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CHAPTER 8
General discussion

This thesis opened with the statement that children’s mathematical ability is a hotly

debated topic. The purpose of the research presented in this thesis was to move beyond

personal sentiments and ideological beliefs, by empirically investigating several aspects

of primary school students’ arithmetic ability in contemporary mathematics education.

Specifically, one quantitative research synthesis of performance outcomes of different

mathematics programs or curricula, and six empirical research articles that studied

determinants of children’s mathematical ability, were presented. Starting points for

this research were recent developments in mathematics education, in particular the

reform movement going by the name of Realistic Mathematics Education (RME), and

developments in Dutch primary school students’ mathematics performance level, as

reported in national and international large-scale assessments.

Chapter 1, presenting a research synthesis of empirical studies (intervention studies

and curriculum studies) carried out in the Netherlands that addressed the relation

between mathematics instruction or curriculum and students’ mathematics perfor-

mance outcomes, yielded no univocal conclusion. There were few methodologically

sound intervention studies comparing different instructional approaches, and the

available studies were limited in several aspects such as sample size or content domain.

In addition, didactical and instructional aspects were commonly confounded in the

programs compared. The curriculum studies, comparing performance outcomes of

students who were trained with a specific curriculum, were limited in the amount
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8. GENERAL DISCUSSION

of control on the implementation, as well as in correction for confounding variables.

So, we may conclude that much is unknown about the relation between mathematics

program and performance outcomes. In the remainder of this thesis, attention was

therefore refocused to other aspects of students’ mathematical ability in contemporary

mathematics education, such as solution strategies that students use to solve arithmetic

problems, and the effects of presenting mathematics problems in mathematics tests in

a realistic context. In these six empirical studies, we aimed to increase our insights in

different aspects of primary school students’ mathematical ability. In total, data of nearly

5,000 primary school students from grades 1, 2, 3, and 6 were analyzed.

These empirical studies cross the border between the scholar fields of substantive

educational and cognitive psychology on the one hand and psychometrics on the other.

Several returning themes were solution strategies, individual differences, explanatory

variables, and latent variable modeling. Studying solution strategies was deemed

relevant from an educational psychology perspective, because they are a spearhead

of mathematics education reform, as well as from a cognitive psychology perspective

where the work of Siegler and his colleagues has initiated a large thread of research into

strategic competence and mechanisms of strategy choice. The substantive concepts

of individual differences, of continuous or of categorical nature, were translated to the

psychometric field of latent variable models, in particular latent class analysis (LCA)

and item response theory (IRT). Finally, incorporating explanatory variables in the

statistical analyses – among which the latent variable models – made it possible to study

differences between groups of students (such as boys and girls), between different types

of mathematics problems (such as with and without a context), and between different

solution strategies (such as written and mental computation). In all studies, the relevance

of the results for educational practice received considerable attention.

In the first two empirical studies (Chapters 2 and 3), secondary analyses of the raw

data collected in the Dutch national mathematics assessments at the end of primary

school (PPON) were carried out. These studies aimed to get more insight in students’

performance level in complex or multidigit multiplication and division, by incorporating

information on students’ solution strategy use. This performance level was found

to decrease over time and to stay far behind educational standards. In the next two

empirical studies, new data were collected to study characteristics of written and mental

solution strategies in complex division problem solving (such as strategy distribution,

accuracy, speed, and adaptivity) in an unbiased manner, by a partial (Chapter 4) and a full
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8.1. Substantive findings

(Chapter 5) choice/no-choice study (cf. Siegler & Lemaire, 1997). The final two empirical

studies addressed the effects of presenting mathematics problems in realistic – usually

verbal – context, as is common practice in contemporary mathematics instruction and

mathematics tests. Both students in the early grades of primary school (Chapter 6) and

in the final grade (Chapter 7) were studied.

The remaining part of this discussion is subdivided into two sections. First, the main

substantive psychological findings and the (educational and cognitive) implications of

the six empirical studies are discussed. Second, we reflect on the statistical modeling

approaches used and their contributions to the field of psychometrics.

8.1 SUBSTANTIVE FINDINGS

8.1.1 Solution strategies in complex arithmetic problems

Lemaire and Siegler (1995) distinguished four aspects of strategic competence : strategy

repertoire (which strategies are used), strategy distribution (the frequency with which the

strategies are used), strategy efficiency or performance (strategy speed and/or accuracy),

and strategy selection or adaptivity (how strategies are chosen, related to problem

characteristics and individual strategy characteristics). These aspects, in particular

strategy choice or selection and strategy accuracy, are key features in five of the six

empirical studies (only Chapter 6 did not address solution strategies). These five studies

were all carried out in the domain of complex or multidigit arithmetic with sixth graders

(12-year-olds). The main solution strategy categories distinguished in these studies were

the traditional standard algorithm that proceeds digit-wise, non-traditional procedures

that work with whole numbers, answers without written working, and other strategies

(unclear or wrong strategies, and skipped items). A subcategory of the non-traditional

strategies are the RME approaches (called column calculation by the developers, see

Treffers, 1987, and Van den Heuvel-Panhuizen, 2008). These strategies can be considered

transitory between informal approaches and the traditional algorithm: they work with

whole numbers instead of single-digits (like informal strategies), but they proceed in a

more or less standard way (like the traditional algorithm).

