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Chapter 1

How do we interact with our environment? We effortlessly turn door handles, reach for a cup 
of coffee, and use various kinds of tools and electronic equipment. But how do we coordinate 
our actions in response to these environmental demands? Intuitively, we first perceive an 
object, then we think for a very brief moment, and, finally, we perform actions on it. So, 
somehow in ‘the thinking’ our perception and action systems must ‘connect’. The nature 
of this connection has been a central topic within the field of Cognitive Psychology (Ward, 
2002). Indeed, actions that are not guided by perception would not only be inefficient but 
might also be rather dangerous. Moreover, coordinating perception and action is potentially 
very complex as natural environments offer an overwhelming number of perceivable objects 
and natural bodies allow for a virtually unlimited number of different responses. As the 
human cognitive system usually seems to cope quite well with this complexity, understanding 
its perception and action connection could be beneficial for developing artificial embodied 
cognitive systems (i.e., robots) that need to cope with similar challenges.

In this thesis I argue that perception and action planning do not represent separable 
stages of a unidirectional processing sequence, but rather emerging properties of highly 
interactive mental processes. In other words, information processing is the result of a (context 
modulated) dynamic interplay between perception and action.

Traditional views of human information processing
Traditionally, very much in line with the intuitive reasoning described above, responding to 
stimuli in our environment has theoretically been conceived as a sequence of separable stages of 
processing (e.g., Donders, 1868; Neisser, 1967; Sternberg, 1969; see Figure 1). The separation 
of information processing into a sequence of steps has a strong history in various theories of 
human information processing. Moreover, in many models and cognitive systems different 
steps are often realized by different modules.

For example, in their seminal work, Card, Moran and Newell (1983) describe the 
Model Human Processor being composed of three main modules: perception, cognition 
and action modules. Information processing is defined as a cyclic, sequential process from 
stimulus perception to cognitive problem solving to response execution. The perceptual 
system is considered to contain sensors and is responsible for coding the sensory input into 
symbolic representations. The cognitive system combines this symbolic input with long term 
memory and determines how to respond. Finally, the motor system is assumed to carry out 
the specified response.

Figure 1. The perceive-think-act sequence is the basis of various theories of human information processing

Stimulus selectionStimulus identification Response selection Response execution
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In similar vein, the Seven stages of Action model (Norman, 1988) — a conceptual model 
of human task performance popular in the field of Human Computer Interaction — 
decomposes the interaction between people and their environment into the following seven 
stages: people (1) perceive the state of the world, (2) interpret their perception, (3) form 
evaluations based on these interpretations, (4) match these evaluations against their goals, 
(5) form an intention to act, (6) translate this intention into a sequence of actions and (7) 
execute this action sequence. Executing an action sequence subsequently results in a change 
in the world state which can again be perceived in the first stage. 

More recently, cognitive architectures have been developed (e.g., ACT-R, Anderson, 
1993; SOAR, Newell, 1990;  EPIC, Kieras & Meyer, 1997) to address the challenge of 
computationally characterizing human information processing. Crucially, these architectures 
also separate processing in stages and mostly focus on the middle, cognitive steps of the 
perceive-think-act processing sequence. It is assumed that the first steps, perceiving and 
interpreting the world state, are performed relatively easily. The main focus is on comparing 
the world state with a goal state and deciding upon which action to take next in order to achieve 
the goal state. It is further assumed that once an action is chosen, its execution is easy, leading 
to a predictable new world state. The core mechanism used by most cognitive architectures 
is a production rule system (Byrne, 2003). A production rule defines the translation of a 
pre-condition into an action that is known to produce a desired post-condition. This can be 
interpreted as “IF (x) THEN (y)” rules. By specifying a set of production rules, a cognitive 
architecture can be given some prior knowledge resulting in response tendencies to choose 
those actions that eventually realize certain goals. When putting a cognitive architecture, 
endowed with a set of production rules, in interaction with an environment, however, conflicts 
between rules or unexpected conditions may present themselves. Moreover, by assuming a 
set of production rules, a cognitive architecture also assumes a set of action alternatives. 
However, when someone is interacting with a physical or virtual environment, it is often 
unclear which actions can be performed. Also, in certain contexts, people may not readily 
detect all action opportunities and action alternatives may differ in their availability, leading 
to variance in behavior (Kirlik, 2007).  This is hard to capture in a cognitive architecture that 
assumes a predefined set of (re)actions. 

