn et al., 2006) and AABA
(Friederici et al., 2006) that could easily be d&td as ungrammatical without any
knowledge of the CE rule, merely by counting andotiing the numbers of A’s and B’s
and the transitions from A to B words (that wasyqueérmitted in the middle of a
grammatical sequence). Hence, the knowledge aahaird used to process CE sentences
might correlate with, but not cover the full comyitg of the CE structure. Overt behavior
in a particular experimental task may look likésiteflecting abstract CE recursive
knowledge, but in fact may be based on superfasakects of it. A substantial part of the
observations on the learnability of CE hierarchatalictures, with both human and non
human species, might be the visible result of digiertask dependent strategies, not
hierarchical processing per se ( Berwick, Okan®gkers, & Bolhuis, 2011; Corballis,
2007; de Vries et al., 2008).

In response to this problem, some experimental iarising on hierarchical
processing has been conducted, attempting to exesdnuch as possible superficial
strategies. For instance, in an fMRI study, Bahima&@chubotz and Friederici (2008) used
two types of artificial grammars, i.e"®" and (AB)", and assigned a CE versus a RB
mapping between A- and B- categories (e. gAA8,B; or A;B;A,B,). They found higher
brain activities in Broca’s area when participgmiscessed /" rather than (AB). In
another study, de Vries et al. (2008) used the teaiméng materials in a behavioral study
and manipulated the type of violations in the teshs. They introduced scrambled
ungrammatical items (e.g.1A>A3B1B3B;), which they considered to be the most difficult

violation to detect, and only detectable with fullowledge about all aspects of the CE

10



structure. Their participants failed to distingutble ungrammatical items. However, when
the scrambled ungrammatical items contained anfeasyre to detect as well, like syllable
repetitions, participants showed above chance padnce. Therefore, de Vries et al.
concluded that there was no evidence supportiridaaaing of CE recursion in AGL.

Two additional possible experimental procedureshaeen used to test “true
recursion” in AGL. First, test whether participantm generalize CE rules to a higher level
than they have been exposed to during trainingetfedd, 2002). As Poletiek (2002) notices,
however, adding one LoE in test items possiblyaases memory load. When participants
fail to parse these longer items correctly, whinytdid in Poletiek’s study, this may be
due to memory limitations rather than to the actuehpability to generalize the recursive
operation to higher levels of complexity. Secorekp processing of CE might be
investigated by testing transfer of knowledge: participants transfer their knowledge of
the CE rules to novel items which are containirgggame structures, but contain elements
from another domain (Kinder, Shanks, Cock, & Tunr2803; van Heijningen et al., 2009)?
Studies thus far provide mixed evidence for thigatality. Indeed, there is no
unambiguous evidence that participants use thebCtd rules when transferring their
knowledge from one domain to another. For exang#égcting repetitions has been shown
to be a heuristic in transfer tasks (Redington &@&h 1996). Interestingly, this repetition
monitoring is exactly what van Heijningen et al0@®) found zebra finches did in a
transfer task.

If learning, processing and producing hierarch{€glstructures is hard,
occasionally even so hard that language users @nag/ fecourse to pragmatic solutions like
heuristics to learn and parse them, are there megtditions independent of the language

stimuli themselves present in the learning envirentnwhich might help this learning?

Factorsin the language environment facilitating CE processing
Processing CE recursive structures has been slwimptove under various

circumstances. For instangbe starting small approacias initiated by Elman (1991,

1993), who observed that a simple recurrent netW®RN) showed better learning when

trained piece by piece with the input, insteadaif trained with the whole input at once.
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A number of studies verified the facilitation effext staged input (Cochran, McDonald, &
Parault, 1999; Conway, Ellefson, & ChristianserQ2Xareev, Lieberman, & Lev, 1997;
Kersten & Earles, 2001; Newport, 1990; Plunkett &mghman, 1993). Particularly, Lai
and Poletiek (2011) (Chapter 2 and 3 of the prethersis) found a facilitation effect of
starting-small in an AGL study. In the same stuahgther strong positive effect on
learning recursive structures was found: Extenaie early exposure to simple adjacent
AB pairswithoutany embedding made detection of the CE structwehreasier.