Complex division (e.g., 432÷12) received most attention in this thesis: All five studies

analyzing solution strategies addressed complex division. Division was considered

important because the largest performance decrease in the national assessments was

observed in this domain (J. Janssen et al., 2005). Moreover, the replacement of the
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8. GENERAL DISCUSSION

traditional long division algorithm by the RME-alternative of column calculation (Van

den Heuvel-Panhuizen, 2008) – which for division means repeated subtraction of

multiples of the divisor from the dividend (see Figure 2.1 in Chapter 2 for an example) – in

the learning/teaching trajectories and in the mathematics textbooks makes it a prototype

of mathematics education reform. Complex multiplication was addressed in two studies

(Chapters 3 and 7), and complex addition and subtraction only in Chapter 7.

Strategy selection in multiplication and division: general patterns and shifts over time

In Chapter 2, students were found to be quite consistent in the type of strategy

(traditional, non-traditional, no written working or other) they chose on a set of division

problems. However, shifts in the relative frequency of the different strategy choice

classes were observed. In line with the disappearance of the traditional division

algorithm from the textbooks, the percentage of students predominantly using this

strategy decreased between the PPON-assessments of 1997 and 2004. Unexpectedly,

however, the percentage of students using predominantly the RME-based repeated

subtraction strategy remained about constant. What did increase on the other hand, was

the percentage of students consistently answering without any written work, presumably

indicative of mental computation (as was supported by findings in Chapter 4). In the

other three studies in which solution strategies for division problems were studied

(Chapters 4, 5, and 7), the traditional division algorithm was also used rather infrequently,

so this appeared to be a robust pattern. Furthermore, Chapter 3 showed that the

traditional algorithm was almost exclusively used by students whose teachers instructed

it, supporting the influence of the curriculum on students’ problem solving behavior.

The frequency of using mental computation, however, was more variable over the

different studies, and the high frequency found in PPON-2004 (44%) was never matched

in later studies. The large frequency found in PPON may thus be considered somewhat

exceptional, and it will be interesting to find out whether it carries on in the upcoming

subsequent assessment cycle at the end of grade six, for which the data collection is

planned to take place in 2011.

In complex or multidigit multiplication, the traditional algorithm (see for example

Figure 3.2 in Chapter 3) is still the end point of the contemporary learning/teaching

trajectory, contrary to complex division (Van den Heuvel-Panhuizen, 2008). The majority

of the sixth grade teachers (88%) also instructed it in PPON-2004 (as the only strategy or
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8.1. Substantive findings

in combination with column calculation), and in the assessments of 1997 and 2004 it was

the dominant strategy students used to solve multiplication problems. The dominance

of the traditional algorithm in multiplication is supported by the findings of Chapter 7,

where more than 50% of the multiplication problems were solved with the traditional

algorithm. Like in division, shifts in strategy choice over time between PPONs 1997

and 2004 were found in multiplication too. Similar to division, a decrease in use of the

traditional algorithm and an increase in answering without written work were observed.

However, this increase in the no written work strategy was smaller in multiplication than

it was in division. Moreover, non-traditional multiplication strategies were used more

frequently in 2004 than in 1997, in contrast to division where the relative frequency of

these strategies remained roughly stable. This latter difference between multiplication

and division is striking since one would rather expect to find the opposite pattern,

because non-traditional strategies have become the standard approach for division in

learning/teaching trajectories, while they are not standard in multiplication.

Strategy accuracy differences

How should we evaluate the decrease in the traditional written algorithm and the increase

in using mental computation (multiplication and division) and the increase in non-

traditional strategies (multiplication only)? One way to look at this shift is to consider the

effects on performance, by comparing the accuracies (probability of a correct answer) of

the different strategies. One consistent finding in this thesis was that written computation

strategies – including complete solution procedures as well as only intermediate answers

– were more accurate than non-written (mental) computation strategies across the

operations division (Chapters 2, 4, 5, and 7), multiplication (Chapters 3 and 7) and

addition and subtraction (Chapter 7). In other words, the observed shift between 1997

and 2004, showing a decrease in written strategies and an increase in mental strategies

in multiplication and division, turned out unfortunate with respect to performance

outcomes. Importantly, Chapter 4 showed that forcing students who spontaneously used

a mental strategy when solving a complex division problem, to use a written strategy on a

parallel problem, improved their performance. Therefore, a reasonable recommendation

seems to be that teachers should encourage the use of writing down solution steps or

solution strategies, emphasizing the value both in schematizing information and in

recording key items (Ruthven, 1998). This may be particularly relevant for boys (who
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8. GENERAL DISCUSSION

are more inclined to use mental computation) and for low mathematics performers

(who showed the largest performance gap between mental and written strategies). In

addition, in Dutch secondary education, it is common practice to evaluate students’

entire work, not merely the final answer given. Re-emphasizing the value of written work

in primary education may therefore also smoothen the transition to secondary education

mathematics.