Artificial Intelligence and Robotics
Responding to environmental demands in the environment has also been a major challenge 
in the fields of Artificial Intelligence and Robotics. In the 1960s – 1970s these fields started 
out with top down approaches focusing on robots that could reason about the world, create 
internal maps and figure out with hard computation how to navigate through the world. A 
well-known example was Shakey, a robot built in the late 1960s (Nilsson, 1984). Shakey was 
essentially a box on wheels with a camera. It was accompanied with an off-board computer that 
was programmed to make plans of ‘what to do next’. The interaction with the environment 
started with a perception stage in which camera input was analyzed and a world model was 
computed in the off-board computer. Then, during the ‘think’ stage, the computer would 
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go through all alternatives of what to do next, an algorithm taking minutes to compute. 
Finally, during the ‘action’ stage, essentially with eyes shut, Shakey would move a couple 
of feet, hoping that the world would remain stable. Then, in a new cycle, Shakey opened 
up its eyes again, looked at the environment, built a new world model and continued its 
journey. As demonstrated by rather hilarious scenes where culprits would come in and alter 
the environment precisely when Shakey was in its ‘blind’ action stage resulting in inaccurate 
internal models and inappropriate actions, this perceive-think-act architecture seemed to 
pose a problem for real world robotics: robots constructed like Shakey are limited by the need 
for all information from the sensors to pass through the modeling and planning modules 
before having any effect on the robot’s actions (Brooks, 1991). As a result, Shakey could only 
cope with highly impoverished, static environments. Natural, dynamic environments would 
require too much time to construct a plan in response to ongoing, unexpected events. 

In the decades that followed, some AI researchers took stronger notice of nature and 
observed that rather simple organisms such as bugs and insects are quite able to cope with 
environments that are too challenging for Shakey. Brooks (1986) proposed an activity-
based decomposition of information processing. He reasoned that perception, cognition 
and action should be considered intertwined and suggested that a system might rather be 
decomposed in different behavior-producing subsystems and that each of these subsystems 
in itself forms a complete perception, cognition, action pathway. As these pathways may inhibit 
or suppress each other, such a system is able to exhibit a wide variety of complex behaviors. 
This approach resulted in a decade of developing insect-like robots that demonstrated much 
better performance in dealing with real environments than the earlier robots based on the top 
down approach, like Shakey. However, linking their behavior and internal representations to 
higher level cognitive activities such as planning, reasoning about and communicating with 
other robots or humans proved to be rather hard (Shanahan, 1998).

The issue of modularity is still a central topic in modern day robotics. Robots are complex 
systems and functional decomposition into hardware and/or software modules makes sense 
from an engineering point of view. In the last decade we have witnessed the dawn of highly 
advanced robot vision systems that recognize complex objects instantaneously (e.g., Detry & 
Piater, 2011) and reconstruct entire 3D scenes in internal world models (e.g., Baseki et al., 
2010) . Moreover, video clips of robots showing immensely impressive behavioral repertoires 
(e.g., drumming, dancing, walking stairs) appear in the media weekly. How to architect 
and interconnect perceptual, cognitive and action systems, however, remains a matter of 
debate and an issue to be explicitly addressed by roboticists (e.g., the three-level architecture 
described in Kraft et al., 2008).

Information processing in the brain
Where traditional views on human information processing focus on the ‘software’ processing 
steps irrespective of the ‘hardware’ (i.e., the brain) that is assumed to perform these steps, 
connectionist theories stress that the structural and functional properties of the brain may 
have strong influences on human information processing. Indeed, the human brain does not 
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contain a single complex central processor that does all the computations; it rather consists of 
billions of simple computing units (neurons) that are interconnected by trillions of connections 
and primarily engage in local interactions (i.e., with their directly connected ‘neighbors’). 

Given the complexity of the brain early work on network models of cognitive performance 
was not aimed at modeling brain activity in complete detail. Researchers rather set out to 
model cognitive phenomena in systems that exhibited some of the same basic properties as 
networks of neurons in the brains. McCulloch and Pitts (1943) laid the foundation with 
networks composed of binary units and demonstrated (Pitts & McCulloch, 1947) that 
these networks could be used to perform pattern recognition tasks. Later approaches (e.g., 
Rosenblatt 1961) explored similar networks of units with connections of varying weights. 
In addition, following Hebb’s (1949) suggestion that when two neurons in the brain were 
jointly active, the strength of their connection might increase, procedures came to be that 
allowed these networks to learn and demonstrate associative memory abilities (e.g., Taylor, 
1956). The success of these early network models was, however, rather short-lived as there 
were strong limitations (e.g., demonstrated by Minskey & Papert, 1969) to what this type 
of networks could compute and serious learning algorithms were lacking. These limitations 
turned the focus of AI research towards symbolic models of information processing. 

