

On the dynamic interplay between perception and action - a connectionist perspective

Haazebroek, P.

Citation

Haazebroek, P. (2013, December 11). *On the dynamic interplay between perception and action - a connectionist perspective*. Retrieved from https://hdl.handle.net/1887/22849

Version: Corrected Publisher's Version

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/22849

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle http://hdl.handle.net/1887/22849 holds various files of this Leiden University dissertation

Author: Haazebroek, Pascal

Title: On the dynamic interplay between perception and action: a connectionist

perspective

Issue Date: 2013-12-11

Appendix

HiTEC incorporates realistic neuronal integration/decay properties, non-linear response (output) functions of excitatory and inhibitory neural units, as well realistic voltage-dependency of feedback connections and associative Hebbian learning. Incorporating these realistic neural properties implies various parameters in the model. The default values for all parameters are listed in Table 4.

Table 4. Default parameter values for HiTEC simulations

Category	Parameter	Default value
External inputs	External input sensory codes	0.5^{a}
	External input motor codes (during learning)	0.3
Sensory weights	Sensory – feature forward	$0.4^{\rm b}$
	Sensory – feature backward	3.0
Stimulus features	Feature –task forward	1.3°
	Feature – task backward	0.2
Response features	Task – feature forward (location, intensity, etc.)	1.3
	Task – feature forward (other)	0.9^{d}
	Task – feature backward	0.2
Inhibition	Excitatory to inhibitory paired unit	1.25
	Inhibitory to other excitatory codes within layer	-0.75
Code parameters	da decay parameter	0.1 ^e
	qa sigmoid parameter in response function	0.9
	na sigmoid parameter in response function	4
	γexc scale parameter	$0.9^{\rm f}$
	γinh scale parameter	$0.9^{\rm g}$
Noise	Mean	0.025
	Standard deviation	0.015
Code thresholds	Voltage threshold (VT)	0.5
	Learning threshold (LT)	$0.6^{\rm h}$
	Response threshold for motor code selection	0.6
Learned weights	Learning rate (LR)	0.1
	Weight decay (d_w)	0.0005
	Weight scale factor ($arphi$)	0.8^{i}
General parameters	Action effects trials	10 trials per motor code
	Action effect duration (= cycles of weight learning)	50 cycles

Exceptions (see Table 4)

- a. 0.6 in Simulation 6
- b. 0.45 in Simulation 4 for the sensory to feature connections (visual to word);
 0.3 for 'forward' and 'backward' in Simulation 6
- c. 1.5 in Simulation 6
- d. 0.55 in Simulation 2 and 0.6 in Simulation 3
- e. 0.2 for sensory codes (all simulations)
- f. 0.8 for sensory codes in Simulations 1 to 5; all codes 1.0 in Simulation 6
- g. 0.8 for sensory codes in Simulations 1 to 5; all codes 1.0 in Simulation 6
- h. 0.5 for Simulations 1 and 2
- i. 1.0 in Simulation 6

Note that we have attempted to eliminate various scaling parameters in the model instance sued for Simulation 6. That is, γexc , γinh and have been set to 1.0. In order to retain the model dynamics, some of the other parameters were adjusted accordingly: external input and task-feature (other) weights.