Another relevant comparison is between the accuracy of traditional and non-

traditional strategies. A recurring finding in this thesis was that the traditional algorithm

was usually equally accurate in division (Chapter 2 – note however that this only held

for low and high achievers; for medium achievers the traditional division algorithm

was significantly more accurate than non-traditional strategies – and Chapter 7) and

more accurate in multiplication (Chapters 3 and 7) and in subtraction and addition

(Chapter 7; for subtraction see also Van Putten & Hickendorff, 2009). Although these non-

traditional strategies included a wide range of different approaches, and comparisons

were hampered by selection effects because they were based on different students

and/or different items (cf. Siegler & Lemaire, 1997), these patterns raise questions

on the desirability of learning/teaching trajectory end-points other than the traditional

algorithm. Combined with the pattern emerging from the review in Chapter 1 and

international reviews (e.g., Kroesbergen & Van Luit, 2003; Swanson & Carson, 1996) that

low mathematics achievers benefit from a more directing instruction, these students in

particular may need instruction in one standard procedure to solve a problem. We argue

that this standard strategy should preferably be the traditional algorithm.

It is important to note that the algorithms can also be learned with insight in what

is going on (e.g., Lee, 2007). On a related note, instructing for procedural knowledge –

such as skill in the traditional algorithm – does not imply that only isolated skills and

rote knowledge are developed. As Star (2005) argued, the knowledge type distinction

in procedural versus conceptual knowledge is perpendicular to the dimension of

knowledge quality ranging from superficial to deep knowledge. In discussions about

mathematics education, however, these two distinctions are often entangled, with

conceptual knowledge being considered deep and procedural knowledge considered

superficial. The other two combinations, deep procedural knowledge and superficial

conceptual knowledge should be recognized as well. We reach a similar conclusion as

Gravemeijer (2007) did earlier, that the dual aim of teaching/learning trajectories based

on ’column calculation’ – attaining insight in and mastery of standard procedures – is
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currently not attained in mathematics education.

The position of the traditional algorithm in the mathematics curriculum has been

an object of heated debate. On the one hand, Gravemeijer (2007) for instance made

a plea not to focus so much on standard procedures, because they require a large

investment of instructional time and practice in order to attain fluent skill. On the

other hand, for example Van der Craats (2007) argued that these procedural skills are

at the core of mathematics, and should therefore receive much more instruction, drill,

and practice, than they receive now. Recent developments in educational policy suggest

that basic skills have received renewed attention. For example, a committee has been

installed with the mission to define reference levels – desired performance outcomes of

mathematics education – for several time points in the primary and secondary school

years (Expertgroep Doorlopende leerlijnen Taal en Rekenen, 2008). This committee

claimed (p. 32-33) that shifts in focus in the mathematics curriculum in the domain of

numbers and operations are undesirable as long as the general society and educational

community have not reached agreement. Currently, fluently solving complex arithmetic

problems with standard written procedures are still considered an educational objective

(Dutch Ministry of Education, Culture, and Sciences, 2006), so decreased attention for this

domain in educational practice may be considered to be unwarranted. An interesting

related observation is that 41% of the sixth grade teachers reported instructing the

traditional division algorithm in PPON-2004 (as the only strategy or in combination

with column calculation), thereby diverging from the intended curriculum (Porter,

2006) as formulated in the learning/teaching trajectory (Van den Heuvel-Panhuizen,

2008). Apparently, a substantial minority of the teachers feel that the traditional division

algorithm should be included in the mathematics curriculum.

The unexplained part of the performance decrease . . .

By taking into account the solution strategies students used, we found a partial

explanation of the performance decrease between 1997 and 2004 on multiplication and

division problems. That is, a shift in strategy choice, characterized by a decrease in the

accurate traditional algorithm and an increase in less accurate mental computation, and

in multiplication also an increase in less accurate non-traditional strategies, contributed

significantly and substantively to the drop in performance. However, this shift could only

partially account for the performance decline: a substantial part that was unaccounted
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for remained. That is, within each of the main strategies, the accuracy in PPON-2004

was significantly lower than in PPON-1997. There are no empirical data available in

the assessments to study what caused this general accuracy decrease, so we can only

revert to more tentative hypotheses, such as the lower value attached to these domains

in general, and less opportunity to learn (instruction and practice) in solving these kinds

of problems. Evidently, more research is needed.