In the mid-1980s, however, important limitations of rule-based symbolic systems were 
identified (e.g., inflexibility, difficulty in learning from experience, inadequate generalization) 
and network-inspired approaches came back in vogue. Rumelhart, Hinton, and McClelland 
(1986) published their very influential Parallel Distributed Processing (PDP) work that 
essentially defined the connectionism. In the connectionist approach there is a network of 
elementary units, each of which has a certain degree of activation. The network is considered 
to be a dynamical system which, once provided with initial input, spreads activation among 
its units for a set period of time or until a stable state is achieved. Such a connectionist system 
is considered to ‘perform’ a cognitive task by interpreting the inputs as a problem and the 
resulting stable configuration of the system as the solution to that problem. Compared to the 
symbolic approach, that involves transformation of symbols according to specific rules, the 
connectionist approach focuses on causal processes by which the units spread activation to 
each other. Hence, information processing in connectionist networks is distributed.

As connectionism became increasingly popular in the late 1980s, some researchers 
(e.g., Fodor, 1983; Pinker, 1997) argued that connectionism actually constituted a reversion 
toward behaviorism (e.g., Watson, 1913) by focusing on mere input-output associations 
rather than addressing mental processes in terms of explicit logical algorithms. In their view, 
mental activity is computational; that is, performing operations on symbols. Indeed one 
could argue that connectionist-like hardware (i.e., the brain) may actually only implement 
the symbolic-like software algorithms. Hence, the mind could still very well be decomposed 
in separate (e.g., perception, cognition and action) subsystems. Indeed, to what extent the 
mind can be considered a modular system is still a matter of lively debate among cognitive 
scientists (Prinz, 2006). 
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Direct interaction between perception and action
Now, interestingly, empirical findings in psychology have demonstrated that parts of human 
information processing do not seem to involve conscious cognitive decision making. Features 
of perceived objects (such as location, orientation, and size) can influence actions directly 
and beyond (tight) cognitive control, as illustrated by stimulus–response compatibility 
phenomena, such as the Simon effect (Simon & Rudell, 1967). In the typical Simon task, 
stimuli vary on a spatial dimension (e.g., randomly appearing on the left or right) and on 
a non-spatial dimension (e.g., having different colors). Participants have to respond to the 
non-spatial stimulus feature by performing a spatially defined response (e.g., pressing a left 
or right key). Although the location of the stimulus is irrelevant for the response choice, it 
nevertheless influences response time and accuracy: participants respond faster (and more 
accurately) when the stimulus location is congruent with the response location than when the 
stimulus location is incongruent with the response location. This finding suggests that there 
is a direct interaction between stimulus perception and response planning. The Simon effect 
is a very robust finding, has been replicated numerous times and has been used frequently 
as a methodological tool to investigate perception, action, and cognitive control (for general 
overviews, see Hommel, 2011; Proctor, 2010).

To account for both controlled and automatic processing, various dual route process 
accounts have been proposed (e.g., Kornblum, Hasbroucq, & Osman, 1990; Zorzi & 
Umilta, 1995). These accounts propose that there is a second, direct route from perception to 
action that can bypass cognition, as explicitly modeled in various computational models of 
the Simon effect (e.g., Zorzi & Umilta, 1995; see Chapter 4 for a more elaborate discussion). 
Essentially, dual route accounts consider the observed direct stimulus-response interaction 
as an exception requiring an additional route next to the ‘normal’ one that does involve 
cognition. Moreover, they typically do not address the reason why some stimulus features 
directly influence action and others do not.

Representing perception and action using common codes
An alternative view that gives much more weight to this direct interaction between perception 
and action is the Theory of Event Coding (TEC, Hommel, Müsseler, Aschersleben & Prinz, 
2001; illustrated in Figure 2). TEC is a general theoretical framework that addresses how 
perceived events (i.e., stimuli) and produced events (i.e., actions) are cognitively represented 
and how their representations interact to generate both perceptions and action plans. TEC 
holds that stimuli and actions are represented in the same way and by using the same ‘feature 
codes’. These codes refer to the distal features of objects and events in the environment, 
such as shape, size, distance, and location, rather than to proximal features of the sensations 
elicited by stimuli (e.g., retinal location or auditory intensity; see Heider, 1959; Hommel, 
2009). For example, a haptic sensation on the left hand and a visual stimulus on the left both 
activate the same distal code representing ‘left’. 