A third helpful condition for detecting CE struotus the frequency distribution of
the input items, per level of complexity (see Fele®& Chater, 2006, for a study with a
non-recursive grammar). In a mathematical anafy®idetiek & Lai, 2012) we argued that
learning is helped with unequal frequencies, kewsed learning distributions of items
favoring high frequencies for short and simple&uees. Poletiek and Lai (2012) argue
that this statistical effect reflects a semantasteffect in natural language. Indeed, the gist
of the frequency effect is that some AB pairs aoearfrequent than other ones in the
linguistic input. For exampledbg barks will be encountered more frequently thagirt
barks', and this difference in occurrence might servaasie for relating A’'s to B's: in the
sentencéhe dog the girl walks barkshe difference in frequencies betwekay barksand
girl barksis a cue for associatirpgto bark rather thargirl to bark A number of studies
with natural language (Blauberg & Braine, 1974; ¢te¥arga, & Szathmary, 2012; Rohde
& Plaut, 1999; Stolz, 1967; Weckerly & Elman, 198Rpw that when CE sentences
contain semantic biased components, the performafr@@ntence parsing is significantly
improved compared to the situation with semantycadiutral, unbiased equally frequent
word pairs (Powell & Peters, 1973).

Finally, various other types of statistical infortioa in the input seem to help
exploring sequential structures (Gennari & MacDdnpaD08; MacDonald, Pearimutter, &
Seidenberg, 1994; Reali & Christiansen, 2007).éx@mple, variations in variability of
words in adjacent positions have been shown tafeernative (as inHe is working’, “is”
and “—ng” are constant whilst the middle morpheme highlyies) (Gomez, 2002). Mintz
(2003) has proposed a similar statistical effe¢han“frequent frames” model. This

distributional model could successfully predict tategorization of a target woxdn the
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structure ofA_x_B,in which A andB co-occur frequently. Finally, enhancement of
intelligibility of CE recursion has been shown ® &ffected by other cues, such as the
nouns’ animacy cues (Mak, Vonk, & Schriefers, 200@)6), and prosodic cues (Mueller,
Bahlmann, & Friederici, 2010). Hence, a numbendfalinguistic aspects of the sample of
stimuli that a learner is presented with seem ¢difate substantially learning complex
structure. These factors together with generahlagrmechanisms might interact to
eventually obtain knowledge of CE structures. Tussibility is the focus of the present

work.

Artificial or Natural Language Experiments?

In the research reported in the present thesistlyransificial materials have been
used in laboratory experiments, with one excepf@mpter 4) using natural language
sentences. Typically, in AGL research, the expeniaeprocedure is considered to
simulate the situation of a child learning natlaalguage, reducing the natural learning
period to the duration of one experimental sessiod,adapting the system to be learned
from a full human language to an extremely simpdifgrammar made up of only a few
non-words and only those rules that are the foftiseoexperimental test. Here, the type of
rule that we focus on is the CERB{ grammar.

Using theAGL paradigm (Reber, 1967, 1989), experimentersnsanipulate the
stimulus set and the features of the learning itndo study specific influences on the
learning process in isolation. For example, besidksstructure, the effect of small versus
large learning sets, feedback during learning anislynversus fully correct learning input
can be manipulated (Gomez & Gerken, 2000). Sirfesvalecades, the AGL paradigm has
indeed been widely used to study language acauisithd grammar induction processes
(Johnstone & Shanks, 2001; Knowlton & Squire, 1993hina, 2011; Marcus, Vijayan,
Rao, & Vishton, 1999; Saffran, Aslin, & Newport,946). Though, at first sight, the absence
of semantics seems a drawback of AGL for generajizésults to natural grammar
acquisition, this may also be seen as its strefdta.semantic richness of natural language
makes it hard to separate semantic and syntaééictefon language learning. Also,

disregarding semantic influences makes results@if Aesearch comparable with machine
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learning performance (e.g. the SRN), which is neaely tested on restricted and
meaningless input samples (Christiansen & Chag899;1EIman, 1991, 1993; Misyak,
Christiansen, & Tomblin, 2009; Rohde & Plaut, 19¥3sides behavioral data, AGL is
also used in collecting neuroanatomical data frdfRIf experiments focusing on brain
activity related to syntactic processing only (Baahn et al., 2008; Forkstam, Hagoort,
Fernandez, Ingvar, & Petersson, 2006; FriederighlBann, Friedrich, & Makuuchi, 2011;
Makuuchi, Bahlmann, Anwander, & Friederici, 200Bhally, for testing the particular
status of CE syntax in the human language factiityadvantage of AGL as a pure test of
syntactic processing is particularly suitable (Bele 2002; Udden et al., 2009), because
the focus of the arguments is on the complexitthefgrammar.