Adaptive expertise

Related to these above findings on solution strategies is the current aim of mathematics

education reform to attain adaptive expertise, the ability to solve mathematics problems

efficiently, creatively, and flexibly, with a diversity of strategies (Baroody & Dowker, 2003;

Torbeyns, De Smedt, et al., 2009b). There are several findings suggesting that students

do not make adaptive strategy choices. Most notably, because mental strategies were

found to be less accurate than written strategies – both in comparisons between and

within different students and items – the question arises why students choose these

’risky’ mental strategies. Chapter 5 suggests that mental computation was mainly chosen

for its speed advantage, while the accuracy was considered less important. Moreover,

a substantial part of the students did not choose their ’best’ strategy – defined as the

one leading fastest to an accurate answer – on a problem. These apparent suboptimal

strategy choices contrast with predictions from cognitive models on strategy choice (e.g.,

Shrager & Siegler, 1998; Siegler & Shipley, 1995), that presume that the main determinant

of an individual’s strategy choice on a particular problem is the individual’s strategy

performance characteristics for that problem.

These cognitive models are not explicit in the influence of individual differences

in the speed-accuracy preferences (the relative weighing of accuracy and speed; Ellis,

1997; Phillips & Rabbitt, 1995) that may cause some students to choose fast but more

error-prone mental computation. Furthermore, these models have been argued to ignore

aspects of the sociocultural context, such as sociomathematical norms (Ellis, 1997; Luwel

et al., 2009; Verschaffel et al., 2009). Ellis pointed out the possibility of (sub)cultural

differences in the weights assigned to speed versus accuracy of performance, and the

value placed on solutions constructed in the head versus by means of external aids.

For instance, classroom socio-mathematical norms and practices valuing speed over

accuracy and/or mental strategies over written ones, may result in students overusing
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mental strategies at the cost of accuracy. We tentatively argue that due to the importance

of mental computation in RME-based mathematics education, the socio-mathematical

norms in the classroom are such that mental computation is considered superior

to written computation. Although we acknowledge that mental computation is an

important competence, we argue that it should not overshadow the competence of using

written strategies fluently. A related interesting finding was that on the division problems

in PPON-2004, the frequency of answering without written work (as well as of skipping

problems entirely) were highest in students whose teacher instructed exclusively the

RME-strategy for division, tentatively suggesting students receiving more RME-based

instruction valued mental computation over written computation to a larger extent

than students who received a more traditional instruction. In multiplication, however,

teachers’ strategy instruction did not seem to affect the frequency of answering without

written work, so the results are not consistent in this respect.

Two patterns found suggest adaptivity in strategy choices to some extent. First,

in Chapter 4, individual differences in strategy choices on division problems showed

that there were three subgroups of students: students who consistently used written

computation, students who consistently used mental computation, and students who

switched from written computation on the problems with more difficult number

characteristics to mental computation on the problems with easier numbers. The latter

group seemed to adapt their strategy choices to the problem characteristics, and thus

showed some strategy adaptivity. Second, in Chapters 4 and 5, there were several division

problems with number characteristics such that a compensation strategy (rounding the

dividend) would be a very efficient approach. Within written strategies, only a small

proportion involved this compensation approach, while, in contrast, the majority of the

mental strategies involved compensation. Given the fact that the compensation strategy

is more efficient, in the sense that it requires fewer computational steps, the finding that

students applying a compensation strategy usually did it mentally, while those who did

not use a compensation strategy predominantly used a written strategy, is an indication

that to some extent an adaptive strategy choice was made.

Also interesting in this respect are findings from another study that was carried out

(not included in the current thesis). That study (Hickendorff, 2010c) addressed Dutch

sixth graders’ use of shortcut strategies [in Dutch: handig rekenen] on complex arithmetic

problems with number characteristics expected to elicit efficient strategies, like indirect

addition on subtraction problems, and compensation strategies on multiplication and
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division problems. Results showed that such shortcut strategies were used rather

infrequently, on between 5% and 20% of the trials, and were equally accurate as non-

shortcut strategies. In addition, an explicit hint to ”Solve the problems as clever as possible.

Have a close look at the numbers” hardly increased the frequency of use. These findings

thus do not yield much support for the adaptation of strategy choices to problem features,

supported by the relatively low frequency of shortcut strategies found in studies with

younger children in Belgium, Germany, and the Netherlands (Blöte et al., 2001; De Smedt,

Torbeyns, Stassens, Ghesquière, & Verschaffel, 2010; Heinze, Marschick, & Lipowsky,

2009; Selter, 2001; Torbeyns, De Smedt, Ghesquière, & Verschaffel, 2009a; Torbeyns,

De Smedt, et al., 2009b; Torbeyns, Ghesquière, & Verschaffel, 2009). As Torbeyns, De

Smedt, et al. (2009a, footnote 5) argued, shortcut strategies are not easy strategies, and

fluent application requires a sufficient amount of practice. We argue that in current

mathematics education, the ease of discovery and application of such strategies, and

thereby the efficiency and value of these strategies, may be overrated.