Crucially, these feature codes can represent the properties of a stimulus in the 
environment just as well as the properties of a response — which, after all, is a perceivable 
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stimulus event itself. This theoretical assumption is derived from ideomotor theory (James, 
1890; see Stock & Stock, 2004, for a historical overview), which presumes that actions 
are cognitively represented in terms of their perceivable effects. According to the ideomotor 
principle, when one executes a particular action, the motor pattern is automatically associated 
to the perceptual input representing the action’s effects (action–effect learning; Elsner & 
Hommel, 2001). Based on these action-effect associations, people can subsequently plan 
and control (Hommel, 2009) a motor action by anticipating its perceptual effects, that is, 
(re-)activate a motor pattern by intentionally (re-)activating the associated feature codes. 
Thus, stimuli and actions are represented in a common representational medium (Prinz, 1990). 
Consequently, stimulus perception and action planning are considered to be similar processes: 
both involve activating1 feature codes that represent external events.

Neuroscientific evidence for common codes at a distal feature level can be found in the 
response characteristics of mirror neurons in the premotor cortex (cf., Keysers & Perrett, 
2004). In the macaque monkey, these neurons are active both when the monkey performs 
a particular action and when it perceives the same action carried out by another monkey or 
human, such as picking up food. Crucially, this overlap occurs at a distal representational 
level, that is, at the level where planned and perceived actions can be described as having 
the same goal or end state such as picking up an object (Rizzolati & Craighero, 2004). Also, 
various behavioral studies show that, in humans, action planning can actually influence object 
perception (e.g., Fagioli, Hommel & Schubotz, 2007; Stoet & Hommel, 2002; Wykowska, 
Schubö & Hommel, 2009), suggesting that perceptual processes and action processes overlap 
in time (see also Hommel, 1997) and influence each other. 

F1 F2

S1 S2 S3 S4 S5 S6 M1 M2 M3 M4 M5 M6

Figure 2. Sensory, feature and motor codes in TEC (adapted from Hommel et al., 2001). Multiple sensory codes can relate to the 
same feature codes (and vice versa). The same holds for motor codes and feature codes.

1 TEC also addresses how more complex cognitive codes (‘event files’) are created, an aspect that refers to the 
integra-tion of feature codes rather than their mere activation. This structure-building aspect will not be dealt with 
in this thesis but be left for future work.
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Finally, TEC stresses the role of task context in stimulus and response coding. In particular, the 
responsiveness of feature codes to activation sources is considered to be modulated according 
to the task or goals at hand (the intentional weighting principle, Memelink & Hommel, 
2013). For example, if the task is to grasp an object, feature codes representing features 
relevant for grasping (such as the object’s shape, size, location and orientation) are assumed 
to be enhanced, while feature codes representing irrelevant features (such as the object’s color 
or sound) appear to be attenuated (Hommel, 2010; Wykowska et al., 2009). 

HiTEC connectionist model
In this thesis I aim to shed more light on the biological and computational plausibility of 
common representations underlying perception and action planning. To this end I have 
developed HiTEC, a connectionist model based on TEC. Our aim was to formulate a 
clear alternative to sequential models of perception and action and to develop a minimal 
framework for considering how perceptual and action processes may interact in the control 
of behavior. HiTEC extends and further specifies TEC’s principles to account for a series of 
key experimental findings in a unitary theoretical framework and at a level of specificity that 
allows for computer simulation. 

Outline of the thesis
The thesis is organized as follows. Chapter 2 presents HiTEC, the connectionist model 
developed to study the feasibility of common representations and interactive processing; 
in Chapters 3 to 5, various simulations of empirical phenomena are described. Here, the 
focus is on research questions that particularly challenge existing models of stimulus-response 
translation that assume separate modules or processing stages. Finally, general conclusions 
are described in Chapter 6. In this endeavor the following research questions are addressed 
in this thesis.

How do neuron-like representations realize stimulus-response translation?
This research question is addressed in Chapter 2. In this chapter, the HiTEC connectionist 
model is presented. In HiTEC, neuron-like representations are distributed over multiple levels 
and processing involves both feedforward and feedback interaction between lower and higher 
level representations. In addition, one of the HiTEC levels contains common representations; 
these representations are used both for stimulus perception and response planning. As a 
result, stimulus-response processing is fully interactive rather than in stages. The HiTEC 
model is used in all simulations discussed in this thesis. 

How do situation-specific meanings of motor actions emerge? 
In order to control its actions in response to demands in the environment the cognitive 
system needs to know what actions are possible and what these actions ‘mean’. Various 
empirical findings suggest that for a cognitive system this ‘meaning’ is not a fixed fact; it 
rather depends on the (perceptual) effects within the task context. Consequently, in order 
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to select and execute an appropriate response to a stimulus a plausible cognitive model must 
first learn (i.e., from experience) what the effects of its motor actions are and how to interpret 
these effects in the task context. How these situation-specific meanings of actions may emerge 
and how these meanings are used in action control is addressed in Chapter 3. Simulations 
in this chapter demonstrate that HiTEC allows for associating action effects with motor 
actions. Moreover, the strengths of these associations depend on the context allowing for the 
emergence of situation-specific meanings.

