Explanatory latent variable modeling of mathematical ability in primary school: crossing the border between psychometrics and psychology
Hickendorff, M.

Citation

Version: Not Applicable (or Unknown)
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/17979

Note: To cite this publication please use the final published version (if applicable).
References


REFERENCES

(Computer program and manual). Available from http://cran.r-project.org/
web/packages/lme4/index.html.

multidimensional IRT models. Psychometrika, 66, 541-562.

Beishuizen, M. (1993). Mental strategies and materials or models for addition and
subtraction up to 100 in Dutch second grades. Journal for Research in Mathematics
Education, 24, 294-323.

use with indirect number problems up to one hundred. Learning and Instruction, 7,
87-106.

gender differences, and expectancy-value. Personality and Individual Differences, 46,
347-352.

problem-solving: Effects of increased cognitive load. Learning and Instruction, 19,
345-353.

Blöte, A., Van der Burg, E., & Klein, A. S. (2001). Students’ flexibility in solving two-
digit addition and subtraction problems: Instruction effects. Journal of Educational
Psychology, 93, 627-638.


Bouwmeester, S., Sijtsma, K., & Vermunt, J. K. (2004). Latent class regression analysis to
describe cognitive developmental phenomena: An application to transitive reasoning.
European Journal of Developmental Psychology, 1, 67-86.

with multidigit numbers]. Utrecht, The Netherlands: Freudenthal Institute for Science
and Mathematics Education.


arithmetic memory: Extensions to addition and subtraction. Memory & Cognition, 34,
633-647.

skill and preference. Contemporary Educational Psychology, 26, 330-347.


De la Torre, J., & Patz, R. J. (2005). Making the most of what we have: A practical application of multidimensional item response theory in test scoring. *Journal of
References

Educational and Behavioral Statistics, 30, 295-311.


nieuwe uitdagingen [Mathematics education in the year 2007 - between old values
and new challenges]. Reken-wiskundeonderwijs: onderzoek, ontwikkeling, praktijk,
26(4), 3-10.
education: A calculus course as an example. Educational Studies in Mathematics, 39,
111-128.
Gravemeijer, K., Van den Heuvel-Panhuizen, M., Van Donselaar, G., Ruesink, N.,
Streefland, L., Vermeulen, W., et al. (1993). Methoden in het reken-wiskundeonderwijs,
een rijke context voor vergelijkend onderzoek. [Methods in mathematics education,
a rich context for comparative research.] Utrecht, The Netherlands: Freudenthal
Instituut.
Learning and Instruction, 7, 293-307.
to the test]. Doctoral dissertation, Groningen University, Groningen, The Netherlands.
computation in special education]. Groningen, The Netherlands: GION.
rekenprogramma’s voor het basisonderwijs beproefd. [Remedial mathematics programs
for primary education put to the test]. Groningen, The Netherlands: GION.
IRT models with within-item and between-item multidimensionality. Zeitschrift für
Statistical Modelling, 1, 81-102.
Hecht, S. A. (2006). Group differences in adult simple arithmetic: Good retrievers,
Wiley & Sons, Inc.
numbers: adaptive strategy use and the influence of instruction in German third grade.
ZDM Mathematics Education, 41, 591-604.


Hickendorff, M. (2010c, September). *Subtraction by addition and compensation: Results from a study into shortcut strategy use by Dutch sixth graders*. Paper presented on the Advanced Study Colloquium on Mathematical Inversion, Leuven, Belgium.


achievement in mathematics and science in primary education]. Enschede, The Netherlands: Twente University.


mathematics. Reston, VA: NCTM.


REFERENCES

Roles, 49, 451-463.


REFERENCES