8.1.2 Differences between problems and between students

Problem characteristics

We discuss the effects of two problem characteristics: the operation required (addition,

subtraction, multiplication, and division) and the problem format (contextual or

numerical problem).

To start with the latter aspect, an often-heard complaint about contemporary

mathematics tests is that students with low language or reading skills are disadvantaged

by the large number of contextual problems, because it is a necessary condition to

understand the problem text to solve the mathematics problem. Findings in this thesis

on this issue were mixed: in lower grades (Chapter 6) we found that solving contextual

and numerical arithmetic problems involved different abilities (in a technical sense,

different individual differences dimensions). Moreover, the performance of students

with a lower language level (a non-Dutch home language or low reading comprehension

level) lagged behind that of students with a higher language level to a larger extent in

solving contextual problems than in solving numerical problems. A direct assessment of

whether a context made a problem easier or more difficult, however, was not possible

in this study. By contrast, in the study with sixth graders (Chapter 7) it was possible to

test this effect directly, and strikingly, hardly any effects of problem format (contextual
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versus numerical) were found on performance, strategy choice, and strategy accuracy.

Furthermore, the absence of an effect held independently of students’ home language

and language performance level. The findings of Chapters 6 and 7 taken together suggest

that the effects of contexts in mathematics problems decreases with more years of formal

schooling, and that the type of contexts used in often-used mathematics tests from CITO

do not disadvantage any of the groups of students distinguished at the end of primary

school. However, given the findings in the lower grades, more balance between problems

with and without a context in mathematics education and in mathematics assessments

may be called for, as was also recommended in the KNAW (2009) report.

Regarding differences between problems by operation required (addition, subtraction

multiplication, and division), we review the findings of Chapter 7, in which all four

operations were studied simultaneously. The following pattern of strategy choices

emerged: the frequency of the traditional algorithm was highest for addition and

subtraction, lowest for division, and in between for multiplication. This pattern is

consistent with the position of the traditional algorithm in the learning/teaching

trajectories (Van den Heuvel-Panhuizen, 2008), and also with findings on multiplication

and division in the national assessments (Chapter 3). Moreover, addition and subtraction

can be considered lower in the arithmetic hierarchy than multiplication and division,

because for success in the latter, skill in the former is necessary. Therefore, fluent skill

in one standard procedure may be more essential for addition and subtraction than for

multiplication and division.

Student characteristics

Throughout this thesis, the effects of the student characteristics gender and general

mathematics level on different aspects of mathematical ability (overall performance,

strategy choice, strategy accuracy, and strategy adaptivity) have been addressed

recurrently.

Gender differences were addressed in five studies (Chapters 2, 3, 4, 5, and 7).

Regarding performance, all studies showed slight advantages for girls (usually non-

significant, but significant in Chapter 7), which is in contrast with the consistent pattern

from national (J. Janssen et al., 2005; Kraemer et al., 2005) and international assessments

(Mullis et al., 2008; OECD, 2010) that boys tend to outperform girls on most mathematics

domains in the majority of the countries, including the Netherlands. However, complex
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arithmetic may be the exception, as (small) girl advantages on these domains were also

found in the Dutch national assessments in grade 6. Tentative explanations may be that

this domain lends itself pre-eminently for applying structured, algorithmic approaches,

something that girls have been found to favor more than boys (Carr & Davis, 2001; Carr &

Jessup, 1997; Gallagher et al., 2000; Timmermans et al., 2007).

In line with this reasoning, we found very clear and consistent gender differences in

strategy choice on the complex arithmetic problems of all four operations: girls were

more inclined to use written strategies, in particular the traditional algorithm, while boys

were more inclined to use mental computation. In particular, the observed strategy shift

between PPONs 1997 and 2004 in multiplication and division towards an increase in

mental computation could even be predominantly attributed to boys.

In none of the studies, gender differences in the accuracy with which these strategies

were executed were found, suggesting that the (slight) advantage of girls in performance

is mediated by their choice for more accurate strategies. In Chapter 5, strategy

speed was addressed, and boys were faster with forced mental computation than girls.

Consequently, for boys the speed gains of choosing mental strategies over written ones

was larger than for girls, which may partially account for boys’ larger inclination of

choosing mental strategies. In addition, boys and girls appeared to have different

speed-accuracy preferences. Girls appeared to fit their strategy choices to accuracy

considerations, ignoring speed, while boys had a preference for speed over accuracy.