How and why do parts of stimulus–response translation occur automatically?
Some parts of the translation from stimulus to response are considered to occur automatically 
as demonstrated by stimulus–response compatibility (SRC) effects such as the Simon effect 
(Hommel, 2011; Simon & Rudell, 1967). How and why these effects may occur is addressed 
in Chapter 4. Simulations in this chapter demonstrate that HiTEC provides a parsimonious 
rationale for these effects, most notably in terms of the common representation level and the 
fact that task-relevance is considered to apply to both stimuli and responses.

How does the task context modulate stimulus-response translation? 
How the task context may modulate stimulus-response translation is more explicitly addressed 
in Chapter 5, which includes both the simulation of an existing empirical study and a novel 
behavioral study and its simulation. The first simulation in this chapter demonstrates how 
the task context may modulate action control by means of (spatial) attention within the 
environment; the empirical study and the second simulation show how intentional weighting 
may also operate on a more abstract (distal) level.

Finally, in Chapter 6, these research questions and their interrelations are further 
discussed as not only perception and action are strongly interrelated, so are the different 
research questions addressed in this thesis. 

Publications
Note that these chapters contain major parts of various articles published in the course of 
this research. Rather than presenting a collection of published and submitted articles divided 
over chapters, I have chosen to assist the reader with what I consider a more logical structure. 
Following this structure, one chapter is devoted to presenting the entire model, and the other 
chapters focus on various major aspects of the interaction between perception and action 
combining simulations from various articles. In my view, this structure better reflects the 
integrated character of the work and avoids unnecessary repetition of common or iteratively 
refined parts such as model implementations, theoretical background and simulation 
procedures. 
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The thesis is an integration of a number of articles I wrote in collaboration with co-authors. 
Note that this is reflected in the various chapters by the use of ‘we’ rather than ‘I’. The 
interested reader is referred to these articles. 

Haazebroek, P., & Hommel, B. (2009a). Anticipative control of voluntary action: Towards 
a computational model. Lecture Notes in Artificial Intelligence, 5499, 31-47. 

Haazebroek, P., & Hommel, B. (2009b). Towards a computational model of perception 
and action in human computer interaction. Lecture Notes in Computer Science, 5620, 
247-256. 

Haazebroek, P., Raffone, A., & Hommel, B. HiTEC: A Connectionist Model of the Interaction 
between Perception and Action Planning. Manuscript submitted for publication.

Haazebroek, P., van Dantzig, S., & Hommel, B. (2009). Towards a computational account 
of context mediated affective stimulus-response translation. Proceedings of the 31st 
Annual Conference of the Cognitive Science Society (pp. 1012-1017). Austin, TX: 
Cognitive Science Society.

Haazebroek, P., van Dantzig, S., & Hommel, B. (2011a). A computational model of 
perception and action for cognitive robotics. Cognitive Processing, 12, 355-365

Haazebroek, P., van Dantzig, S., & Hommel, B. (2011b). Interaction between Task 
Oriented and Affective Information Processing in Cognitive Robotics. Lecture Notes 
of the Institute for Computer Sciences, Social Informatics and Telecommunications 
Engineering, 59, 34-41.

Haazebroek, P., van Dantzig, S., & Hommel, B. (2013). How task goals mediate the 
interplay between perception and action. Frontiers in Psychology, 4:247.

As my PhD project was embedded into an interdisciplinary robotics project I also got the 
chance to collaborate with scientists from other disciplines. Some of this collaborative work 
has not been integrated in this thesis, even though it contains some of the ideas captured 
therein; the interested reader is referred to following articles.

Broekens, J. & Haazebroek, P. (2007). Emotion and reinforcement: Affective facial 
expressions facilitate robot learning. In Proceedings of the IJCAI Workshop on AI for 
Human Computing (AI4HC’07, Hyderabad, India) (pp.47-54).

Lacroix, J. P. W., Postma, E., Hommel, B. & Haazebroek, P. (2006). NIM as a brain for a 
humanoid robot. In Proceedings of the Toward Cognitive Humanoid Robots workshop 
at the IEEE-RAS International Conference on Humanoid Robots 2006. Genoa, Italy.

Spiekman, M.E., Haazebroek, P., & Neerincx, M.A. (2011). Requirements and Platforms 
for Social Agents that Alarm and Support Elderly living Alone. Lecture Notes in 
Computer Science 7072., 226-235.



2121

Introduction



2222