Nonetheless, the artificial nature of the AGL pagatdposes limitations to its use
as well. For example, the highly positive effectlearning CE recursion of early intensive
training with simple sentencegthoutrecursion found in our AGL study (Chapter 2) may
be argued to generalize to the natural situatidrere child directed speech input is also
made of simple basic sentences. We do not knoweteryhow the semantic content of
this early input interacts with early simple-sturet learning. Hence, AGL is obviously
limited in the sense that the full richness oféin@ironment is not reflected. The question
to what extent this limits the representativitytiod results for learning outside the lab will
depend on the particular goal of a study. For exglerimental result, the ecological
validity of the paradigm needs to be accountedAociuli & Torkildsen, 2012). To
investigate semantic influences on learning CHlistuwith natural language materials are
needed. Therefore, in Chapter 4, we present arriexpet with natural language materials,
in which the semantic congruency between syntacticsemantic features of CE sentences

is manipulated.

Outline of the dissertation

The dissertation consists of the present introduadib the topic, four chapters
reporting empirical studies, and a summary chajitee.chapters are based on manuscripts
that are currently published (Chapter 2), in p{&sapter 3), under revision (Chapter 5), or
submitted (Chapter 4).

14



Chapter 2 reports an artificial grammar learningigtinvestigating whether the
acquisition of hierarchical CE structures couldebbanced if the ordering of the learning
input is staged. Participants were exposed to ddsense Consonant-Vowel-syllable
strings, generated by a phrase structure gramman AGL task. They delivered
grammaticality judgments over 144 novel stringsiclvtwere either in accordance with the
same underlying rule, or were ungrammatical, i@ations of the rule. Results of the two
experiments suggest that participants could ontfopm significantly above chance level
performance, under two conditions: First, the inghauld be presented irstarting small
fashion; and second, early learning of the basicsire of the grammar, the adjacent-
dependencies is needed before the embedding s&ustpresented. Besides replicating the
classic starting small effect (Elman, 1991, 1998}, study uncovers, for the first time, that
early acquired robust knowledge of thasic structureof a hierarchical CE grammar is a
prerequisite for subsequent acquisition of thedalinplex hierarchical embedding pattern
later on.

Chapter 3 further explores the starting small efieprocessing recursive CE
structures. Specifically, this study focuses on tadants of the starting small organization
of the input: on the one hand, the discretely gngwnput as implemented in Lai and
Poletiek (2011), in which the sentences are cladtaccording to the number of LoE they
have (first 0-LoE sentences only, next 1-LoE itemly, and finally 2-LoE items only), and
on the other hand, a gradually growing input (withre complex sentences being added to
the stimulus sample presented over time). A secaadipulation was the frequency
distribution of the input sentences. We comparadkfjequencies for all LOE items, with
a skewed distribution in which more stimulus itemfishe lower LoE were presented. The
results of the two experiments showed that theugrbstarting small ordering was helpful
only if accompanied by a skewed frequency distidyutin other words, gradually inserting
more complex sentences only helps if there are mamte simple basic sentences than
embedded sentences in the training input. This aoeadbeffect of gradual starting small
and skewed frequencies reflect the propertiesehttural language input, as we argue.
That input in natural language is skewed in theesamy as in our AGL study, though to a

more extreme extent (Kurumada, Meylan, & Frank,120Moreover, complex

15



constructions with relative clauses typically absent in child directed speech before the
age of 5 (Kidd, Brandt, Lieven, & Tomasello, 2007).

Chapter 4 uses natural language materials, andtaimake a connection between
AGL studies and natural acquisition of complex rsiue structures. The current study
compares processing Dutch RB embedded sentencByj(Aith CE sentences (B").

We tested the influence of the congruency betwkers¢émantic pattern of relations and the
syntactic pattern of relations between the nouele@ting A-words) and the verbs (B-
words) in a sentence. The semantic pattern cotli@érematch or mismatch the syntactic
pattern, as in the sentenclsegirl the dog bites criesandThe dog the girl bites cries
respectively. The results showed a facilitativeefiof semantic-syntactic congruency and
we proposed a semantic-memory model for processingsive (SMR) structures to
account for this effect.

Chapter 5 further tested the starting small efféth different types of recursive
structures and different types of staged inpuEsxperiment 1 and 2, we observed a
facilitation effect of starting small in parsingdwypes of recursive grammars: RB and CE.
However, sentence complexity (i.e. LOE) and ser@dength were confounded in the input.
Indeed, thus far, the starting small learning ctodiin experimental research features an
ordering of sentences along two perfectly correlalienensions: the (increasing) number of
LoE and sentence length. For example, the gramseat in the study in Chapter 2,
produces sentences with 0-LoE having all two sidisbl-LoE items having four syllables,
and 2-LoE items with six syllables. In Experimenw8 disentangled these two factors, and
found that participants showed learning only whHemihput was arranged according to
complexity (LoE), and not when it was organizedaaiding to sentence length. The results
suggest that the starting small input is effechieeause it helps learners to detect structure,

not because it reduces memory load in the easgtage of learning.
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