This may be related to individual differences in the confidence criterion that have been

reported in children (Siegler, 1988a, 1988b) and in adults (Hecht, 2006). In addition, girls

have been consistently found to have lower levels of confidence with mathematics (Mullis

et al., 2008; Timmermans et al., 2007; Vermeer et al., 2000), and as a result may act more

cautiously than boys and therefore choose the safety of using slower, well-structured,

written strategies. In line with this reasoning, girls have been found to be less inclined to

intellectual risk-taking than boys (Byrnes et al., 1999) and more inclined to (academic)

delay of gratification (Bembenutty, 2009; Silverman, 2003). All these gender differences

together might partially explain that boys more often choose fast mental calculation over

slower but more accurate written computation.

In four studies, the effects of students’ general mathematics achievement level were

studied (Chapters 2, 3, 4, and 5). Not surprisingly, students with higher mathematics level

performed better on the complex arithmetic problems overall, had a higher accuracy

within each strategy, and were faster within each strategy, than students with lower
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mathematics level. An interesting differential effect in strategy accuracy was found: the

accuracy advantage of written over mental strategies decreased for students with higher

mathematics level, as was found in Chapters 2, 3, and 4. The results regarding differences

in strategy choice were somewhat mixed: Chapters 2 and 3 showed that in multiplication

and division problems of PPONs 1997 and 2004, students with low mathematics level

were more inclined to use a non-written strategy or skip the item than medium and high

level students. The latter more often used written strategies, in particular the traditional

algorithm. However, in Chapter 5, no differences in the tendency to choose mental

strategies as a function of mathematics achievement level were found.

There are clear indications that there are differences in the adaptivity of strategy

choices as a function of students’ mathematics achievement level. That is, weak

students very infrequently classified as ’switchers’ (adapting strategy choices to problem

characteristics) in Chapter 4, and Chapter 5 showed that below-average achievers did

not take either accuracy or speed into account in their strategy choices, while above-

average achievers fitted their strategy choices to both performance components. Other

studies also reported that students of higher mathematical ability choose more adaptively

between strategies than students of low mathematical ability (Foxman & Beishuizen,

2003; Hickendorff, 2010c; Torbeyns, De Smedt, et al., 2009b; Torbeyns et al., 2002, 2006).

Similarly, the research synthesis of Chapter 1 showed that low mathematics performers

who were instructed in a more free form (i.e., guided instruction) did show a larger

strategy repertoire than students who were trained with a more directing instruction,

but they did not use this larger repertoire more flexibly or adaptively. In other words,

it seems that we did not yet succeed in an instructional approach fostering adaptive

expertise for the low mathematics performers. A recommendation may be to devote

more educational attention to teaching students to make informed choices for mental or

written strategies: when is a mental strategy ’safe’ enough, and when is it better to revert

to written strategies? Moreover, questions can be raised to the general attainability and

feasibility of adaptive expertise for low mathematics performers (see also Geary, 2003;

Torbeyns et al., 2006; Verschaffel et al., 2009).
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8.2 CONTRIBUTIONS TO PSYCHOMETRICS

In the current thesis, advanced psychometric modeling techniques were used to

approach the substantive research questions posed. The most notable application

of psychometric modeling of the current thesis was to use latent variable models to

analyze individual differences between students. Moreover, to move beyond mere

measurement of individual differences, the influence of different explanatory variables

was addressed to study differences between groups of students, between problems with

different characteristics, and between solution strategies (student-by-item variables). In

short, our approach can be called explanatory latent variable modeling. Different aspects

are reflected on in the following sections.

8.2.1 Explanatory latent variable modeling

The substantive concept of individual differences was translated to the psychometric

field of latent variable models, in particular latent class analysis (LCA) and item response

theory (IRT). These models made it possible to analyze complicated data structures

consisting of repeated observations (items within students) of dichotomous (correct/

incorrect) and/or categorical (solution strategies) measurement level (see Chapter 2).

Latent class analysis (e.g., Goodman, 1974; Lazarsfeld & Henry, 1968) models

qualitative (i.e., categorical) individual differences that are measured with categorical

observed variables. It is a model-based version of cluster analysis. These models were

found to be very useful in analyses of individual differences in strategy choice, searching

for latent subgroups of students who are characterized by a specific strategy choice

profile over a set of items. To assess the effect of student-level explanatory variables

on these latent classes, we included these variables as covariates predicting latent class

membership (e.g., Vermunt & Magidson, 2002).

In such an approach, the conditional probabilities (the probability of responding

in a particular category on a particular item, given membership of a particular latent

class) are unaffected by the covariates, implicitly assuming that the influence of the

covariates on the item responses is completely mediated by the latent class variable.

This assumption may be relaxed by allowing for direct effects of covariates on observed

variables, something that we did not try in the current thesis. Furthermore, in the latent

class analyses in the current thesis, there were conditional probabilities for each item

separately, making the model quite complex (i.e., with a large number of parameters).

240



8.2. Contributions to psychometrics

A more parsimonious alternative would be to restrict the conditional probabilities on

a set of equivalent items to be equal to each other (Hickendorff, Heiser, Van Putten,

& Verhelst, 2008). However, this a a rather stringent assumption. Another approach

would be to apply latent class regression analysis (e.g., Bouwmeester, Sijtsma, & Vermunt,

2004), in which the effects of particular item features instead of of individual items on

strategy choice are modeled. That, however, would require a systematic specification of

the features of each item, which is hardly possible in the current empirical studies.

As statistical software to fit the LCA models, we used two programs: LEM (Vermunt,

1997), a general versatile program for the analysis of categorical data, and the poLCA

package (Linzer & Lewis, 2011, 2010) available in the statistical computing program R

(R Development Core Team, 2009). With a sufficient number of random starts to avoid

locally optimal solutions, these two packages yielded the same results .

Item response theory models (e.g., Embretson & Reise, 2000; Van der Linden &

Hambleton, 1997) model quantitative (i.e., continuous) individual differences, and are

therefore very suitable to analyze performance. With explanatory IRT-analyses (De Boeck

& Wilson, 2004; Rijmen et al., 2003), the effects of explanatory variables at the student

level, item level, and student-by-item level, as well as interactions between these variable

types, could be studied. For example, in Chapter 7 the interaction effect between the

student-level variable home language and the item-level variable problem format was

tested, in order to assess whether problems in a contextual format were relatively more

difficult compared to numerical problems for students who did not speak Dutch at home

than for their native peers.

Furthermore, the individual differences dimensions need not be one-dimensional.

In Chapter 6, in a two-dimensional between-item IRT model (e.g., Adams et al., 1997;

Reckase, 2009), two performance dimensions were distinguished. The ability to solve

numerical problems and the ability to solve contextual problems appeared to be highly

related but still distinct in the lower grades in primary school. In sixth grade, however,

these dimensions appeared to be statistically indistinguishable. Given the distinctness

of the performance dimensions of solving contextual problems and solving numerical

problems in early grades, it would be recommendable to somehow report on these

two dimensions separately, because this may yield diagnostic information on potential

remedial an instructional benefit (De la Torre & Patz, 2005). In cases were there is

essentially one dominant factor or highly correlated dimensions, MIRT modeling has

been shown to yield subscale scores that have improved reliability over unadjusted
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subscale scores (total scores), because the correlational structure is taken into account

(De la Torre and Patz; Stone et al., 2010). However, Sinharay et al. (2010) showed that

caution with reporting subscale scores is needed: they have added value over reporting

the total score only if the reliability of the subscales is large enough and if the dimensions

are sufficiently distinct.

A potentially fruitful alternative to choosing between unidimensional and multidi-

mensional IRT models may be a procedure called profile analysis (Verhelst, 2007, in press),

that is being used in the most recent edition of CITO’s Student Monitoring and Evaluation

System (see J. Janssen & Hickendorff, 2009). In this approach, the item parameters of a

unidimensional IRT model are estimated. However, different item categories (such as

basic skill and applied problem solving) are distinguished. These categories are used

in the next step, to determine for each student the deviation of his or her observed

response profile on these item categories from the expected response profile under the

unidimensional model, with a disparity index. Students (or groups of students) who show

large disparities do not respond consistently with the unidimensional model, but show

specific strengths and weaknesses on some item categories, conditional on their total

score. Such deviant profiles may yield valuable diagnostic information for individual

students, as well as for groups of students (e.g., different countries).

With respect to the estimation of explanatory IRT models, De Boeck and Wilson

(2004) showed that item response models in marginal maximum likelihood (MML) can

be formulated in the generalized (non)linear mixed model (GLMM) framework. This

formulation makes it possible to use mainstream statistical software platforms, such

as the NLMIXED and GLIMMIX procedures from SAS (SAS Institute, 2002), or the lmer

function from the lme4 package (Bates & Maechler, 2010) available in the statistical

computing environment R (R Development Core Team, 2009), as described in De Boeck et

al. (2011). These statistical packages differ in the way they approximate the maximization

of the likelihood in parameter estimation (see Equation 2.5 in Chapter 2), and have

their own advantages and disadvantages. For example, NLMIXED approximates the

integral with a Gauss-Hermite quadrature procedure (numerical integration), and is

therefore very accurate with a sufficient number of quadrature points but also very

slow, in particular with multidimensional IRT models. That is, the complexity of the

estimation problem is exponentially related to the number of dimensions. However, it is

the only of the three packages allowing for item discrimination parameters. The lmer

function approximates the integrand with a Laplace procedure making it very fast, but it

242



8.2. Contributions to psychometrics

results in slightly biased parameter estimates, in particular for the random effects. An

advantage over NLMIXED is that it is possible to estimate models with crossed random

effects: simultaneous random effects over different modalities, such as individuals and

items (De Boeck, 2008). Finally, the GLIMMIX procedure approximates the integrand

with quasi-likelihood procedures (PQL or MQL) and produces seriously biased results on

the random effect parameters.

In a small comparative study (Hickendorff, 2010a), these three statistical packages

were compared. A two-dimensional IRT model was fitted on the correct/incorrect

responses of 1546 sixth-graders to the multiplication and division problems of PPON

1997 and 2004. The variance estimates of the first dimension were 1.56 (SE = .19) with

NLMIXED, 1.37 (no SE estimated) with lmer, and 1.08 (also no SE estimated) with

GLIMMIX, illustrating the downward bias of random effects parameter estimates in

procedures that approximate the integrand (see also Molenberghs & Verbeke, 2004). The

respective latent correlation estimates were .87 (SE = .04), .93, and .96: clearly different

from each other. A practical recommendation may be to start model building with lmer

because of its superior speed and least amount of bias, and re-analyze the final model(s)

with NLMIXED for the most accurate results.

One innovative application of explanatory IRT models in the current thesis was to

use the solution strategy that a student used to solve a particular item as a student-by-

item explanatory variable, as explained in Chapter 2 and done throughout the thesis.

By doing so, it was possible to statistically test the difference in accuracy between the

strategies while accounting for individual ability differences in overall performance and

difficulty differences between problems, something that was not achieved before in

studies into solution strategies. The strategy accuracy differences could be modeled to be

item-specific (see Figure 2.4 in Chapter 2), or restricted to be equal for some or all items.

Although this restriction made the model far more parsimonious and allowed for testing

interaction effects between strategies and student-level variables, it was quite a stringent

constraint. With the possibility to model crossed random effects in lmer (De Boeck et al.,

2011), an intermediate alternative seems to be to model the strategy effects as random

over items, as was done in Hickendorff (2010a) for the multiplication problems of PPON

1997 and 2004. In that approach, the strategy effects averaged over items are estimated,

as well as the variance of this effect over the items. An alternative interpretation is that the

item difficulties per strategy are modeled as random over items. Furthermore, analyzing

the item difficulty per strategy is related to the issue of differential item functioning (DIF),
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with items not functioning in the same way for different groups of students (in this case,

characterized by their strategy choice). Further research is necessary to investigate this

approach in more detail.

8.2.2 Final remarks

This thesis concludes with two final remarks. The first one concerns carrying out

secondary analyses on data that were collected in large-scale assessments to answer new

research questions, as was done in Chapters 2 and 3. These secondary analyses turned

out to yield valuable new insights in patterns reported in the national mathematics

assessments. There are also other advantages: it is relatively inexpensive because no new

data have to be collected, and one can stay close to findings of the original assessments

one aims to explain (i.e., they are based on the same problems and same representative

sample of students, so these variables cannot confound the results).

However, there are also disadvantages (e.g., Van den Heuvel-Panhuizen et al., 2009),

and one major limitation is the fact that the data were collected with a purpose

(reporting on the outcomes of the educational system) other than answering the

newly posed research questions. One has to make do with what one has. As a

consequence, the influence of factors that were not varied systematically, like problem

characteristics, cannot be tested directly (Hickendorff et al., 2009a). However, it may

yield new hypotheses that can direct new research efforts, as was for example done

in the current thesis. Furthermore, we recommend to collect more information in

the national assessments on the intended and enacted mathematics curriculum, in

order to study the entire chain of curricular materials, teacher interpretation, curricular

enactment, and student learning more thoroughly (Hickendorff et al., 2009a; Stein et al.,

2007). In addition, we plead for a more multidisciplinary approach in which didactical

experts, educational researchers, cognitive psychologists, and experts in educational

measurement cooperate to get the most out of large-scale educational assessments.

The second remark concerns the mutual value of crossing the border between

psychometrics and psychology. The kind of advanced statistical analyses applied in

the current thesis are rather scarce in the field of educational and cognitive psychology.

However, we argue that these approaches are better suited to answer the substantive

research questions commonly posed in these fields than more traditional analyses such

as classical test theory, in particular when it concerns data on solution strategies. In that
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respect, psychometrics can advance the field of psychology. This positive influence may

also hold in the other direction: psychology may advance the field of psychometrics. As

Borsboom (2006) argued, psychometrics has not yet succeeded in getting integrated with

mainstream psychology. However, psychometrics is an applied science and it is therefore

essential that psychometricians avoid a state of isolation.
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